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Abstract. Boundary conditions ensuring the value of the solution and its

derivative with respect to the time variable at the preassigned time are written

in the form of analytical expressions in terms of given functions included in

the initial and boundary conditions at the other time intervals.

1 Introduction

A number of papers by Il’in and Moiseev [1–20] are devoted to problems of control
solutions of mixed problems for one-dimensional equation of string vibration by
boundary conditions. Because these problems for sufficiently large time variable have
nonunique solution, so optimization of functions included in the boundary conditions
is considered in addition. Weak solutions satisfying corresponding integral relations
are considered here.

Basing on some results of the paper [22], functions included in the boundary
conditions that ensure the values of required solution and its derivative with respect
to the time variable at the given time are written in the paper in the form of ana-
lytical relations in terms of already defined functions. The solution of the problem
is classical and under some restrictions on given functions smoothness is continuous
and has all continuous derivatives included in the equation of the problem.

2 Statement of problem

With respect to the required function u : R2 ⊃ Q 3 (t, x) → u(t, x) ∈ R of indepen-
dent variables (t, x) ∈ R

2 one dimensional wave equation

∂2u

∂t2
− a2

∂2u

∂x2
= f(t, x), (t, x) ∈ Q, (1)
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is considered, where R
2 and R are two-dimensional and one-dimensional Euclidean

spaces, Q = (0,∞)× (0, l), (0, l) is interval, (0,∞) = {t | 0 < t <∞}. On the lower
base of Q initial conditions

u|t=0 = ϕ(x),
∂u

∂t

∣∣∣∣
t=0

= ψ(x), x ∈ (0, l), (2)

are given.
On the lateral rays of the boundary ∂Q the Dirichlet boundary conditions

u|x=0 = µ(1)(t), u|x=l = µ(2)(t), t ∈ (0,∞), (3)

are given.
Furthermore, we require desired function and its derivative satisfy conditions

u|t= kl+τ

a

= ϕ̃(x),
∂u

∂t

∣∣∣∣
t= kl+τ

a

= ψ̃(x), x ∈ (0, l), (4)

at time t = kl/a + τ/a in terms of given on the interval (0, l) functions ϕ̃ and ψ̃,
where k ∈ {0, 1, 2, 3, . . .}, τ is a number from the segment [0, l] ⊂ R.

Problem (1)–(4) is overdetermined. In order that it has solution, conditions on
given functions are required. These conditions we impose on the functions µ(j),
j = 1, 2. Such problem we call problem of control with the help of boundary
conditions µ(j) (j = 1, 2), in order the required solution u and its derivative ∂u/∂t
get the given value at t = (kl + τ)/a. The word “control” is connected with the
physical meaning of such problems.

For finding solution u of problem (1)–(4) with control we use the classical solution
of problem (1)–(3) [22]. In order to find solution of stated problem (1)–(4) and its
controlling functions, we find classical solution of problem (1), (2), (4).

3 Problem (1), (2), (4)

We divide the rectangle
(
0, kl+τ

a

)
× (0, l) into rectangles Q̃(m), starting from the top,

Q̃(m) =
(

(m−1)l+τ

a
, ml+τ

a

)
× (0, l), m = k, k− 1, . . . , 2, 1, and Q̃(0) =

(
0, τ

a

)
× (0, l). In

Q̃(m) we consider mixed problem

∂2u

∂t2
− a2

∂2u

∂x2
= 0, (t, x) ∈ Q̃(m), (5)

u|t=ml+τ

a

= ϕ̃(m)(x),
∂u

∂t

∣∣∣∣
t=ml+τ

a

= ψ̃(m)(x), x ∈ (0, l), (6)

u|x=0 = µ(1)(t), u|x=l = µ(2)(t), t ∈

(
(m− 1)l + τ

a
,
ml + τ

a

)
. (7)

Here ϕ̃(k)(x) = ϕ̃(x), ψ̃(k)(x) = ψ̃(x). For the other m ϕ̃(m) and ψ̃(m) determined
as a result of solving mixed problem (5)–(7).
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We use common solution (5) [22] of equation (5), i. e.

u(t, x) = r(at− x− (m− 1)l − τ) + g(x+ at−ml − τ). (8)

the characteristics (m− 1)l + τ + x− at = 0 and ml + τ − x− at = 0 partition

Q̃(m) into four subdomains Q̃
(m)
j , j = 1, 2, 3, 4, presented on Fig. 1.

0 l x

(m−1)l+τ

a

ml+τ
a

t

Q̃
(m)
1

Q̃
(m)
2 Q̃

(m)
3

Q̃
(m)
4

at− x− (m− 1)l − τ = 0

x+ at−ml − τ = 0

Figure 1: Partition of the domain Q̃(m).

From common solution (8) we select solutions satisfying conditions (6) and (7).
As a result we get

u(t, x) =
1

2
[ϕ̃(m)(x− at +ml + τ) + ϕ̃(m)(x+ at−ml − τ)] +

+
1

2a

x+at−ml−τ∫

x−at+ml+τ

ψ̃(m)(ξ)dξ, (t, x) ∈ Q̃
(m)
1 , (9)

u(t, x) =
1

2
[ϕ̃(m)(x− at +ml + τ)− ϕ̃(m)(ml + τ − x− at)] +

+
1

2a

ml+τ−x−at∫

x−at+ml+τ

ψ̃(m)(ξ)dξ + µ(1)
(
t+

x

a

)
, (t, x) ∈ Q̃

(m)
2 , (10)

u(t, x) =
1

2
[ϕ̃(m)(x+ at−ml − τ)− ϕ̃(m)(2l −ml − τ − x+ at)] +

+
1

2a

x+at−ml−τ∫

2l−ml−τ−x+at

ψ̃(m)(ξ)dξ + µ(2)

(
t +

l − x

a

)
, (t, x) ∈ Q̃

(m)
3 , (11)

u(t, x) = µ(1)
(
t+

x

a

)
+ µ(2)

(
t+

l − x

a

)
−

1

2
[ϕ̃(m)(2l −ml − τ − x+ at) +
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+ ϕ̃(m)(ml + τ − x− at)] +
1

2a

ml+τ−x−at∫

2l−ml−τ−x+at

ψ̃(m)(ξ)dξ, (t, x) ∈ Q̃
(m)
4 , (12)

In order function u represented by (9)–(12) in the subdomains Q̃
(m)
j (j = 1, 2, 3, 4) is

solution of problem (5)–(7) in the domain Q̃(m) from the class of twice continuously

differentiable functions, ϕ̃(m) ∈ C2[0, l], ψ̃(m) ∈ C1[0, l], µ(j) ∈ C2
[ (m−1)l+τ

a
, ml+τ

a

]
,

where Cs[c, d] is a set of continuously differentiable up to the order s on the segment
[c, d] functions. One can see this from (9)–(12). Furthermore, the functions from (9)–
(12) together with its derivatives of the first and second order must be equal on the
characteristics x + at − ml − τ = 0 and at − x − (m − 1)l − τ = 0, considering
them at the points of these characteristics as limit values from the corresponding
subdomains Q̃

(m)
j , j = 1, 2, 3, 4. Demanding this, we get the following agreement

conditions:

ϕ̃(m)(0) = µ(1)

(
ml + τ

a

)
, ϕ̃(m)(l) = µ(2)

(
ml + τ

a

)
,

ψ̃(m)(0) = µ(1)′

(
ml + τ

a

)
, ψ̃(m)(l) = µ(2)′

(
ml + τ

a

)
, (13)

µ(1)′′

(
ml + τ

a

)
= a2ϕ̃(m)′′(0), µ(2)′′

(
ml + τ

a

)
= a2ϕ̃(m)′′(l),

where µ(j)′(y), µ(j)′′(y), ϕ̃(m)′′(y) are the derivatives of the first and second order of
the functions µ(j) and ϕ̃(j), j = 1, 2.

Considering the limit values of the function u from (12) and its derivative with

respect to t at t = (m−1)l+τ

a
, we get

ϕ̃(m−1)(x) = µ(1)

(
x− l +ml + τ

a

)
+ µ(2)

(
ml + τ − x

a

)
−

− ϕ̃(m)(l − x), x ∈ [0, l],

ψ̃(m−1)(x) = µ(1)′

(
x− l +ml + τ

a

)
+ µ(2)′

(
ml + τ − x

a

)
−

− ψ̃(m)(l − x), x ∈ [0, l].

(14)

Repeating this process further, we find solutions of problem (5)–(7) for m =

1, . . . , k and in Q̃(0) by (9)–(12).
Using (14), we can determine ϕ̃(m) and ψ̃(m) in terms of ϕ̃ = ϕ̃(k) and ψ̃ = ψ̃(k)

for all m = 1, . . . , k − 1. Express consequently in terms of each other, we obtain

ϕ̃(m)(x) = (−1)k−mϕ̃(s(k −m)l + (−1)k−mx) +

+

k−m∑

j=1

(−1)j−1

[
µ(1)

(
[m+ j − 1− s(j − 1)]l + τ + (−1)j−1x

a

)
+
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+ µ(2)

(
[m+ j − s(j − 1)]l + τ + (−1)jx

a

)]
, (15)

ψ̃(m)(x) = (−1)k−mψ̃(s(k −m)l + (−1)k−mx) +

+
k−m∑

j=1

(−1)j−1

[
µ(1)′

(
[m+ j − s(j)]l + τ + (−1)j−1x

a

)
+

+ µ(2)′

(
[m+ j − s(j − 1)]l + τ + (−1)jx

a

)]
, (16)

where function s define on the set of integers and s(n) = 1, if n is odd, and s(n) = 0,
if n – even.

Lemma 1. If ϕ̃ ∈ C2[0, l], ψ̃ ∈ C1[0, l], µ(j) ∈ C2[0, (kl + τ)/a] (j = 1, 2)and
agreement conditions

ϕ̃(0) = µ(1)

(
kl + τ

a

)
, ϕ̃(l) = µ(2)

(
kl + τ

a

)
,

ψ̃(0) = µ(1)′

(
kl + τ

a

)
, ψ̃(l) = µ(2)′

(
kl + τ

a

)
, (17)

µ(1)′′

(
kl + τ

a

)
= a2ϕ̃′′(0), a2ϕ̃′′(l) = µ(2)′′

(
kl + τ

a

)
,

are fulfilled, then ϕ̃(m) ∈ C2[0, l], ψ̃(m) ∈ C1[0, l] and agreement conditions (13) for
m = 1, 2, . . . , k are fulfilled.

P r o o f. ϕ̃(m) ∈ C2[0, l], ψ̃(m) ∈ C1[0, l], follow from Lemma’s conditions and (14).
Let conditions (17) be fulfilled. We suppose m = k in (14)and check the agree-

ment conditions (13) for k − 1. Really,

ϕ̃(k−1)(0) = µ(1)

(
(k − 1)l + τ

a

)
+ µ(2)

(
kl + τ

a

)
− ϕ̃(l) = µ(1)

(
(k − 1)l + τ

a

)
,

ϕ̃(k−1)(l) = µ(1)

(
kl + τ

a

)
+ µ(2)

(
(k − 1)l + τ

a

)
− ϕ̃(0) = µ(2)

(
(k − 1)l + τ

a

)
.

Analogously, using (14), the other agreement conditions (13) for m = k − 1 are
proved.

Further, based on the proved agreement conditions (13) form = k−1, using (14),
agreement conditions (13) for m = k − 2 are checked.

Moving in such way by chain further, we prove the fulfilment of agreement con-
ditions (13) and for m = k − 3, . . . , 1. �

We write homogeneous equation (1) in the domain Q, i. e.

∂2u

∂t2
− a2

∂2u

∂x2
= 0, (t, x) ∈ Q. (18)

Theorem 1. If conditions of Lemma 1, then a unique classical solution of

problem (18), (2), (4) from the class C2(Q) exists, Q is closure of th domain Q.
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P r o o f actually follows from the previous arguments. Solution is represented
by (9)–(12). It follows from here, that u ∈ C2(Q(m)) for all m = 0, . . . , k. Further-
more, from construction of a solution u ∈ C1(Q). for finishing the proving of the
theorem it remains to show the continuity of the second derivatives with respect to
t of the solution u represented by (9)–(12) at joining points of the domains Q̃(m).

Let t = (ml + τ)/a, m ∈ {1, . . . , k − 1}. From (12), calculating the derivative
∂2u/∂t2, we get

∂2u

∂t2

∣∣∣∣
t=ml+τ

a

= µ(1)′′

(
ml + τ + x

a

)
+ µ(2)′′

(
(m+ 1)l + τ − x

a

)
− a2ϕ̃(m+1)′′(l − x).

(19)
Analogously, calculating the derivative of (9), we have

∂2u

∂t2

∣∣∣∣
t=ml+τ

a

= a2ϕ̃(m)′′(x). (20)

According to the first relation from (14), the right parts of (19) and (20) are equal.
�

Now we consider the case of inhomogeneous equation (1), i. e. problem (1), (2),
(4). We represent its solution in the form of sum of two functions u = ũ+ v, where
ũ is solution of problem (18), (2), (4), and v is solution of equation (1), fulfilled
conditions

v|t= kl+τ

a

=
∂v

∂t

∣∣∣∣
t= kl+τ

a

= 0, x ∈ [0, l], (21)

v|x=0 = v|x=l = 0, t ∈

[
0,
kl + τ

a

]
. (22)

Function v is determined in terms of another function w as follows:

v(t, x) =

t∫

kl+τ

a

w

(
kl + τ

a
+ t− ξ, ξ, x

)
dξ, (23)

where w : [0, (kl + τ)/a] × [0, (kl + τ)/a] × [0, l] 3 (t, ξ, x) → w(t, ξ, x) ∈ R is the
solution of equation (5) with respect to the independent variables t and x, satisfying
conditions

w|t= kl+τ

a

= 0,
∂w

∂t

∣∣∣∣
t= kl+τ

a

= f(ξ, x), ξ ∈

[
0,
kl + τ

a

]
, x ∈ [0, l].

w|x=0 = w|x=l = 0,

(24)

Solution w of problem (5), (24) is determined by (9)–(12). Furthermore, function
w must satisfy agreement conditions (17). These conditions for w is fulfilled, if the
function f satisfies conditions

f(0, t) = f(t, l) = 0, t ∈

[
0,
kl + τ

a

]
. (25)
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We formulate the result of arguments in the form of theorem.
Theorem 2. Suppose that conditions of Lemma 1 are fulfilled, function f is

from the class C2(Q) and satisfies conditions (25). Then in the class of functions

C2(Q) a unique classical solution u = ũ+ v of problem (1), (2), (4) exists, where ũ
is solution of problem (18), (2), (4), and function v is determined by (23) in terms

of w, w is solution of problem (18), (24).

4 Problem of control by boundary conditions

We consider problem (18), (2), (3). In [22] classical solution for this problem is
determined with the help of (13), (17), (20), (21). Let

u|t=ml

a

= ϕ(m)(x),
∂u

∂t

∣∣∣∣
t=ml

a

= ψ(m)(x), x ∈ [0, l],

where u is the solution of problem (1)–(3),m = 0, 1, . . . , k, ϕ(0)(x) = ϕ(x), ψ(0)(x) =
ψ(x). For the functions ϕ(m) and ψ(m) the relations

ϕ(m)(x) = µ(1)

(
ml − x

a

)
+ µ(2)

(
(m− 1)l + x

a

)
− ϕ(m−1)(l − x), x ∈ [0, l], (26)

ψ(m)(x) = µ(1)′

(
ml − x

a

)
+ µ(2)′

(
(m− 1)l + x

a

)
− ψ(m−1)(l − x), x ∈ [0, l], (27)

ϕ(m)(x) = (−1)mϕ(s(m)l + (−1)mx) +

+

m∑

j=1

(−1)m+j

[
µ(1)

(
[j − s(m+ j)]l + (−1)m+j−1x

a

)
+

+ µ(2)

(
[j − s(m+ j − 1)]l + (−1)m+jx

a

)]
, m = 1, 2, . . . , k, (28)

ψ(m)(x) = (−1)mψ(s(m)l + (−1)mx) +

+

m∑

j=1

(−1)m+j

[
µ(1)′

(
[j − s(m+ j)]l + (−1)m+j−1x

a

)
+

+ µ(2)′

(
[j − s(m+ j − 1)]l + (−1)m+jx

a

)]
, m = 1, . . . , k, (29)

are valid.
We suppose, that equation (1) is homogeneous, i. e. consider equation (18).

According to Theorem 2, solution u : Q 3 (t, x) → u(t, x) ∈ R of problem (18), (2),
(4) from the class C2(Q) is determined in Q. Let

u|t= kl

a

= p(x),
∂u

∂t

∣∣∣∣
t= kl

a

= q(x), x ∈ [0, l], (30)
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for the solution u of this problem.
By virtue of (26) and (27)

p(x) = µ(1)

(
kl − x

a

)
+ µ(2)

(
(k − 1)l + x

a

)
− ϕ(k−1)(l − x), x ∈ [0, l],

q(x) = µ(1)′

(
kl − x

a

)
+ µ(2)′

(
(k − 1)l + x

a

)
− ψ(k−1)(l − x), x ∈ [0, l].

(31)

We consider system (31) with respect to µ(1) and µ(2). Really,

µ(1)

(
kl − x

a

)
+ µ(2)

(
(m− 1)l + x

a

)
= p(x) + ϕ(k−1)(l − x), x ∈ [0, l],

−µ(1)

(
kl − x

a

)
+ µ(2)

(
(m− 1)l + x

a

)
= (32)

=

x∫

0

[q(y) + ψ(k−1)(l − y)]dy + C, x ∈ [0, l].

From here the functions µ(1) and µ(2) are determined uniquely on the segment[ (k−1)l
a

, kl
a

]
in terms of p, q, ϕ(k−1), ψ(k−1). Here p and q are determined by ϕ̃

and ψ̃ by Cauchy conditions (4), and the functions ϕ(k−1), ψ(k−1) in terms of ϕ and
ψ of initial conditions Cauchy (2), and the values of the functions µ(j) (j = 1, 2),

defined on the segments
[
0, (k−1)l

a

]
∪
[
kl
a
, kl+τ

a

]
, too. Thus, give the values of the

functions µ(j) (j = 1, 2) on the segment
[ (k−1)l

a
, kl
a

]
in corresponding way, according

to system (31), we get unique solution of problem (18), (2)–(4).
If instead of equation (18) in Q one consider inhomogeneous equation (1), then

in this case in (30) the functions p and q change in corresponding way, and in (31)
terms because of the function v adds to the equations. In case of equation (1)
arguments don’t change in principle.

Note that the controlling functions µ(j) can be found not only on the segments[ (k−1)l
a

, kl
a

]
, but on the other

[ (m−1)l
a

, ml
a

]
, too, where m ∈ {1, 2, . . . , k − 1}, moving

on the segment
[ (m−1)l

a
, ml

a

]
from above from the functions ϕ̃ and ψ̃ and from below

from the functions ϕ and ψ.
If the functions ϕ, ψ and µ(j) (j = 1, 2) satisfy agreement conditions

ϕ(0) = µ(1)(0), ϕ(l) = µ(2)(0),

ψ(0) = µ(1)′(0), ψ(l) = µ(2)′(0), (33)

µ(1)′′(0) = a2ϕ′′(0), µ(2)′′(0) = a2ϕ′′(l),

then for t = (k − 1)l/a agreement conditions

µ(1)

(
(k − 1)l

a

)
= ϕ(k−1)(0), µ(2)

(
(k − 1)l

a

)
= ϕ(k−1)(l),
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µ(1)′

(
(k − 1)l

a

)
= ψ(k−1)(0), µ(2)′

(
(k − 1)l

a

)
= ψ(k−1)(l), (34)

µ(1)′′

(
(k − 1)l

a

)
= a2ϕ(k−1)′′(0), µ(2)′′

(
(k − 1)l

a

)
= a2ϕ(k−1)′′(l)

are fulfilled. It follows from (28) and (29). From (31) by strength of (34) agreement
conditions

p(0) = µ(1)

(
kl

a

)
, p(l) = µ(2)

(
kl

a

)
,

q(0) = µ(1)′

(
kl

a

)
), q(l) = µ(2)′

(
kl

a

)
, (35)

µ(1)′′

(
kl

a

)
= a2p′′(0), µ(2)′′

(
kl

a

)
= a2p′′(l)

follow. By strength of agreement conditions (34) and (35) and the controlling func-
tions µ(j) (j = 1, 2) of system (32) it follows that on the whole the functions µ(j) ∈
C2

[
0, kl+τ

a

]
, j = 1, 2. The last statement can be proved for m ∈ {1, 2, . . . , k − 1},

too.
Thus, the following theorem is valid.
Theorem 3. If ϕ, ϕ̃ ∈ C2[0, l], ψ, ψ̃ ∈ C1[0, l], µ(j) ∈ C2

([
0, (m−1)l

a

]
∪
[
ml
a
, kl+τ

a

])

(j = 1, 2), f ∈ C1(Q) and agreement conditions (17), (25) and (33) are fulfilled,

then such functions µ(j) (controlling functions) exist on the segment
[ (m−1)l

a
, ml

a

]
,

j = 1, 2, that

• the functions µ(j) (j = 1, 2) defined already on the segment
[
0, kl+τ

a

]
belong to

the class C2
[
0, kl+τ

a

]
;

•• for problem (1)–(4) a unique classical solution u from the class C2(Q) deter-

mined by (9)–(12), (23) exists, where it takes in (23) m ∈ {1, 2, . . . , k} instead

k and 0 instead (kl + τ)/a.
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