## CONSISTENT SYSTEMS AND POLE ASSIGNMENT PROBLEM

V. A. Zaitsev (Izhevsk, Russia)

Consider a bilinear control system

$$\dot{x} = (A(t) + u_1(t)A_1(t) + \dots + u_r(t)A_r(t))x, \quad t \in \mathbb{R}, \quad x \in \mathbb{K}^n, \quad \mathbb{K} = \mathbb{C} \vee \mathbb{R}, \quad (1)$$

with bounded piecewise continuous functions  $A(\cdot)$ ,  $A_l(\cdot)$ ,  $u_l(\cdot)$ ,  $l = \overline{1,r}$ . The system (1) is said to be *consistent on*  $[t_0, t_1]$  [1] if for any matrix  $G \in M_{n,n}(\mathbb{K})$  there exists a bounded piecewise continuous control function  $\widehat{u} = (\widehat{u}_1, \dots, \widehat{u}_r) : [t_0, t_1] \to \mathbb{K}^r$  such that the solution of the matrix initial value problem  $\dot{Z} = A(t)Z + (\widehat{u}_1(t)A_1(t) + \dots + \widehat{u}_r(t)A_r(t))X(t, t_0)$ ,  $Z(t_0) = 0$  satisfies condition  $Z(t_1) = G$ ; X(t,s) denotes the Cauchy matrix of the system  $\dot{x} = A(t)x$ . Let us assume that system (1) is time-independent:

$$\dot{x} = (A + u_1 A_1 + \dots + u_r A_r) x, \quad x \in \mathbb{K}^n.$$
 (2)

We consider pole assignment problem for system (2). We shall say that system (2) is arbitrarily pole assignable if for a given polynomial  $p(\lambda) = \lambda^n + \gamma_1 \lambda^{n-1} + \dots + \gamma_n$  with  $\gamma_i \in \mathbb{K}$  there exists a control  $\widehat{u} = (\widehat{u}_1, \dots, \widehat{u}_r) \in \mathbb{K}^r$  such that  $\det(\lambda I - (A + \widehat{u}_1 A_1 + \dots + \widehat{u}_r A_r)) = p(\lambda)$ . Consider a linear control system with static output feedback

$$\dot{x} = Ax + Bu, \quad y = C^*x, \quad u = Uy, \quad (x, u, y) \in \mathbb{K}^n \times \mathbb{K}^m \times \mathbb{K}^k.$$

The matrix  $U \in M_{m,k}(\mathbb{K})$  is a compensator. The closed-loop system has the form

$$\dot{x} = (A + BUC^*)x, \quad x \in \mathbb{K}^n. \tag{3}$$

System (3) is a special case of system (2). Let us construct the matrix  $Q = \{Q_{ij}\}$  from the system (2) as follows:  $Q_{ij} = \operatorname{Sp}(A_jA^{i-1}), i = \overline{1,n}, j = \overline{1,r}$ . Let J be first unit superdiagonal matrix that is  $J = \sum_{i=1}^{n-1} e_i e_{i+1}^* \in M_{n,n}(\mathbb{K})$ . Denote  $\Omega_k = \{S = \{s_{ij}\}_{i,j=1}^n : s_{ij} = 0 \text{ for } i < j+k\} \in M_{n,n}(\mathbb{K}), k = \overline{0,n-1}$ .

**Theorem 1.** Suppose the matrix A of system (3) has the Hessenberg form that is  $A = \{a_{ij}\}_{i,j=1}^n$ ;  $a_{i,i+1} \neq 0$ ,  $i = \overline{1, n-1}$ ;  $a_{ij} = 0$ , j > i+1 and the first (p-1) rows of matrix B and the last (n-p) rows of matrix C are equal to zero  $(p \in \{1, \ldots, n\})$ . Then implications  $1 \Longrightarrow 2 \Longleftrightarrow 3$  hold for the following assertions:

- 1. System (3) is consistent.
- 2. The matrices  $C^*B, C^*AB, \ldots, C^*A^{n-1}B$  are linearly independent.
- 3. System (3) is arbitrarily pole assignable.

Moreover, the implication  $2 \Longrightarrow 1$  holds if one of the following conditions is satisfied: (a) rank B = n; (b) rank C = n; (c) A = J; (d) rank  $B + \text{rank } C \geqslant n + 1$ ; (e) n < 6.

**Theorem 2.** Suppose the matrix A of system (2) has the Hessenberg form and the first (p-1) rows and the last (n-p) columns of matrices  $A_l$ ,  $l=\overline{1,r}$  are equal to zero  $(p \in \{1,\ldots,n\})$ . Then implications  $4 \Longrightarrow 5 \Longleftrightarrow 6$  hold for the following assertions:

- 4. System (2) is consistent.
- 5.  $\operatorname{rank} Q = n$ .
- 6. System (2) is arbitrarily pole assignable.

Moreover, the implication  $5 \implies 4$  holds if one of the following conditions is satisfied: (a) A = J; (b) n < 3.

**Theorem 3.** Suppose the matrix A of system (2) has the Hessenberg form, r = n, and  $A_l \in \Omega_{l-1}$ ,  $l = \overline{1, n}$ . Then implications  $4 \iff 5 \iff 6$  hold.

References. 1. Zaitsev V.A., Tonkov Ye.L. // Russian mathematics. 1999. Vol. 43, №2. P. 42–52.