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Method of potential representation for solution of Schrodinger equation was proposed in
[1], [2] for nucleus scattering calculations using optical model. Main features of that method is
expression of wave functions or solutions of Schrodinger equation like functions of potential
[1].The theorem for new multiplicative perturbation theory was presented [2]|. According
this theorem, when a new potential is added, the new solution can be obtained multiplying
previous solution by the function depending on the new potential. This theorem was improved
[3] for Coulomb and short range potentials, using modified method of undetermined coefficients
of Lagrange. Presented theory can be presented for broad class of potentials but we most
of our investigations applied for Woods-Saxon potential, useful for nuclear reactions rates
calculations in reactors and astrophysical phenomenon [4].
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Hear we consider analytical solution u{r) of the radial Schrédinger equation

fz [+ cVn)u=0, —k*=cE, c= % Vir) =W /(1 +exp (%)) )

where m — mass, bound states energies E < 0, 1§, a, R — parameters of Woods-Saxon
potential V{r). We consider case of large radii R 3 a of nuclei. Substituting u(r) =
w(V(r))e™ into (1) and introducing the new variable = = 1 — V(r)/V;, which depends
on potential () < = € | we obtain differential equation
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Requiring that solution of (2) must satisfy standard boundary condition ]in% p(r) — 0(r'),
P —

we obtained asymptotical solution iy for equation
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Here we used applohimation exp(—R/a) = 0 (for large nucleus [1] Pb*® R/a = 14) where
terms in (3) hn% 22 = em2R/a, hn% v = ¢73R/% was not included. Now solution (z) can be

expressed oy (). Substituting last expression in (2) we obtained equation for ¢,{2)
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The solution ,(2) = >, 2"b, was presented in the power series and recurrent connections

between b,_; and b, were obtained. Physical solutions or wave functions for bound states

must be polynomials of finite order and satisfy boundary conditions ]in(lJ ul{r) =0, lim u(r) =
Fr—s T

0. Requiring that coefficient at b,,_; must be equal zero we obtain discrete eigenvalues - &,
and solutions present like polynomials. Physical eigenvalues must satisfy requirement &, > 0.

For positive energies in (1) we must change —k? to the k2. Just [1] solutions f can be
expressed multiplying solutions fo(£k,r) = exp{Likx) for V{r) =0

HEhr) = {3k, V) folEk,r) (3)

on function ¢ which depends on the potential V(r). After substitution f in to (1) and
introduction of the new variable y = In(l — V/V,}, for large nucleus case lin% exp{y) =~ 0,
T—

following simplified equation [1] was obtained
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This equation was solved analytically and analytical expression of scattering matrix S(k) =

lin%(c,o(Jrk, VY (=&, V)) was got. Analytical solutions are important for investigations of
r—+

nuclei scattering and interactions. For this aim we used potential representation method [1].
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