WEAK SOLUTION OF THE QUASI-LINEAR ONE-DIMENSIONAL
PARABOLIC NEUMANN BOUNDARY-VALUE PROBLEM WITH
NONLINEAR BOUNDARY CONDITIONS
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We consider the following parabolic single-dimensional boundary-value problem:

A= AP*c+ BO,c— BOyo— Ec+ F, x € (0,L), t € (0,T),
Bye(t. L) = —G (¢, s(t),c(t, L)), t<0,T),
Dec(t,0) = g(t,5(t),2(t,0)), te[0,7T],
$(t) = L(t, s(t), c(t,0).¢(t, L)), te[0,T],
c(0,2) = p(x) € C3([0,L]), 0< p(x) <1, s(0)=s € R™

Here t is for time, x is the spatial variable, s{(tf) € R™ is called the state of the svstem.
Coefficient A = A{t,z,s) > A > 0 is continuous and bounded in Q, = [0,7] x [0,L] x R™
together with its partial derivatives. Non-negative coefficients B, B ., and F depend also on
houndary values of the solution, e.g. B = B(t, &, s,¢(t,0),¢{t, L}). They are continuous and
bounded together with their partial derivatives in Q. = £, x R?. Besides, in {).: either £ > 0
or E=0, 0 FLFE 0,.B<g), 8.B < 0 and does not depend on x. Neumann boundary
conditions are nonlinear; the right-hand sides (¢ and g are bounded and continuous together
with their partial derivatives in Q = [0,T] x B™t and 8.G{t,s,¢) 2 0, G(¢,s,1) = 0,
(G{t,s,0) < 0, the same for g. The right-hand side I' of the evolution equation for the state
s{t) 1s bounded and continuous together with its partial derivatives in §! x R.

Such problems appear as models of heat and mass transfer, e.g. models of hydride
formation and decomposition {e. g. [1]) after eliminating the free boundary by a change
of variables. The state s(¢) in this case is the position of the free boundary. Besides, «usual»
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state components are temperature of the sample and gas pressure. The boundary values are
important due to nonlinear chemical processes on the phase boundaries, which may influence
on the coefficients of the equation and the boundary conditions. The results can be gene-
ralized to a case when coefficients depend on the solution in other points (with fixed x),
including «aftereffect> (e. g. dependence of ¢(t — d, L}), or the functionals on the solution,
e. g. integral of c(t, x} over [0, L] for each ¢ (the amount of matter).

We introduce a uniform lattice in Il = [0,7] x [0, L] and construct the implicit difference
scheme with explicit approximation of the coefficients of the PDE. Then we prove the
maximum principle to show that the lattice solution, if any exists, is bounded together
with the first lattice derivatives provided that the lattice steps h and 7 are sufficiently small.
The assumptions about E, F and (5, ¢ are crucial for the solution to be bounded, those
about B are important for boundness of the spatial lattice derivative. Finally, we show that
the unique lattice solution exists provided that = = o(h) and h is small enough The lattice
solution is obtained by a special sweeping method: ¢, = o ¢t + 8¢ + ¢! . Here n and ¢
are time and spatial indices respectively, ¢, is the lattice solution, ¢! is its boundary value.
This allows to eliminate linear equations on each time laver and to reduce the system for
two nonlinear equations for ¢2 and ¢ for each n.

By constructing linear interpolations of lattice solutions we get the family U7 of continuous
functions in II. They are uniformly bounded in the Sobolev space H{{II) and thus uniformly
bounded and equicontinuous. The linear interpolations S of the lattice state vector s, are
equicontinucus on [0, T] and uniformly bounded. Thus the family 7 is weakly compact in
H,(IT} and compact in C({I1} and S is compact in C([0,T]}. The idea was taken from [2].

Therefore we proved the convergence of the lattice approximations. The weak solution
[2,3] is the pair of continuous ¢{t,x) € H (II) and s{t) € C([0, T]} such that it satisfies the
integral identities
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s(t) = sp + fF(C,s(C),c:(C,O),c:(C,L)) d¢
0
for any continuous v(¢, x} € H(Il}, (T, x) = 0.

The constructed functions form the weak solutions provided that the steps tend to zero.
Note that s{t) has the continuous derivative. Thus we have proved the existence (but not
the uniqueness) of the weak solution to the problem in a constructive way: the constructed
difference scheme can be used for numerical solution of the problem.

In the report we discus the difference scheme, proofs of the properties of the lattice
solutions, and the construction of the weak solution. Also a few examples of the boundary-
value problems of the considered type are presented.
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