
STATISTICAL ANALYSIS OFQUEUEING NETWORKS WITHINFINITE NUMBER OF SERVERSG. TsitsiashviliInstitute for Applied Mathemati
s Far Eastern Bran
h of RASVladivostokguram�iam.dvo.ruIn this paper a problem of su

essive 
hanging of individuals states or te
hni
almeans from some population is 
onsidered. This 
hanging is 
onne
ted as with individ-uals aging so with appearan
e of new individuals. The problem is solved using queueingnetworks with in�nite numbers of servers in their nodes.Keywords: produ
t theorem, Markov pro
ess, stationary distribution.1. INTRODUCTIONLast years in the reliability theory a large attention is devoted to the life timemodels with a large number of states [1℄. New appli
ations appear in models of adynami
s of populations with multistage individuals [2℄. These appli
ations demandto develop theory of queueing networks with in�nite number of servers beginning fromprodu
t theorems through an aggregation of nodes to 
onvenient statisti
al pro
eduresof parameters estimates.2. OPENED NETWORKSConsider opened queueing network with the nodes set S = f0gS I; I = f1; : : : ; mg;the indivisible route matrix � = jj�(i; j)jji;j2S and Poisson input �ow with parameter�(0) > 0: The node i 2 I 
ontains in�nite number of servers with exponentially dis-tributed servi
e times with the parameter �(i) > 0: The node 0 is imaginary, it is asour
e of arrival 
ustomers and a runo� for 
ustomers leaving the network. The routematrix � is 
alled indivisible if for any i; j 2 S; i 6= j; there are i1; : : : ; is 2 S; so thatthe inequality 0 < �(i; i1) � �(i1; i2) � : : : � �(is�1; is) � �(is; j): (1)is true. From (1) we have that for �xed �(0) > 0 the system of linear algebrai
 equations(�(0); �(1); : : : ; �(m)) = �(�(0); �(1); : : : ; �(m)) (2)[3℄ has single solution (�(1); : : : ; �(m)); �(i) > 0; i 2 I: Then the pro
ess (n1(t); : : : ;nm(t)) whi
h des
ribes numbers of 
ustomers in nodes of opened network [4, Proposition248



1.10, Example 1.29℄ is ergodi
 and its limit distributionP (n1; : : : ; nm) = mYi=1 pi(ni); pi(ni) = e( � �(i))(�(i))nini! ; �(i) = �(i)�(i) ; i 2 I: (3)Theorem 1. Almost surelylimT!1 R T0 ni(t)dtT = �i; i 2 I: (4)Proof. From the formula (3) the distribution pi(ni) is Poisson and its mean 
oin
ideswith �(i): So the law of large numbers for ergodi
 markov pro
esses [4, Theorem 1.2℄leads to the formula (4).Theorem 2. Suppose that the sets I1; : : : ; Ir 
reate a de
omposition of the set Ionto noninterse
ted subsets. Denote Nk(t) =Xi2Ik ni(t); k = 1; : : : ; r; then the randompro
ess (N1(t); : : : ; Nr(t)) has limit distribution rYk=1Pk(Nk) wherePk(Nk) = e( � Rk)RNkkNk! ; Rk =Xi2Ik �(i); (5)and almost surely limT!1 R T0 Nj(t)dtT = R(j); j = 1; : : : ; r: (6)Proof. The formula (5) arises from the formula (3) and from well known fa
t that a sumof independent random variables x; y with Poisson distributions with the parameters a; bis a random variable with Poisson distribution with the parameter a+ b: Indeed assumethat generating fun
tions of random variables x; y are 'x(z) = e(a(z � 1)); 'y(z) =e(b(z � 1)) then 'x+y(z) = 'x(z)'y(z) = e((a+ b)(z � 1)): The formula (6) arises from(4), (5).Remark. Denote N(t) = Xi2I ni(t); then from Theorem 1 the dis
rete randompro
ess N(t) has Poisson limit distribution with the parameter R =Xi2I �(i): Assumethat k-the input 
ustomer remains the time �k in the network with the mean f = M�k:The quantity f may be interpreted as mean life time of some individual. So from [5,x 31, Theorem 6℄ we have R = �(0)f: Consequently if there is statisti
al estimate ofinput Poisson �ow intensity �(0) then using Theorem 2 it is possible to estimate theparameter R and so them mean individual life time f: This statement may be spreadonto nodes subset I 0 � I where �(i; j) = 0; i 2 I n I 0; j 2 I 0 and �k is time interval ofk-the input 
ustomer stay in I 0: 249



Example. Analogously with [2℄ assume that the route matrix � 
ontains the fol-lowing nonzero elements:�(1; 2); �(1; 0) = 1� �(1; 2); �(2; 3); �(2; 0) = 1� �(2; 3); : : : ;�(m� 1; m); �(m� 1; 0) = 1� �(m� 1; m); �(m; 0) = 1:Then it is easy to obtain that�(1) = �; �(2) = �(1)�(1; 2); �(3) = �(2)�(2; 3); : : : ; �(m) = �(m� 1)�(m� 1; m);�(i) = �(i)�(i) ; i = 1; : : : ; m;with the mean life timeM = 1�(1) + �(1; 2)�(2) + �(1; 2)�(2; 3)�(3) + : : :+ m�1Yk=1 �(k; k + 1)�(m) :3. CLOSED NETWORKSConsider now 
losed queueing network with the nodes set S; the route matrix �; n
ustomers 
ir
ulating in the network and n (that is equivalent in�nity) servers in ea
hnode with servi
e intensity �i on a server of i-th node, i 2 S: Assume that for �xed�(0) > 0 positive numbers �(1); : : : ; �(m) 
reate single solution (�(1); : : : ; �(m)) of thesystem (2). Denote �(0) = �(0)=�(0); then dis
rete Markov pro
ess (n0(t); : : : ; nm(t));des
ribing number of 
ustomers in nodes of the 
losed network has polynomial limitdistribution [4, Example 1.29℄P (n0; : : : ; nm) = n! mYi=0 dniini! ; di = �(i)�(0) + : : :+ �(m) ; i 2 S; mXi=0 ni = n: (7)Lemma. The random pro
ess (n0(t) + n1(t); n2(t); n3((t); : : : ; nm(t)) has limit dis-tribution P (n0 + n1; n2; n3; : : : ; nm) = n! (d0 + d1)n0+n1(n0 + n1)! mYi=2 dniini! : (8)Proof. Lemma statement is based on binomial theorem.Theorem 3. Almost surelylimT!1 R T0 ni(t)dtT = ndi; i 2 I0: (9)
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Proof. Using the formula (8) by mathemati
al indu
tion it is easy to prove that therandom pro
ess (n0(t); n1(t) + : : :+ nm(t)) has limit distributionP (n0; n1 + : : :+ nm) = n!dn00 (d1 + : : :+ dm)n�n0n0!(n� n0)! :Consequently the random pro
ess n0(t) has limit Bernoulli distribution with the meannd0: Analogously it is possible to prove that the random pro
ess ni(t) has limit Bernoullidistribution with the mean ndi; i = 1; : : : ; m: So from the law of large numbers forergodi
 dis
rete Markov pro
ess [4, Theorem 1.2℄ we obtain the formula (9).Theorem 4. Suppose that I1; : : : ; Ir 
reate a de
omposition of the set S onto non-interse
ted subsets. Denote Nk(t) = Xi2Ik ni(t); k = 1; : : : ; r; then the random pro
ess(N1(t); : : : ; Nr(t)) has polynomial limit distributionP (N1; : : : ; Nr) = n! rYk=1 DNkkNk! ; Dk =Xi2Ik di; k = 1; : : : ; r; (10)and almost surely limT!1 R T0 Nk(t)dtT = nDk; k = 1; : : : ; r: (11)Proof. The formula (10) may be obtained from the formula (8) by mathemati
al indu
-tion. The formula (11) arises from the formula (10) and Theorem 3.4. CONCLUSIONTheorems 1 - 4 allow to aggregate nodes of initial network and so to simplify statis-ti
al estimate of its parameters. As a result random pro
ess, whi
h des
ribes 
ustomersmotion along nodes-states and whi
h is de�ned by the route matrix � with the di-mension m�m and by servi
e intensities �(i); i = 1; : : : ; m; is repla
ed by statisti
almodel of 
ustomers distribution in aggregated nodes. It allows not only to get rid of
ompli
ated solution of the system (2) but to simplify a pro
edure of observation anda 
olle
tion of ne
essary information. It is well known that to de�ne a state i is moredi�
ult than to de�ne its belonging to the subset Ij � I: More over it is possible to
onstru
t su�
iently simple estimate of mean life time also. This quantity is importantin analysis of e�
ien
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