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In this paper a problem of successive changing of individuals states or technical
means from some population is considered. This changing is connected as with individ-
uals aging so with appearance of new individuals. The problem is solved using queueing
networks with infinite numbers of servers in their nodes.
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1. INTRODUCTION

Last years in the reliability theory a large attention is devoted to the life time
models with a large number of states [I]. New applications appear in models of a
dynamics of populations with multistage individuals [2]. These applications demand
to develop theory of queueing networks with infinite number of servers beginning from
product theorems through an aggregation of nodes to convenient statistical procedures
of parameters estimates.

2. OPENED NETWORKS

Consider opened queueing network with the nodes set S = {0} JI, I = {1,...,m},
the indivisible route matrix © = ||0(i, j)||; jes and Poisson input flow with parameter
A(0) > 0. The node i € I contains infinite number of servers with exponentially dis-
tributed service times with the parameter pu(i) > 0. The node 0 is imaginary, it is a
source of arrival customers and a runoff for customers leaving the network. The route
matrix O is called indivisible if for any 7,7 € S, i # j, there are iy,...,is € S, so that
the inequality

0< 9(11 Z.1) ’ e(ila Z.2) et G(Z‘sfl; Z.s) ’ G(Zs;]) (1)

is true. From (I)) we have that for fixed A(0) > 0 the system of linear algebraic equations
(A0, A1), - A(m)) = OA(0), A(L), ..., A(m)) @)

[3] has single solution (A(1),...,A(m)), A(i) > 0, i € I. Then the process (ni(t),...,
Ny (t)) which describes numbers of customers in nodes of opened network [4, Proposition
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1.10, Example 1.29] is ergodic and its limit distribution

P(....m) = [Lpamo). putm) = e = o)) L iy = 20 e )

Pl n;! (i)
Theorem 1. Almost surely
O ,
R R @

Proof. From the formula (B)) the distribution p;(n;) is Poisson and its mean coincides
with p(i). So the law of large numbers for ergodic markov processes [4, Theorem 1.2]

leads to the formula (H)). O
Theorem 2. Suppose that the sets Il, ..., I, create a decomposition of the set I
onto nonintersected subsets. Denote Ny(t an k=1,...,r, then the random
i€l
process (Ni(t),..., N, (t)) has limit distribution H Py(Ny) where
k=1
i€y,
and almost surely
Aim S = (1), 7=1,...,r (6)

Proof. The formula (B]) arises from the formula (3)) and from well known fact that a sum
of independent random variables x, y with Poisson distributions with the parameters a, b
is a random variable with Poisson distribution with the parameter a +b. Indeed assume
that generating functions of random variables z,y are ¢,(z) = ela(z — 1)), ¢,(2) =
elb(z — 1)) then ¢, (2) = p.(2)p,(2) = el(a+b)(2 — 1)). The formula (G) arises from
@, @). O

Remark. Denote N(¢ an then from Theorem [ the discrete random
el
process N(t) has Poisson limit distribution with the parameter R = Z p(i). Assume
il

that k-the input customer remains the time 7, in the network with the mean f = M.
The quantity f may be interpreted as mean life time of some individual. So from [5]
§ 31, Theorem 6] we have R = \(0)f. Consequently if there is statistical estimate of
input Poisson flow intensity A(0) then using Theorem [2 it is possible to estimate the
parameter R and so them mean individual life time f. This statement may be spread
onto nodes subset I' C I where 0(i,j) =0, i € I\ I', j € I' and 1 is time interval of
k-the input customer stay in I’.
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Example. Analogously with [2] assume that the route matrix © contains the fol-
lowing nonzero elements:

0(1,2),0(1,0) =1—6(1,2); 6(2,3),0(2,0) =1—6(2,3);...;

(m —1,m),0(m —1,0) =1—6(m — 1,m); 6(m,0) = 1.
Then it is easy to obtain that

I
PO =y Pl
with the mean life time
,19 |
M = 1 + 0(1,2) 6(1,2)0(2,3) . 1!_[1 (b, k+1)
M(l) /L(Q) M(3) M(m)

3. CLOSED NETWORKS

Consider now closed queueing network with the nodes set S, the route matrix ©, n
customers circulating in the network and n (that is equivalent infinity) servers in each
node with service intensity p; on a server of i-th node, i € S. Assume that for fixed
A(0) > 0 positive numbers A(1), ..., A\(m) create single solution (A(1),..., A(m)) of the
system (2)). Denote p(0) = A(0)/1(0), then discrete Markov process (ng(t), ..., nm(t)),
describing number of customers in nodes of the closed network has polynomial limit
distribution [4, Example 1.29]

o p(1) : .
P(ng,...,nm) =n'l| %, d; = ’ ’ e
(10, - - -, M) ani! ORI ) ieS ;n n (7)

Lemma. The random process (ng(t) + ni(t), na(t), ns((t),...,ny,(t)) has limit dis-
tribution
(do + dy)™ ™ 17 di

(n0+n1)! 9 nz'

(8)

P(ng + ny,n2,n3, ..., ny) =n!
Proof. Lemma statement is based on binomial theorem. O
Theorem 3. Almost surely

lim
T—00

T
(t)dt
fon% = nd;, i € I, (9)
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Proof. Using the formula (8) by mathematical induction it is easy to prove that the
random process (ng(t), ni(t) + ...+ n,(¢)) has limit distribution

nldy®(dy + ...+ dpy)" ™

P(ng,n1 + ...+ npy) = PR TE——

Consequently the random process ny(t) has limit Bernoulli distribution with the mean
ndy. Analogously it is possible to prove that the random process n;(t) has limit Bernoulli

distribution with the mean nd;, ¢ = 1,...,m. So from the law of large numbers for

ergodic discrete Markov process |4, Theorem 1.2| we obtain the formula (3). O

Theorem 4. Suppose that I, ..., I, create a decomposition of the set S onto non-

intersected subsets. Denote Ni(t) = Zni(t), k=1,...,r, then the random process
i€y,

(Ny(t),...,N,(t)) has polynomial limit distribution

T DNk_
P(Ny,...,N,) =n!]] N’;!,Dk:Zdi,k:L...,r, (10)
k=1 i€l
and almost surely
T
Ny (t)dt
limM:nDk,k:L...,r. (11)
T—00
Proof. The formula (I0) may be obtained from the formula (8) by mathematical induc-
tion. The formula (II]) arises from the formula (I0) and Theorem Bl O

4. CONCLUSION

Theorems [ - @ allow to aggregate nodes of initial network and so to simplify statis-
tical estimate of its parameters. As a result random process, which describes customers
motion along nodes-states and which is defined by the route matrix © with the di-
mension m X m and by service intensities u(i), ¢ = 1,...,m, is replaced by statistical
model of customers distribution in aggregated nodes. It allows not only to get rid of
complicated solution of the system (2)) but to simplify a procedure of observation and
a collection of necessary information. It is well known that to define a state 7 is more
difficult than to define its belonging to the subset I; C I. More over it is possible to
construct sufficiently simple estimate of mean life time also. This quantity is important
in analysis of efficiency indexes.
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