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We discuss processor sharing queueing systems with non-homogeneous demands.
This non-homogenity means that each demand (independently of others) has some
random capacity and its length (or amount of work for its service) generally depends
on the capacity. In real systems, a total sum of capacities of demands presenting in the
system is limited by some constant value (memory volume) V' > 0. But we estimate loss
characteristcs for such system using queueing models with unlimited memory volume.
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1. INTRODUCTION

Egalitarian processor sharing (EPS) systems are used for modeling of computer
and communicating networks [1]. Presently, they are applicable to situations where a
common resource is shared by a varying number of concurrent users [2] (for example,
to WEB-servers modeling [3]).

We introduce the following additional assumption for the classical M/G/1 — EPS
system. Assume that each demand is characterized by some non-negative random ca-
pacity. This random variable can be interpreted as a part of system’s memory space
used by the demand during its presence in the system. A total sum of demands ca-
pacities o(t) in the system at arbitrary time instant ¢ is referred as the total demands
capacity. The random value o(t) can be limited by some constant value V' (0 < V' < 00),
which is called the memory volume of the system. In this case we have a non-classical
processor sharing system that will be notated by M/G/1(V)—EPS. Later on, we shall
call demand length the amount of work necessary for demand’s service, i.e. the service
time under condition that there are no other demands in the system during its presence
in it. Analogously, we shall call residual length of the demand its residual service time
after some time instant under the same condition (see [2]).

The purpose of the paper is 1) to obtain the non-stationary and stationary distri-
bution of total demands capacity in the system M/G/1 — EPS; 2) to determine some
estimations of loss characteristics for systems M/G/1(V) — EPS with limited memory
volume (V' < oo) based on the model with unlimited one; 3) to compare processor shar-
ing systems M/G/1(V)—EPS and M/G/1—EPS from the point of view of estimation
of loss characteristics.
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2. CLASSICAL PROCESSOR SHARING SYSTEM

Denote by n(t) the number of demands present in the system at the time in-
stant ¢ and & (¢) be the residual length of ith demand at this instant, i = 1,n(¢).
Let F(z,t) = P{C < x,& < t} be the joint distribution function of the demand
capacity ¢ and its length ¢ (we assume that the demand capacity and its length
doesn’t depend on his arrival time and on characteristics of other demands). Then
L(z) = F(x,00) and B(t) = F(oo,t) be the distribution functions of the random
variables ¢ and & consequently. Let a be an arrival rate of entrance flow of demands,

q) = fo foo “s4 ' (z, t) be the double Laplace-Stieltjes transform (with respect
to x and t) of the distribution function F(z,t), ¢(s) = a(s,0) and £(q) = «(0, ¢) be the
Laplace-Stieltjes transform (LST) of the distribution functions L(z) and B(t) conse-
quently, D(z,t) = P{o(t) < z} be the distribution function of total demands capacity
at the time instant ¢, 0(s,t) = [~ e™*"d, D(z,t) be the LST of the function D(z,t) with
respect to x, 0(s,q) = fo e 95 (s, t)dt be the Laplace transform of the function §(s,t)
with respect to t. The mixed (i + j)th moments of the random variables ¢ and ¢ (if

. - aitg
they exist) take the form: «o;; = (—1)l+9(,)‘95i—(9f]ja(s, q) .

Assume that demands in the considered system at an arbitrary time ¢ are numerated
as random; i.e. if the number of demands is k, then there are k! ways to enumerate
them, and each enumeration can be chosen with the same probability 1/k!.

One can easily show that the system under consideration is described by the Markov
process

(n(t),& (1), i = 1,n(t)), (1)
where components £ (t) are absent if n(¢) = 0. In this case we also have o(t) = 0.
In what follows, to simplify the notation, we denote Yy = (y1,...,yx). We charac-
terize the process (1) by functions with the following probabilistic sense:
Fy(t) = P{n(t) = 0}; (2)
Pi(t) =P{n(t) = k} = Ok (oo, t), k=1,2,..., (4)
where ooy, = (00, ...,00) is a k-component vector.

Note that the functions O(Y%,t) are symmetric with respect to permutations of
components of the vector Y, due to our random enumeration of customers in the system.

Let us determine the function &(s, q) under zero initial condition 1(0) = ¢(0) = 0.

Denote by py(q) = [~ e " Py(t)dt and 0 (Yy, q) = [;° e "Ok(Y, t)dt the Laplace
transforms with respect to t of the functions Py(t) and ©(Yj,t) consequently. It’s
known (see [2]) that

Bola) = lg+a—an(q)] ' (5)
under zero initial condition, where m(¢) is the LST of the busy period distribution

function for the system under consideration. Note [2]| that 7(¢) is a unique solution of
the functional equation 7(q) = (¢ + a — an(q)) such that |7(q)| < 1.
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Lemma. Under zero initial condition, the functions 0, (Y, q), k = 1,2,..., have
the form 0y(Ys, q) = Bo(q) [T, [¥[q + a — aB(u)]du.

Let 3; = E¢' = (—1)'8®(0) be the ith moment of customer length, i = 1,2, . ...

Corollary 1. If p = afy < 1, limits 0,(Yy) = limy_ o0 Ok (Yi, t), £k =1,2,..., exist
being independent of initial condition and have the form 6,(Yy) = (1—p)a* [I2, Jo—
—B(u)]du.

Corollary 2. Let p,(q) be the Laplace transform of the function Py(t), k =0,1,...,
under zero initial condition. Then we have py(q) = %.

From the corollary 1 we can obtain the known relation for the stationary distribution
{pr} of the number of demands in the system (p = afy < 1)[2]: pr = Ok(ock) =
=(1-p)p* k=0,1,....

Let x(t) be the capacity of a demand being on service at the time ¢ and £*(t) be
the residual length of this demand at the time ¢. We shall use the notation E,(z) =
=P{x(t) < z|£*(t) = y}. It is known [4] that the LST of the conditional distribution

function E,(x) has the form:
(o) =0=B)" [ e [ ape) (6)
z=0 u=y

Theorem 1. For zero initial condition the function 0(s,q) is determined by the
relation 6(s, q) = {[g+a—an(q)][1—1(s,q)]} ", where I(s,q) = [;°(¢+a—aB(y))ey(s)dy
and ey (s) is determined by the relation (6).

Corollary 3. If the random variables ( and & are independent, we have:

3(s,q) = [+ a(l — (@) (1 — w(s))] " (7)

Corollary 4. Under zero initial condition, the Laplace transform g(s, q) with respect
to t of generation function P(z,t) =Y o, Pu(t)2*, |2| < 1, of the demands number in
the system at time instant t have the following form.:

9(z,q) = /000 e " P(z,t)dt = [q+ a(l — 2)(1 —m(q))]~". (8)

Corollary 5. Let p = affy < 1. Then stationary mode exists. The LST 6(s) of the
stationary distribution function D(z) = limy_,o D(z,t) of demands total capacity has
the form:

5(s) - (9)

14+ aafl(s, Q) lg=0

Note that the relation (9) was first obtained by B. Sengupta [5].

Corollary 6. Let 61(t) be the first moment of the total demands capacity o(t)
under zero initial condition, 61(q) be the Laplace transform of the function §,(t). Then
we have:

- acy; + q fooo fooo zS(t)dF (x,t)

61((]) = 00
lg+a—ar(q)] [L—p—q [, S(t)dB(t)]
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where S(t) = [1[1 — B(y)]"'dy.
Let o be a stationary total demands capacity (o(t) = o in the sense of a weak
convergence). From the relation (9) the following known formulas [5] can be obtained:

a1,

1 = Bo = —(0) = <

a9y

, 0o = Eo? = §"(0) =

+ 267, (10)

For some special cases we can obtain the view of the distribution function D(x) from
the formula (9). For example, consider the case when the demand capacity ¢ and its
length & are connected by the relation & = ¢( + &, ¢ > 0, where the random variables
¢ and & are independent (such dependence for demand capacity and its length is true
for many real information systems).

Denote by k; = E&; the first moment of the random variable &;. In this case we have
a(s,q) = p(s+cq)k(s), where k(s) is the Laplace-Stieltjes transform of the distribution
function of the random variable &;. The the relation (9) takes the following form:

_ L—p
") = e 6 — ] .

Assume that customer capacity ¢ has an exponential distribution with tl21e parameter
- — (1=p)(s+/)
f > 0. Then from the formula (11) we obtain: d(s) = T T Ty Where
p1 = ac/f, po = aky, so that p = af = p1 + po.
Now we can determine the original of Laplace transform 0(s)/s, where 0(s) is defined
by formula (11), and obtain the view of the stationary distribution function D(z):

1— ple /= b)2e(p2tb)fz/2 — b)2elp2—b)fz/2
D(ZL') -1 ( p)e (PZ + ) € _ (PZ ) € : (12)

2 3 py—b 2t b
where b = /p3 + 4p;.

3. ESTIMATION OF LOSS CHARACTERISTICS

The M/G/1 — EPS is a system without losing of customers (V' = oco). But with
the help of this model we can estimate the memory capacity V' in order to guarantee
inexceeding of given loss probability.

Assume that we have a stationary queueing system ()., with Poisson entrance flow
without losses of demands. Let @)y be a stationary system that differs from (o, only
with the fact that its total capacity is limited by the constant value V. We denote by
D(z) the distribution function of total demands capacity for the system ), and by
Dy (z) the distribution function of this random value for the system Qv .

Theorem 2. The inequality D(x) < Dy (x) takes place for all z > 0.

Proof of the theorem see in [4].

It follows from theorem 2 that the loss probability P for the system )y satisfies the
following inequality [4]:

P—1- /V Dy(V — 2)dL(z) < 1 /VD(V — 2)dL(z) = P*. (13)
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Thus, the value P* is an upper estimation of loss probability for the system Qy . If
we choose V under condition that P* is given so that the equality fov D(V —x)dL(zx) =
= 1 — P~ is satisfied, then the real loss probability P doesn’t exceed P*. If only very
rare losses are permitted in the system under consideration, the difference between the
values P and P* is inessential.

Note that the loss probability is not exhaustive characteristic of losses, because
its value shows a part of losing demands, not a part of losing capacity or, in other
words, information being lost. Really, it is obvious that demands having large capacity
will be lost more often. Therefore, more objective losses estimation is the value ) =
=1- L [ aDy(V - 2)dL(x).

The value @) is the probability of losing of a unit of demand capacity. The next
inequality follows from theorem 2:

I 1 v
Q=1—— xDy(V —2)dL(z) <1— — zD(V — z)dL(z) = Q".
¥1Jo ¥1 Jo

If only very rare losses are permitted in the system under consideration, the differ-
ence between the values ) and Q* is inessential.

For example, in the case of the distribution function (12) we obtain:

1— 1— —(1=b1)fV 1— —(1=b2)fV
P* = {1— P {al ° +a2—€ ]}efv,

b b+ po b— p2
where a; = gpf;;lgz, ay = épjp;blz, b1 = -1 -+ 1722+b, b2 = -1 -+ ﬂ2;b;
2(1 — Vo1 bV 1—e U021V
Q* — 1 + fv - ( p) (al + GQ)f aq € 5 — a9 € 2 e_fv.
b 8 (b+ p2) (b — p2)

Note that in most cases the calculation and estimation of the probability @) is very
complicated. Therefore, we often must restrict ourselve to the calculation and estima-
tionof the loss probability P.

If it is impossible to determine the view of the distribution function D(z), we can
estimate the value P* by approximation of the function ®(z) = [" D(z — u)dL(u),
being the distribution function of the sum of independent random variables o and (,
with the distribution function of gamma distribution ®*(z) = 7(h,rz)/T'(h), where
v(h,rz) = [;*th='e~'dt is the incomplete gamma function, I'(k) = 7(h,o0) is the
gamma function. The parameters h and r of the approximate distribution should be
chosen so that its first and second moments f; = h/r and f; = h(h + 1)/r? be equal
to the first and second moments of the distribution function ®(z) respectively. It is
obvious that these moments have the form

Ji =014+ @1, fo=024+ @2+ 251¢. (14)

Thus, the parameters of the distribution function ®*(z) should be chosen as follows:
h = foj 5, T = fQ{IfQ, where f; and f, can be calculated from relations (10), (14).
Hence, we have the approximate formula P* 2 1 — ®*(V/).
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Note that in the case of not very small permissible loss probabilities, using the
estimation P* instead of P leads to unjustifiably surplus choice of the capacity volume
V. Therefore, the direct analysis of processor sharing systems with limited memory
space is very important.

4. THE CASE OF LIMITED TOTAL CAPACITY

The system M/G/1(V) — EPS with demands of different types was analyzed in
detail in [6]. We shall concider a special case of demands of the same type. Then, for
stationary probabilities of number of demands present in the system we have:

o0 -1

Po = <ZakA>(kk)(V)) , Dk :poakASf“)(V), E=1,2,...
k=0

where A,E:k)(x) is a kth order Stieltjes convolution of the function A(z) =

= [, [Z, udF(u,t). The loss probability has the form

LV) = 3 b A®(V)

P=1-po

Assume additionally that demand capacity has an exponential distribution with
parameter f, and let the demand length be proportional to its capacity (£ = ¢C, ¢ > 0).
Then, we obtain after some calculation:

1—p .
: , ifp#1,
1 — /pe~ 1V [sinh(,/pfV) + /pcosh(y/pfV)]
Do = ;
1_+_e—2 1%
- - ifp=1:
T+ vV O

2k—1

vV [
e [1 —e ST U 1o P = e cosh(vAfV),
i=0 ’

7

where p = ac/f.

Now we can compare values P* and P or Q* and () using analytical results or
simulation. Table 1 presents the dependence of loss characteristics upon the memory
capacity V. We assume here that p = 0.6, the demand length is proportional to its
capacity (£ = ¢(), where ¢ = 1, and capacity ¢ has an exponential distribution with
parameter f = 1.

Values P*, (Q*, P were obtained by calculation from above relations, and the value
() was estimated by simulation. The table shows that estimators P*, Q* are not very
precise and we can use them for the case when the proper loss characteristics are near
7Zero.
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Table 1: Probabilities P and @ for p = 0.6

1% P Q* P Q

0.0 | 1.00000 | 1.00000 | 1.00000 | 1.00000
0.2 ] 0.92721 | 0.99569 | 0.81994 | 0.98269
0.4 | 0.86622 | 0.98366 | 0.67754 | 0.94034
0.6 | 0.81392 | 0.96529 | 0.56700 | 0.88482
0.8 | 0.76815 | 0.94194 | 0.48156 | 0.82409
1.0 | 0.72735 | 0.91487 | 0.41516 | 0.76311
2.0 | 0.56855 | 0.75562 | 0.23586 | 0.51290
3.0 | 0.45178 | 0.60242 | 0.15775 | 0.35596
4.0 | 0.35651 | 0.47628 | 0.11281 | 0.25640
5.0 | 0.28750 | 0.37679 | 0.08340 | 0.18993
6.0 | 0.22947 | 0.29888 | 0.06291 | 0.14330
7.0 | 0.18316 | 0.23763 | 0.04811 | 0.10963
8.0 | 0.14620 | 0.18925 | 0.03716 | 0.08464
10.0 | 0.09314 | 0.12034 | 0.02263 | 0.05165
15.0 | 0.03018 | 0.03896 | 0.00697 | 0.01589
20.0 | 0.00978 | 0.01262 | 0.00222 | 0.00512
30.0 | 0.00103 | 0.00133 | 0.00023 | 0.00054
40.0 | 0.00011 | 0.00014 | 0.00002 | 0.01589
50.0 | 0.00001 | 0.00002 | 0.00000 | 0.00001
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