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omThe paper deals with Markov model of retrial queueing system in whi
h servi
erate depends on queue length. Investigation method is based on an approximationof the input system by the system with trun
ated state spa
e. The a

ura
y of su
happroximation is also dis
ussed.Keywords: Sto
hasti
 system, retrials, steady state.1. INTRODUCTIONThe resear
h of wide 
lass of sto
hasti
 systems with repeated 
alls fa
es the problemof 
al
ulating 
hara
teristi
s of the system with the poisson in
oming �ow. Markovpro
ess that des
ribes the behavior of su
h system has an in�nite state spa
e and thetransa
tion matrix usually does not have spe
ial properties that simplify the pro
essof �nding Kolmogorov set of equations expli
it solution. Des
ribed features lead to thefa
t that only few simple models were examined in details [1℄.Usually the problem of 
omputing stationary probabilities for su
h systems is solvedby 
omputation algorithms or re
urrent s
hemas [2℄. To apply them system with �nitestate spa
e is taken into a

ount. Usually it is 
onsidered that the queue length does notex
eed the value of M . If the request 
omes to the system when there is no free serverand there are M sour
es of repeated 
alls already it is lost. It is intuitively obviousthat by 
hoosing M big enough we 
an approximate 
hara
teristi
s of the input systemwith the prede�ned a

ura
y.In this paper we present the des
ribed above te
hni
 for the retrial system withPoisson input �ow and varying servi
e rate. Its integral 
hara
teristi
s are approximatedby 
hara
teristi
s of the system with trun
ated spa
e state whi
h 
an be expli
itlywritten in terms of system's parameters. The error of su
h approximation for di�erentservi
e rate swit
hing poli
ies is also dis
ussed.2. MARKOV MODELS OF THE INPUT ANDTRUNCATED SYSTEMSConsider 
ontinuous time Markov 
hain X(t) = (C(t);N(t)), C(t) 2 f0; 1; : : : ; 
g,N(t) 2 f0; 1; : : :g, whi
h is de�ned by its in�nitesimal 
hara
teristi
s a(i;j)(i0;j0), (i; j),(i0; j 0) 2 S(X) = f0; 1; : : : ; 
g � f0; 1; : : :g:213



1) if i = f0; 1; : : : ; 
� 1g, then
a(i;j)(i0;j0) = 8>>>>>><>>>>>>:

�; (i0; j 0) = (i+ 1; j);j�; (i0; j 0) = (i+ 1; j � 1);i�j; (i0; j 0) = (i� 1; j);�[� + j�+ i�j℄; (i0; j 0) = (i; j);0; otherwise.2) if i = 
, then a(
;j)(i0;j0) = 8>>>><>>>>:�; (i0; j 0) = (
; j + 1);
�j; (i0; j 0) = (
� 1; j);�[� + 
�j℄; (i0; j 0) = (
; j);0; otherwise.Pro
ess X(t) des
ribes the behavior of the following system. The in
oming �ow ofevents is Poisson with rate �. There are 
 identi
al servers. If there is any free serverthe request is served immediately. Servi
e time is exponentially distributed randomvariable with parameter �j that depends on the 
urrent queue of repeated 
alls length.If request �nds all servers busy it tries to get servi
e in a random period of time thathas exponential distribution with parameter �. The number of busy servers at any timet is de�ned by the �rst 
omponent of X(t) and the number of retrials � by the se
ond.Let us �nd up the 
ondition of X(t); t > 0 stationary mode existen
e.Lemma 1. Let � = limj!1 �j. Then if �
� < 1 pro
ess X(t) � is ergodi
 and itsboundary distribution �ij; (i; j) 2 S(X) 
oin
ides with a single stationary.Proof. Consider the following Lyapunov fun
tions '(i; j) = �i+ j; (i; j) 2 S(X); whereparameter � will be determined later on. Then the mean driftsyij = X(i0;j0)6=(i;j) a(i;j)(i0;j0)('(i0; j 0)� '(i; j)are given by yij = (��� i�j�+ j�(�� 1); 0 � i � 
� 1;�� 
�j�; i = 
:When �
� < 1 for any value of � 2 ( �
� ; 1) there exists su
h " > 0 that yij < �" for all(i; j) 2 S(X) ex
luding �nite number of states (i; j). So the assumptions of Tweedie'stheorem[[?℄, p.97℄ are hold for fun
tions '(i; j) = �i+ j; � 2 ( �
� ; 1).Consider trun
ated system. It fun
tions in the same way as an input system buthas the limitation on maximum number of retrials. This means that in
oming 
allsare lost when all servers are busy and there are M sour
es of repeated 
alls already.Formally the system is des
ribed by the Markov 
hain X(t;M) = (C(t;M);N(t;M)),214



where C(t;M) 2 f0; 1; : : : ; 
g, N(t;M) 2 f0; 1; : : : ;Mg with in�nitesimal 
hara
teris-ti
s a(M)(i;j)(i0;j0); (i; j); (i0; j 0) 2 S(X;M) = f0; 1; : : : ; 
g � f0; 1; : : : ;Mg:1) if i = f0; 1; : : : ; 
� 1g; j = f0; 1; : : : ;Mg, then
a(M)(i;j)(i0;j0) = 8>>>>>><>>>>>>:

�; (i0; j 0) = (i + 1; j);j�; (i0; j 0) = (i + 1; j � 1);i�j; (i0; j 0) = (i� 1; j);�[�+ j�+ i�j; (i0; j 0) = (i; j);0; otherwise.2) if i = 
; j = f0; 1; : : : ;M � 1g, thena(M)(
;j)(i0;j0) = 8>>>><>>>>:�; (i0; j 0) = (
; j + 1);
�j; (i0; j 0) = (
� 1; j);�[� + 
�j℄; (i0; j 0) = (
; j);0; otherwise.3) if i = 
; j = M , thena(M)(
;M)(i0;j0) = 8><>:
�M ; (i0; j 0) = (
� 1;M);�
�M ; (i0; j 0) = (
;M);0; otherwise.The state spa
e S(X;M) of pro
ess X(t;M) is �nite thus the stationary modealways exists and by �ij(M); (i; j) 2 S(X;M) we de�ne its stationary probabilities.Let us 
onsider the servi
e pro
ess of the trun
ated system in more detail.3. STATIONARY PROBABILITIES OF THE TRUNCATEDSYSTEMFor the given system stationary probabilities satisfy the following set of Kolmogorovequations and normalizing 
ondition:[�+ j�+ i�j℄�ij(M) = (j + 1)��i�1j+1(M) + ��i�1j(M) + (i+ 1)�j�i+1j(M); (1)j = 0; : : : ;M � 1; i = 0; :::; 
� 1;[�+M� + i�M ℄�iM (M) = ��i�1M(M) + (i+ 1)�M�i+1M (M); i = 0; :::; 
� 1; (2)[�+ 
�j℄�
j(M) = (j + 1)��
�1j+1(M) + ��
�1j(M) + ��
j�1(M); j = 0; : : : ;M � 1;
�M�
M(M) = ��
�1M(M) + ��
M�1(M); (3)
Xi=0 MXj=0 �ij(M) = 1:215



Consider the following de�nitions:ei(n) = (Æi0; Æi1; : : : ; Æin�1)T ; Æij = (1; i = j;0; i 6= j;1(
) - ve
tor of length that 
onsists from 1,Aj = kajikk
�1i;k=0; ajik = 8>>>><>>>>:��; k = i� 1;�+ j�+ i�j; k = i;�(i + 1)�j; k = i + 1;0; otherwise;if i 6= 0; 
� 1. In 
ase i = 0 aj0k = 8><>:�+ j�; k = 0;��j ; k = 1;0; otherwise;and if i = 
� 1 aj
�1k = 8><>:��; k = 
� 2;�+ j�+ (
� 1)�j; k = 
� 1;0; otherwise;Bj = kbjikk
�1i;k=0; bjik = ((j + 1)�; k = i� 1;0; otherwise;if i 6= 0; 
� 1. In 
ase i = 0,bj0k = 0; k = 0; 1; : : : ; 
� 1, and if i = 
� 1bj
�1k = ( 
(j+1)��j� ; k 6= 
� 2;(j+1)�[�+
�j ℄� ; k = 
� 2;C = k
ikk
�1i;k=0; 
ik = (1; k = 0; i = 0;aMi�1k; otherwise;�j =  M�1Yi=j A�1i Bi!C�1e0(
):Ve
tor �j is de�ned 
orre
tly by the last equation. As jCj = (�1)
�1(
�1)�
�1M 6= 0so C�1 always exists. Matri
es Aj; j = 0; 1; : : : ;M are not singular be
ause they satisfythe Adamar 
olumn 
ondition ([3℄ p. 406).Probabilities �ij(M); (i; j) 2 S(X;M) 
an be expli
itly expressed in terms of thesystem'�s parameters. 216



Theorem 1. Stationary probabilities of the system are de�ned by the following setof equations: �j(M) = �j�0M (M); j = 0; : : : ;M;�
j(M) = (j + 1)�� 1(
)T�j+1�0M (M); j = 0; : : : ;M � 1;�
M(M) = �eT
�1(
) +M�1(
)T
�M C�1e0(
)�0M (M);where �j(M) = (�0j(M); �1j(M); : : : ; �
�1j(M))T ;�0M(M) = ( MXj=0 �1 + j�� � 1(
)T�j + �eT
�1(
) +M�1(
)T
�M �M)�1 :It should be noti
ed that in 
ase of 
 = 1; 2 the above formulas turn into equationsof the s
alar type [4℄.Next we will show that the system with trun
ated state spa
e approximates theinput system. 4. APPROXIMATION RESEARCHTo proof that 
hara
teristi
s of the �nite system approximate 
hara
teristi
s of theinput system let us use sto
hasti
 order 
on
ept [5℄.Lemma 2. If 
onditions of lemma 1 are true and :1) if X(0;M) �st X(0), then X(t;M) �st X(t) for all t � 0 and X(M) �st X,where X = (C;N), X(M) = (C(M); N(M)) � random ve
tors distributed as �ij; (i; j) 2S(X) and �ij(M); (i; j) 2 S(X;M) 
orrespondingly;2) if X(0;M) �st X(0;M + 1), then X(t;M) �st X(t;M + 1) for all t � 0 andX(M) �st X(M + 1).Lemma 2 appears from the results of sto
hasti
 order of migration pro
esses. Itleades to the following theorem.Theorem 2. If 
onditions of lemma 1 take pla
e, then for any (i; j) 2 S(X) �ij =limM!1�ij(M):We have already shown that the probabilities �ij(M) tend to �ij as the value of Min
reases. It is interesting to �nd the value of di�eren
e between them. Let us examineit for some pretty general types of poli
ies.Theorem 3. If 
onditions of lemma 1 take pla
e and the sequen
e �j is stri
tlymonotone, then for (i; j) 2 f1; : : : ; 
g � f0; 1; : : :g0 � ��ij � ��ij(M) � � (�j � �j�1)�1 1M !( �
�)M MQ�=0 �+����MP�=0 1�!( �
�)�[
+ �+���� ℄ ��1Q�=0 �+���� ;217



where ��ij = P��i;��j ��� = P (C � i; N � j), ��ij(M) = P��i;��j ���(M) = P (C(M) �i; N(M) � j).Theorem 4. If 
onditions of lemma 1 take pla
e and �j � �j+1; j = 0; 1; : : :, � < 
�0then sup(i;j)2S(X) (��ij � ��ij(M)) � 
[(�+
�)�+(M+
)�0℄M !�0 ( �
�)M+1 MQ�=0 �+����(
�0 � �) MP�=0 1�!( �
�)�[
+ �+���� ℄ ��1Q�=0 �+���� ;In monograph of Failn and Tempelton the di�eren
es between some major integralfun
tionals of the input and the trun
ated system were estimated in 
ase of un
ontrolledretrial queues [5℄. In 
ase of 
ontrolled retrial queues similar results 
an be found butsu
h an estimate strongly relates on the 
ontrol poli
y properties. We have providedsu
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