
ON APPROXIMATION OF RETRIALQUEUES WITH VARYING SERVICERATEV. PonomarovTaras Shevhenko National University of KyivKyiv, Ukrainevponomarov�gmail.omThe paper deals with Markov model of retrial queueing system in whih servierate depends on queue length. Investigation method is based on an approximationof the input system by the system with trunated state spae. The auray of suhapproximation is also disussed.Keywords: Stohasti system, retrials, steady state.1. INTRODUCTIONThe researh of wide lass of stohasti systems with repeated alls faes the problemof alulating harateristis of the system with the poisson inoming �ow. Markovproess that desribes the behavior of suh system has an in�nite state spae and thetransation matrix usually does not have speial properties that simplify the proessof �nding Kolmogorov set of equations expliit solution. Desribed features lead to thefat that only few simple models were examined in details [1℄.Usually the problem of omputing stationary probabilities for suh systems is solvedby omputation algorithms or reurrent shemas [2℄. To apply them system with �nitestate spae is taken into aount. Usually it is onsidered that the queue length does notexeed the value of M . If the request omes to the system when there is no free serverand there are M soures of repeated alls already it is lost. It is intuitively obviousthat by hoosing M big enough we an approximate harateristis of the input systemwith the prede�ned auray.In this paper we present the desribed above tehni for the retrial system withPoisson input �ow and varying servie rate. Its integral harateristis are approximatedby harateristis of the system with trunated spae state whih an be expliitlywritten in terms of system's parameters. The error of suh approximation for di�erentservie rate swithing poliies is also disussed.2. MARKOV MODELS OF THE INPUT ANDTRUNCATED SYSTEMSConsider ontinuous time Markov hain X(t) = (C(t);N(t)), C(t) 2 f0; 1; : : : ; g,N(t) 2 f0; 1; : : :g, whih is de�ned by its in�nitesimal harateristis a(i;j)(i0;j0), (i; j),(i0; j 0) 2 S(X) = f0; 1; : : : ; g � f0; 1; : : :g:213



1) if i = f0; 1; : : : ; � 1g, then
a(i;j)(i0;j0) = 8>>>>>><>>>>>>:

�; (i0; j 0) = (i+ 1; j);j�; (i0; j 0) = (i+ 1; j � 1);i�j; (i0; j 0) = (i� 1; j);�[� + j�+ i�j℄; (i0; j 0) = (i; j);0; otherwise.2) if i = , then a(;j)(i0;j0) = 8>>>><>>>>:�; (i0; j 0) = (; j + 1);�j; (i0; j 0) = (� 1; j);�[� + �j℄; (i0; j 0) = (; j);0; otherwise.Proess X(t) desribes the behavior of the following system. The inoming �ow ofevents is Poisson with rate �. There are  idential servers. If there is any free serverthe request is served immediately. Servie time is exponentially distributed randomvariable with parameter �j that depends on the urrent queue of repeated alls length.If request �nds all servers busy it tries to get servie in a random period of time thathas exponential distribution with parameter �. The number of busy servers at any timet is de�ned by the �rst omponent of X(t) and the number of retrials � by the seond.Let us �nd up the ondition of X(t); t > 0 stationary mode existene.Lemma 1. Let � = limj!1 �j. Then if �� < 1 proess X(t) � is ergodi and itsboundary distribution �ij; (i; j) 2 S(X) oinides with a single stationary.Proof. Consider the following Lyapunov funtions '(i; j) = �i+ j; (i; j) 2 S(X); whereparameter � will be determined later on. Then the mean driftsyij = X(i0;j0)6=(i;j) a(i;j)(i0;j0)('(i0; j 0)� '(i; j)are given by yij = (��� i�j�+ j�(�� 1); 0 � i � � 1;�� �j�; i = :When �� < 1 for any value of � 2 ( �� ; 1) there exists suh " > 0 that yij < �" for all(i; j) 2 S(X) exluding �nite number of states (i; j). So the assumptions of Tweedie'stheorem[[?℄, p.97℄ are hold for funtions '(i; j) = �i+ j; � 2 ( �� ; 1).Consider trunated system. It funtions in the same way as an input system buthas the limitation on maximum number of retrials. This means that inoming allsare lost when all servers are busy and there are M soures of repeated alls already.Formally the system is desribed by the Markov hain X(t;M) = (C(t;M);N(t;M)),214



where C(t;M) 2 f0; 1; : : : ; g, N(t;M) 2 f0; 1; : : : ;Mg with in�nitesimal harateris-tis a(M)(i;j)(i0;j0); (i; j); (i0; j 0) 2 S(X;M) = f0; 1; : : : ; g � f0; 1; : : : ;Mg:1) if i = f0; 1; : : : ; � 1g; j = f0; 1; : : : ;Mg, then
a(M)(i;j)(i0;j0) = 8>>>>>><>>>>>>:

�; (i0; j 0) = (i + 1; j);j�; (i0; j 0) = (i + 1; j � 1);i�j; (i0; j 0) = (i� 1; j);�[�+ j�+ i�j; (i0; j 0) = (i; j);0; otherwise.2) if i = ; j = f0; 1; : : : ;M � 1g, thena(M)(;j)(i0;j0) = 8>>>><>>>>:�; (i0; j 0) = (; j + 1);�j; (i0; j 0) = (� 1; j);�[� + �j℄; (i0; j 0) = (; j);0; otherwise.3) if i = ; j = M , thena(M)(;M)(i0;j0) = 8><>:�M ; (i0; j 0) = (� 1;M);��M ; (i0; j 0) = (;M);0; otherwise.The state spae S(X;M) of proess X(t;M) is �nite thus the stationary modealways exists and by �ij(M); (i; j) 2 S(X;M) we de�ne its stationary probabilities.Let us onsider the servie proess of the trunated system in more detail.3. STATIONARY PROBABILITIES OF THE TRUNCATEDSYSTEMFor the given system stationary probabilities satisfy the following set of Kolmogorovequations and normalizing ondition:[�+ j�+ i�j℄�ij(M) = (j + 1)��i�1j+1(M) + ��i�1j(M) + (i+ 1)�j�i+1j(M); (1)j = 0; : : : ;M � 1; i = 0; :::; � 1;[�+M� + i�M ℄�iM (M) = ��i�1M(M) + (i+ 1)�M�i+1M (M); i = 0; :::; � 1; (2)[�+ �j℄�j(M) = (j + 1)���1j+1(M) + ���1j(M) + ��j�1(M); j = 0; : : : ;M � 1;�M�M(M) = ���1M(M) + ��M�1(M); (3)Xi=0 MXj=0 �ij(M) = 1:215



Consider the following de�nitions:ei(n) = (Æi0; Æi1; : : : ; Æin�1)T ; Æij = (1; i = j;0; i 6= j;1() - vetor of length that onsists from 1,Aj = kajikk�1i;k=0; ajik = 8>>>><>>>>:��; k = i� 1;�+ j�+ i�j; k = i;�(i + 1)�j; k = i + 1;0; otherwise;if i 6= 0; � 1. In ase i = 0 aj0k = 8><>:�+ j�; k = 0;��j ; k = 1;0; otherwise;and if i = � 1 aj�1k = 8><>:��; k = � 2;�+ j�+ (� 1)�j; k = � 1;0; otherwise;Bj = kbjikk�1i;k=0; bjik = ((j + 1)�; k = i� 1;0; otherwise;if i 6= 0; � 1. In ase i = 0,bj0k = 0; k = 0; 1; : : : ; � 1, and if i = � 1bj�1k = ( (j+1)��j� ; k 6= � 2;(j+1)�[�+�j ℄� ; k = � 2;C = kikk�1i;k=0; ik = (1; k = 0; i = 0;aMi�1k; otherwise;�j =  M�1Yi=j A�1i Bi!C�1e0():Vetor �j is de�ned orretly by the last equation. As jCj = (�1)�1(�1)��1M 6= 0so C�1 always exists. Matries Aj; j = 0; 1; : : : ;M are not singular beause they satisfythe Adamar olumn ondition ([3℄ p. 406).Probabilities �ij(M); (i; j) 2 S(X;M) an be expliitly expressed in terms of thesystem'�s parameters. 216



Theorem 1. Stationary probabilities of the system are de�ned by the following setof equations: �j(M) = �j�0M (M); j = 0; : : : ;M;�j(M) = (j + 1)�� 1()T�j+1�0M (M); j = 0; : : : ;M � 1;�M(M) = �eT�1() +M�1()T�M C�1e0()�0M (M);where �j(M) = (�0j(M); �1j(M); : : : ; ��1j(M))T ;�0M(M) = ( MXj=0 �1 + j�� � 1()T�j + �eT�1() +M�1()T�M �M)�1 :It should be notied that in ase of  = 1; 2 the above formulas turn into equationsof the salar type [4℄.Next we will show that the system with trunated state spae approximates theinput system. 4. APPROXIMATION RESEARCHTo proof that harateristis of the �nite system approximate harateristis of theinput system let us use stohasti order onept [5℄.Lemma 2. If onditions of lemma 1 are true and :1) if X(0;M) �st X(0), then X(t;M) �st X(t) for all t � 0 and X(M) �st X,where X = (C;N), X(M) = (C(M); N(M)) � random vetors distributed as �ij; (i; j) 2S(X) and �ij(M); (i; j) 2 S(X;M) orrespondingly;2) if X(0;M) �st X(0;M + 1), then X(t;M) �st X(t;M + 1) for all t � 0 andX(M) �st X(M + 1).Lemma 2 appears from the results of stohasti order of migration proesses. Itleades to the following theorem.Theorem 2. If onditions of lemma 1 take plae, then for any (i; j) 2 S(X) �ij =limM!1�ij(M):We have already shown that the probabilities �ij(M) tend to �ij as the value of Minreases. It is interesting to �nd the value of di�erene between them. Let us examineit for some pretty general types of poliies.Theorem 3. If onditions of lemma 1 take plae and the sequene �j is stritlymonotone, then for (i; j) 2 f1; : : : ; g � f0; 1; : : :g0 � ��ij � ��ij(M) � � (�j � �j�1)�1 1M !( ��)M MQ�=0 �+����MP�=0 1�!( ��)�[+ �+���� ℄ ��1Q�=0 �+���� ;217



where ��ij = P��i;��j ��� = P (C � i; N � j), ��ij(M) = P��i;��j ���(M) = P (C(M) �i; N(M) � j).Theorem 4. If onditions of lemma 1 take plae and �j � �j+1; j = 0; 1; : : :, � < �0then sup(i;j)2S(X) (��ij � ��ij(M)) � [(�+�)�+(M+)�0℄M !�0 ( ��)M+1 MQ�=0 �+����(�0 � �) MP�=0 1�!( ��)�[+ �+���� ℄ ��1Q�=0 �+���� ;In monograph of Failn and Tempelton the di�erenes between some major integralfuntionals of the input and the trunated system were estimated in ase of unontrolledretrial queues [5℄. In ase of ontrolled retrial queues similar results an be found butsuh an estimate strongly relates on the ontrol poliy properties. We have providedsuh estimates for few of them. REFERENCES1. Artalejo J. R., Gomez-Corral A. Retrial queueing systems // Springer-Verlag,Berlin, 2008.2. Semenova O. V., Dudin A. N. M/M/N queueing system with ontrolled serviemode and disaster // Avtomatika i Vyhislitel'naya Tekhnika. 2007. No. 6. P. 72�80.3. Gantmaher F. R. Matrix theory //Nauka, Mosow, 1967.4. Lebedev E. O., Ponomarov V. D. Optimization of �nitesoure retrial queues //Bulletin of Kiev University. 2008. V. 2. P. 91�97.5. Falin G. I., Templeton J. G. C. Retrial Queues // Chapman and Hall, London,1997.
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