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The object of this research in the queueing theory is the Functional-Strong-Law-of-
Large-Numbers (FSLLN) under the conditions of heavy traffic in Multiphase Queueing
Systems (MQS). A FSLLN is known as fluid limit or fluid approximation. In this paper,
the FSLLN is proved for values of important probabilistic characteristic of the MQS
investigated as well as the cumulative idle time of a customer.
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1. INTRODUCTION

Interest in the field of multiphase queueing systems was stimulated by the theoret-
ical values of the results as well as by their possible applications in information and
computing systems, communication networks, and automated technological processes
(see, for example, [13]). The methods of investigation of single phase queueing systems
are considered in [2], [3], etc. The asymptotic analysis of models of queueing systems
in heavy traffic is of special interest (see, for example, [7], [8], [4], [5], etc.). The papers
[9], [12] and others desribed the beginning of the investigation of diffusion approxima-
tion to queueing networks. Intermediate models - multiphase queueing systems - are
considered rarer due to serious technical difficulties (see, for example, book [6]).

We present some definitions in the theory of metric spaces (see, for example, [I).
Let C be a metric space consisting of real continuous functions in [0, 1| with a uniform
metric

p(w,y) = sup |z(t) —y(t)|, v,y € C.
0<t<1

Let D be a space of all real-valued right-continuous functions in [0,1] having left
limits and endowed with the Skorokhod topology induced by the metric d (under which
D is complete and separable). Also, note that d(x,y) < p(x,y) for 2,y € D.

In this paper, we will constantly use an analog of the theorem on converging together
(see, for example, [I]):
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Theorem 1.

Let e >0and X,, Y,, Xe D. If P(lim d(X,, X) >6> =10
and P(lim d(X,, Y,) > e) =0, then P(lim d( Yy, X) > g) ~ 0.
n—00 n—0o0

We investigate here a k-phase multiphase queueing system (i.e., when a customer
has been served at the j-th phase of the multiphase queue, he goes to the j+ 1-th phase
of the multiphase queue, and after the customer has been served at the k-th phase of
the multiphase queue, he leaves the multiphase queue). Let us denote by t,, the time
of arrival of the n-th customer, by SY) the service time of the n-th customer at the
j-th phase of the multiphase queue, z, = t,41 — t,; by 7, the departure of the n-th
customer after service at the j-th phase of the multiphase queue, 7 =1,2,... k.

Let interarrival times (z,) at the multiphase queue and service times (S$) at every
phase of the multiphase queue for j = 1,2,...,k be mutually independent identically
distributed random variables.

Next, denote by BI;, the idle time of the n-th customer at the j-th phase of
n

the multiphase queue; [, = > BI;; stands for a cummulative idle time of the n-th
=1

customer at the j-th phase of the multiphase queue, 7 =1,2,... k.

Suppose that the idle time of a customer at each phase of the multiphase queue is
unlimited, the service principle of customers is “first come, first served” (FCFS). All
random variables are defined on the common probability space (€, F, P).

We form such a modified multiphase queue in which BI;,, =0, j =1,2,...,k, n <
k. Limit distributions for the modified multiphase queue and the usual multiphase
queue working in heavy traffic conditions are coincidental (see, for example, [3]|). Thus,
later on we will investigate only the modified multiphase queue and admit that n > k.

When 7 =1,2,...,k, let us define

) :
5 = Sn_(]._l) — Zn, ifn>k
’ 0, if n <k.

—1
Denote S, = ZZ iy Som =0, Sjn=Sj—1n— Sjn, Tjn = Tjn — tn,
=1
_ A . . _ _ (4) NN .
Ton =0, Tjn+1 = Tjpn — Ojnt1, Lo =0, a5 = M(2n — Su’), Jjn = Tjn — Sjmy J =

1,2,...,k Assume S;p =0, 7=1,2,...,k.
Also assume the following condition to be fulfilled:

Qp > g1 > - > 0. (2)

2. MAIN RESULT

At first we present one of the main result of paper - theorem on the FSLLN for the
cumulative idle time of a customer in MQS.
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Theorem 2. If conditions (2) are fulfilled, then

Iln IQn Ikn
(—’;—’;...;—’ = (aq;an;.. .5 a4).
n' n n

Proof. At first we using that for each fixed £ > 0 (see [11])

I.n_A.n )
P<MnLL—&J>6>:Qj:LZHWhnZh
n—00 \/ﬁ

So,
I'n_A'n .
P(MnLL—&J>6>:Qj:LZHWhnZh

n—oo n

First we prove that

.

gj,n_ Zsz,n b — (—S.
i=1 _ Yin ( z,n):>0’j:1,2,___,k,n2k,
n n

Using relations of [11] we obtain that

Z}j’n:fi'j,n—sjn— max(x] 1, — S]l)— max(x] 11—53 1[+SJ 11—5’][)

0<I<n 0<I<

= . ; = > k.
Urgfaé}fz(y]_Ll + S ,l)a J ]-727 7k7 n -~ k

Thus,

Uin —Omlax(y] u+ S, =12,k 9,.=0, n>k.

Also, we see that (see (6))

0<I<n

J J
y]n Zszn = max yj 1, + Sjl ZSZ,TL Z gjfl,n + gj,n - Zgz,n
i=1 i=1

—yj 1,n — Zszn_---_ Sln—maXSIn_Slnzoa

i=1,2,....k n>k

But

Yin < maxyj 1l+mlaXSJl—y] 1n+maXS maXSll,

0<i<n
=1

i=1,2,....k n>k

Using (7) and (8) we get that



j=1,2,... .k n>k
Applying (9) we achieve for each fixed £ > 0

i i
|jn — Zl S, Jjm — 21 Sin
1= 1=

P >ec| =P > €
n n
k
2 e it = Sial S S S}
<P >e| <P > €
! " (10)
k 01111a<XS Sin k Olllla<x( Sin—1)
<M P - = n
Z o > € Z P - >e ],
=1 =1
k Inax ~S51) k ggﬂX( Si)
= P - >e | < P L > ¢

j=12,...,k, n>k.
Thus, for each fixed ¢ > 0

J .
|gj,n - Z S',

: o (_Sz’l)
P Sl | <Sop BT o) 1
S eye (BB )

i=1,2,... .k n>k
Note (see, for example, [11]) that for each fixed € > 0

max (—Sj)

Pllim =="— >c)=0j=1,2,...,k 12
R NG € J (12)

if conditions (2) are fulfilled.
.
Using relation ) S;, = —S;,, j =1,2,...,k, and (11)-(12) we obtain that for each

i=1
fixed € > 0,
A'n - _S'n .
P(lim 9in = (=5 )|>6>:0,j:1,2,...,k,,n2k. (13)
n—00 n
So, we get for each fixed € > 0 (see (13))
I — - I —Gin
P(lim i = - >5> §P<lim Win =Bial 5)
n—00 n n—00 n 3 (14)
I Y (T ) R B CY (A ) e R
n—00 n 3 n—00 n 3
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i=1,2,....k n>k

10.

11.

12.

13.

Thus, if conditions (2) are fulfilled, then

I — -
P(MnLﬂ—gLﬂ>s>:&j:LZ“whnzh (15)
n—o00 n
The proof is complete. O
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