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Open queueing networks with several types of customers, Poisson incoming flow,
exponential service in the nodes and Markov routing are studied. In each of the nodes
there is the only device, which can operate in several regimes. Each regime has a
residence time, limited by an exponentially distributed random variable. There are
signals, which can increase or reduce the regime of service in the node. The problem of
stationary distribution of conditions probabilities form is investigated.
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1. INTRODUCTION

Queueing networks with multiregime service strategies have been investigated rel-
atively recently. The necessity of their study was caused by practical considerations,
because such networks allow us to consider models with partially nonreliable devices.
With increase the regime number the regime is getting less reliable and the node pro-
ductivity decreases.

Transitions from one regime into another are considered as "internal" changes. Un-
der such "internal" changes we mean transitions of the serving device to a less reliable
regime due to breakdowns and to more reliable regime because of possible recovery due
to natural causes. Moreover, such transitions do not depend solely on the number of
the device regime, but also on the types of customers that are in the node.

It is assumed that the time of stay in each regime is limited. After this limited time
the device transits with corresponding probabilities to either a regime with a larger
number or a regime with a lower number. Described transitions are caused by the
properties of each of the regimes and do not depend on the customers in the node.

Considered network is modified by the addition of information signals, which can in-
crease or reduce the regime of service in the node. Presence of signals can be interpreted
as an external influence on the network.

2. MODEL DESCRIPTION

We consider open queueing network with M types of customers, which contains N
nodes. There are three Poisson input flows: the flow of customers with parameter A
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and two flows of signals, which can reduce or increase the number of regime. They have
rates w™ and w™' accordingly.

Every customer of input flow passes independently to node i and becomes the
customer of type u with probability po(u) (ZZN:1 nyzl Po(iu) = 1). Incoming sig-
nal of regime increasing and signal of regime reducing pass to node ¢ with probabil-
ities g; and q,; accordingly (Zf\il 0@ =1, 4 = 1). After the service in node
i the customer of type u passes to node j immediately with probability pg;.);.) as
the customer of type v and with probabilities qaf’u)j, Uiy; 3 the signal of increas-
ing or reducing regime accordingly. Or it can leave the node with probability p(; .o
(37 ot (PG F Gy + Gayg) + Ploro = 1)

In each of N nodes there is the only device, which can operate in r; + 1 regimes (i =
1,N). The state of the network is characterized by the vector z(t) = (z,(t), ..., xnx(t)),
where ;(t) = (%;(t),l;(t)) = (21 (t), 2i2(t), ..., Tin(i) (1), li(t)) describes the state of node
i at the moment ¢. Here x;;(t) — the type of customer, which is getting service at the
moment ¢, 2;5(t) — the type of customer, which is the first in the queue,..., ;,()(t) - the
type of customer, which is the last in the queue, n(i) — the number of customers in the
node i, [;(t) — the regime of the node ¢ at the moment ¢. States space for process z;(¢) is
Xi = {(0, lz), (Iil, lz); (:Eﬂ, T2, lz); (:Eﬂ, T2, 53, lz), N ) ]_, M, k = ]_, 2, ceny lz = M}

The time of device service of the node 7 has an exponential distribution with pa-
rameter p;(n(i), ;). Customers are serviced in the order they arrive in the node.

We define the regime 0 as the basic regime. Switching time from some regime to
another one has the exponential distribution. The node in the basic regime can pass
only to the regime 1 with rate v;(%;,0). For the states, which have the number of regime
1 <l; <r;—1, the node passes to regime [; + 1 with rate v;(z;) and to regime [; — 1
with rate ¢;(x;). And the node passes from the regime r; only to regime r; — 1 with
rate ;(Z;,r;). While the regimes are switching in the node, the number of customers
doesn’t change. Switch occurs only between the neighborhood regimes.

When the signal of regime reducing incomes to the node with the regime [;, it turns
the node to the regime [; — 1 and doesn’t change the number of customers in the node.
This signal doesn’t produce any action, if the node is in the regime 0. When the signal
of regime increasing incomes to the node with the regime [;, it turns the node to the
regime [; + 1 and doesn’t change the number of customers in the node. This signal
doesn’t produce any action, if the node is in the regime r;. After changing the node
regime these signals disappear.

Each regime [; has a residence time, limited by an exponentially distributed random
variable with parameter v;(l;) (I; = 0,7;,i = 1, N). After the end of the stay time in the
regime [; the device with probability p*(l;) moves to regime [; + 1, and with probability
p~(l;) moves to regime [; — 1.

Then z(t) is a homogeneous Markov process with states space X = X7 x Xox...x Xy,
where X; = {(0,1;), (zi1, ), (i1, Tin, i), oo s Tip = L, M, k= 1,2,...;1; = 0,7}
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3. ISOLATED NODE

We consider isolated node ¢ and suppose that three independent Poisson flows come
in it: the flow of customers of type u with parameter «;,, the flow of signals, which
increase regime of the node, with parameter 8;" and the flow of signals, which reduce
regime of the node, with parameter 3;. Here oy, 8;7, 87 — average rates of customers,

"increasing" signals and "reducing" signals arrivals accordingly to the node i.
Traffic equations for this model are:

N M
Qg = )‘po(i,u) + Z Z QyD(5,v)(iu)s

j=1 v=1

N M
B =t 31Dt

j=1 v=1

N M
B =W e+ YD il

j=1 v=1

To reduce the calculations we introduce the following operators:
.7, 7,55 : X; — X;, setting

T.50,1;) = (u, ),
T (x) = Tf (wq, . .. s Tingiys 1) = (U Tty o, Tingiys 1),
T (x;)) =T (zi1, ;) = (0,;), |zi| =n(i) =1,
T () =T (Tirs - s Tingays i) = @ity - - s Tingiy—1, 1), @i = n(i) > 1,
ST () = ST (241, .
ST (i) = S™(Tir, - -+, Tingi), li) = (Tits -+, Tingay, i — 1),

T (x;) is not defined at ;= (0,4), $*(x;) — at 2 = (#,72), S~(x:) — at ;= (3:,0).
Consider also the operators describing the change of the network state:
T(Tu)’ T'z'_a Sz+7 Sz_ X = X, puttlng

o TinG), li) = (Tat, oo Tingay, L+ 1),

T(Zu)(x) = T(J{’u)(arl,xg, s IN) = (T, Ty e Ty Ty Tig1s - - TN )y B = T (24);
T (x) =T (1,29, ..., on5) = (T1, %2, ..., Ti1, Tiy Tig1s - - TN ), Ty = T (23);
S;r(x) = 5;($1,$2;---a$N) = ($1,$2;---a$i71,§f’i,$i+1, . --;«TN),i‘i = S+($z‘);
S;(.’L') = S;(IL'I,IQ,. .. ,.'L'N) = (.’L’l,.'L'Q,. .. ,.’L'Z'_l,i'i,.'L'Z'+1, . .,IN),i'i = Si(fL’Z)
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Lemma. For the reversibility of the isolated node the following conditions are nec-

essary and sufficient
i@, ls = 1) + vl = 1)p™ (I = 1) + B Nwa(n (@), 1) [0 (T~ (24, 1)) + v:(l)p~ (L) + ;7] =

= [T (&, li= 1))+l = Dp " (b = 1) 45 i (n(d), L = 1) [spi (%3, l) + v (la)p~ (1) + 55,

The proof is similar to the corresponding proof in [I].

4. STATIONARY DISTRIBUTION

Let the stationary distribution {p(z),x € X} of z(¢) exists, then the stationary
state probabilities of the network satisfy the global equilibrium equations:

N M
x) Z Z[)\p[](i,u) + pi(n(i), li)l(n(i)¢0)+

i=1 u=1

+(i(wi) +vil)p" (1) + w qg) Tazrs) + (i) +7i(l)p™ (1) +w™q0;) La20)] =

N
Z L)) ADOG 210y L (i) 20) + ZP(T@) ()i (n(2) + 1, 1) Pyt
=1 u=1
+ZZP T (@)1 (n(5) + 1, 1)PGw) o Lm0y +
7j=1 v=1
S T S )+ L)t
j=1 v=1
+ZZP 2)) i (n(3) + L,1)4 pyilaizrn+
7j=1 v=1
+p(S; (@) [ (S™ (23)) + %l = Dp* (I = 1) + W' ag; 20y +
+p(S (@) i (ST () + 7l + Vp~ (i + 1) + w0 g )]
Theorem 1. If for allt = 1, N the conditions of reversibility are true and the series
converges
N n(i) + +
Z HH amm Hl/l(o k— )"—f}/z(k—]_)p (k—].)+62
S il i(0, k) +i(k)p= (k) + 87 ’

where (i, i =1, N,u =1, M) — solution of the traffic equation,

N N
£) = A+ Y (i), ) Ingiyz0) + Y wi(w:) + (0" (L) + 0 g ey +

=1



N
+Z 902 xz + '}/z i p (lz) +wiq07i]l(lﬁé0)a

i=1

then the Markov process z(t) is ergodic and its stationary distribution of conditions
probabilities has the product form

p(z) = pi(z1)p2(z2)..pn(2N), 2 € X,

where p;(x;) is determined by the relation

2O i i vi(0,k — 1) + ik — Dpt(k— 1) + BF

(X)) = = :(0,0),
pi(z) i pia, ;) Pty ©0i(0, k) + v (k)p~ (k) + 5, pi(0,0)
; -1
ﬁ iz f[VzOk_l +f}/z(k ) +(k_1)+5z+
r;€X; a=1 Mi(a’l k=1 0 k) + %(k) (k) + 6;
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