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This paper contains description of new features of software package “Sirius-T” as an
elaboration of “Sirius++” and “Sirius-C” packages. “Sirius-T” introduces new models
for calculation characteristics of tandem queues allowing performance evaluation and
capacity planning of the telecommunication networks and their fragments. Additionally,
the software facilitates a study of queueing models under consideration of correlated
service and evaluation of the algorithms’ numerical complexity.
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1. INTRODUCTION

The described software “Sirius-T” is the next generation of the software “Sirius++"
that is described in [5]. Apart minor extensions that facilitate study of the queueing sys-
tems under consideration of the correlated service (described in terms of semi-Markovian
process) some major improvements have been made.

One of such improvements allows analysis of numerical complexity of algorithms.
Due to approximate nature of the implemented algorithms there is no analytical way
known to perform such analysis. However, with minor performance loss it is possible
to gather the information during calculation.

Another improvement allows using calculation under different platforms (e.g. dif-
ferent operating systems or hardware). This is important while calculation precision
differs depending on the development tools shipped with the platform.

Finally, the most significant improvement was achieved by adding support of new
queueing systems. In particular several tandem queues have been added to a set of
supported models. This allows studying of more complex networks and their fragments.

The software “Sirius-T” has been developed in C++ using Microsoft Visual Studio
2008 and GNU GCC 4.5.1.

2. DESCRIPTION OF THE TANDEM QUEUES

Before describing tandem models supported by the “Sirius-T”, let us briefly specify
common aspects of studied tandem queues. The key difference of tandems from single
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server queues is that it has two service devices (servers). Service time duration at the
first server has general distribution with the first moment b;, 0 < b; < oo. The first
server has a buffer of size N (two cases are considered N < oo and N = 00).

The second server is characterized by the P H-type service time distribution having
an irreducible representation (,S). Here 3 is the stochastic row-vector of dimension
K and S is K x K matrix having the negative diagonal and non-negative non-diagonal
entries, such as the column vector S; = —Se is non-negative and has at least one
positive entry. The average service time is defined as 5(—S)'e. Here and in the sequel
e is column vector of appropriate size consisting of units. For more information about
PH see [7]. The buffer before the second server has size M — 1, M < co.

Each request needs to be sequentially served by first and second servers.

“Sirius-T” continues utilizing batch Markovian Arrival process (BM AP) as an input
flow. The BM AP, a special class of tractable Markov renewal process, is a rich class of
point processes. It includes many well-known processes such as stationary Poisson, PH-
renewal process, Markov Modulated Poisson Process (M M PP) and others. The epochs
of customers’ arrival (possibly in batches of a random size) coincide with the transition
epochs of some continuous-time Markov chain v;,¢ > 0 called as the directing process
of the BMAP. This process has a finite state space {0,...,W} and it is completely
defined by some set of (W + 1) x (W + 1) matrices Dy, k > 0. The matrix Dy, consists
of intensities of transitions of the process v4,t > 0 that are accompanied by arrival of a
batch of size k into the system. The BMAP was introduced by D.Lucantoni in [6] as
a more nice form of versatile input process introduced earlier by M.Neuts in [§]. The
BMAP is recommended by many researchers as a good descriptor of flows in the modern
telecommunication networks. It takes well into account the bursty, correlated nature of
these flows. It makes its exploiting to model the real life flows being attractive.

For understanding the examples from the following section we need to describe some
additional characteristics of the BMAP flow. A matrix generating function

D(z) =Y DyF, |2 <1,
k=0

introduced by D.Lucantoni in [6] facilitates analytical study of queueing systems. The
vector @ of the process 14, t > 0 stationary distribution satisfies equations 8D(1) =
0,0e = 1. Here 0 is zero row vector of appropriate size. The average intensity A
(fundamental rate) of the BM AP is defined as

A=0D'(2)],—e.
The intensity A\, of groups arrival is defined as
Ag = 0(—Dy)e,
variance c¢,,, of intervals between the groups arrival is calculated as:
Coar = 20y O(—=Dg) 'e — A, 72,
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the correlation coefficient c.,, of intervals between the successive groups arrival is cal-
culated as
Ceor = (g '0(=Dyo)(D(1) = Do)(=Dy)~'e = A, 7%) /v.

We consider partial admission losses at first server if N < oo, i.e. the only requests
from batch arrival will be lost that exceed the free buffer capacities.

We can now describe and illustrate with numerical examples models supported by
“Sirius-T7.

3. TANDEM QUEUES WITH LOSSES

We consider BMAP|G|1|N — -|PH|1|M tandem with possible losses at the first
and the second server (please see the figure [[] for illustration). This model was studied
in paper [2].

In case the entering batch of customers finds insufficient number of places in a buffer
(or the buffer is already full at all), the appropriate number of customers from the batch
joins a queue while the rest (or even the whole group) leaves the system forever (i.e.
is lost at the first server). We denote the probability Pz(ols)s of the request to be lost at
the first server. In case the customer completes the service at first server and meets
the buffer before the second server be busy, this customer leaves the system forever
and is considered to be lost at the second server. We denote the probability Pl(fs)s of

the request to be lost at the second server. If buffer before first server is infinite, then
requirements can be lost at the second server only.
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Fig. 1. Structure of the tandem queue with losses

Let us illustrate the module with some example.

The input parameters of the tandem are defined as specified below.
Table 1 BM AP-flow of intensity A = 10, intensity of groups A\, = 5, with correlation

Ceor = 0.2, and variation ¢, = 12.2732

D[) D, = D3 Dy
—6.74538 5.45412 x 1076 | 2.01021 0.0134084 | 2.68027 0.0178778
5.45412 x 107° —0.219455 0.036728 0.0291068 | 0.0489707 0.038809

Service time at the first server is degenerate. To vary service time the following
values are used {0.01,0.03,0.05,0.07,0.08,0.085,0.09, 0.095,0.1,0.12,0.14}.
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Phase-type service time distribution at the second server has the following parame-
ters
-20 0
5= { 0 —80] ’
B =107 03].

These parameters make mean service time at the second phase equal to 0.03875.
The buffer capacity M at the second server is 2.
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Fig. 2. Loss probability ‘Pl(ols)s and ]—’l(:s)s at the first and at the second servers depending on
average service time by at the first phase

4. TANDEM QUEUES WITH BLOCKINGS

We consider BMAP|G|1|N — -|PH|1|M tandem with possible losses at the first
server and blockings of the first server if there is no free space in a buffer at the second
server (please see the figure [3] for illustration). This model was studied in paper [I].
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Fig. 8. Structure of the tandem queue with blockings

Let us illustrate the module with some example. We will use input data from
the previous section. However, due to ergodicity condition, in case of an inifinite
first buffer, we need to limit service time at the first server to the following values
{0.01,0.03,0.05,0.07,0.08}.
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Fig. 4. Blocking probability Pyoci and average queue length Lo at the second server depending
on average service time by at the first phase

5. TANDEM QUEUES WITH FEEDBACK AND LOSSES

We consider BMAP|G|1|N — -|PH|1|M tandem with possible losses at the first
server and at the second server as well as feedback mechanism (please see the figure
B for illustration). By feedback we meen, that any request with probability p after
been served at the second server can return to the buffer at the first server, and with
probability 1 — p can leave system forever. This model was studied in paper [4].
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Fig. 5. Structure of the tandem queue with feedback and losses
Let us illustrate the module with some example. We will use input parameters as

in the second example, but the service time distribution at the first server we consider
deterministic with 7" = 0.05.
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Fig. 6. Loss probability P, . and average queue length Lo at the second server depending on

feedback probability p

6. TANDEM QUEUES WITH RETRIALS AND LOSSES

We consider BM AP|G|1 — -|PH|1|M tandem with retrials at the first server and
possible losses at the second server. The orbit before the first server is infinite. If an
arriving request finds the first server busy it joins the orbit and tries to get service in
exponentially distributed time intervals with intensity «; = i + 7y, where i denotes
number of customers at the orbit. This model was studied in paper [3].

We will use the same input data as in previous section, but the retrial intensity in
this example is considered to be linear one, i.e.

o; = 1o+ 7, 1> 1,

where 7 denotes number of customers in an orbit and o = 3, v = 5.

The buffer size at the second server as well as the calculated performance charac-
teristics are given in the table 2 below.

Additionally, probability PO(Q) denotes that the second server is idle at arbitrary

epoch.
T%ble 2 Results of some performance characteristics calculations for different input
parameters
Parameters | Case 1 Case 2
M 9 4
Ly 1.96517  1.13647
Lo 2.33711  1.098326
Poss 0.178394 0.254642
Py 0.279899 0.286573
p¥ 0.308468 0.281546
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7. CONCLUSION

The new “Sirius-T” software package allows study of new models to calculate per-
formance characteristics of the tandem queueing systems as a adequate models of the
fragments of the telecommunication networks. Apart that, it extends algorithms with
additional characteristics allowing investigation of numerical complexity. All this makes
“Sirius-T” application valuable not just for sceintists, but also for engineers who needs
to perform analysis of some telecommunication networks or their fragments.

The development of the “Sirius-T” will be continued to allow handling more complex
systems and algorithms.

REFERENCES

1. Breuer L., Dudin A.N., Kliminok V.I., Tsarenkov G.V. A two-phase
BMAPI|G|I|N — PH|1|M — 1 with blocking // Automation and Remote Con-
trol. 2004. Ne 1. P. 117-130. (in Russian).

2. Dudin A.N., Breuer L., Klimenok V.I., Tsarenkov G.V. Tandem queue
BMAP|G|1N — -|PH|1|M with losses // Performance Evaluation. 2005. Ne 61.
P. 17-40.

3. Dudin A.N., Klimenok V.I., Che Soong Kim, Tsarenkov G.V. Investigation of the
BMAP/G/1 — -/PH/1/M — 1 tandem queue with retrials and losses // Applied
Mathematical Modelling, 2010. V. 34, Issue 10. P. 2926-2940.

4. Dudin A.N., Klimenok V.I., Che Soong Kim, Tsarenkov G.V. The BMAP/G/1 —
-/PH/1/M —1 tandem queue with feedback and losses // Performance Evaluation.
2007. V. 64, Issue 7-8. P. 802-818.

5. Dudin A. N., Klimenok V. I.,, Tsarenkov G. V. Software “Sirius++" for Perfor-
mance Evaluation of Modern Communication Networks // Modeling and Simula-
tion. 16" European Simulation Multiconference, 2002. P. 489-493.

6. Lucanton: D. New results on the single server queue with a batch markovian
arrival process // Communications in Statistics - Stochastic Models, 1991. V. 7.
Ne 1. P. 1-46.

7. Neuts M. F. Matrix-geometric solutions in stochastic models // Baltimore, The
Johns Hopkins University Press. 1981.

8. Neuts M. F. Structured stochastic matrices of M/G/1 type and their applications //
New York, M. Dekker. 1989.

64



