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The closed single-server queueing model with repeated attempts is studied in a
number of papers. In all these papers it is assumed that a rejected subscriber repeats
his attempts until he is satisfied. In the present paper we consider the same model,
assuming some restrictions on the number of retrials, which the customer is inclined
(or is allowed) to make. The theoretical study of these models being too hard, we
investigate them via simulations.
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1. INTRODUCTION AND MATHEMATICAL MODEL

The queuing systems with repeated attempts (or retrials) are widely used to model
problems in telephone, computer, communication systems, etc. The most obvious ex-
ample of a retrial queue appears in a telephone call, when a person phones and finds
the line engaged. Usually in such a situation the subscriber repeats his attempt after
some time. A description of other situations in which retrials arise can be found in
[5], and more recent applications of retrial models - in [I]. The standard assumption in
analysis of retrial queues is that each customer repeats his attempts until he is satisfied.
However, in many real situations this assumption does not hold. It does not always
hold even in the classical example of the telephone subscriber who finds engaged line.
The objective of the present paper is investigation of retrial queueing models, where the
number of repetitions is in some way restricted. The theoretical study of such systems
is too difficult, so in the present paper a method of simulations is applied.

We consider retrial queueing system of type M/G/1//N in Kendall’s notation. This
means that the system has one server, which serves N, (2 < N < 0o) customers (sub-
scribers) and each one of the customers produces a Poisson process of demands (calls)
with intensity A\. These customers are identified as primary or free customers or sources
of primary calls. When an arriving primary customer finds the server busy, he leaves
the service area and repeats the request after some random time. Between trials a
customer is said to be in orbit (queue), or to be a source of repeated calls, or an active
customer. Thus, when a source is free at time moment ¢ (i.e. is not being served and
is not waiting for service) it may generate a primary call during the interval (¢, t + dt)
with probability Adt. If the server is free at the instant of arrival of a primary call then
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the call starts to be served. During the service time the source cannot generate a new
primary call. After service the source moves into a free state and can generate a new
primary call. If the channel is busy at time of the arrival of a primary call, then the
source starts generating a Poisson flow of repeated calls with intensity p. As in the
case of a primary call, after service the source becomes free and can generate a new
primary call. We assume that primary calls, repeated attempts and service times are
mutually independent and denote the service time distribution function by G(z) both
for primary and repeated calls and its first moment by v 1.

This queueing system and its variants are useful in modeling magnetic disk memory
systems [9], a star-like local area networks [6], [8], telephone networks [7], etc and is
studied in a number of papers ([3], [4], [7], [9] and others). All these papers deal only
with the case, when each secondary customer repeats his retrials until he is satisfied.
Now we consider two variants of the described system, regarding some restrictions on
the number of retrials, that a secondary subscriber is inclined (or is allowed) to make
before he reaches the server free. In the first variant we assume that if the server is busy
at the instant of arrival of a secondary subscriber (an active subscriber), this subscriber
continues his repeated attempts with probability p and with probability 1—p, 0 <p <1
he refuses to try entering server any more and becomes again a free one. In the second
model we assume, that each secondary customer stops his retrials if his (k + 1)-th
attempt fails, £ = 1,2, ... (if not served before). Further in this paper we will call each
of these three models as the model without restrictions (unrestricted model or a model
without losses), the first restricted model and the second restricted model, respectively.
Obviously, if in the first restricted model we take p = 1, or in the second one k = 0o we
get the model without restrictions. In the same way, if p = 0 the first restricted model
coincides with the second one with £ = 1.

2. ANALYSIS OF THE RESTRICTED MODELS

Let C(t) be the number of busy channels at time ¢ (i.e. C(t) is 0 or 1 according to
whether the channel is free or busy at time ¢) and A(¢) - the number of active customers
at time ¢ (orbit size or queue length). In the first restricted model (where a rejected
secondary subscriber continues his attempts with probability p and with probability
1 — p stops the retrials) the dynamics of the system can be described by the process
(C(t), A(t)). It should be noted that the situation C'(t) = 0, A(¢t) = N is impossible and
thus the state space of the process (C(t), A(t)) is the set {0,1} x {0,1,..., N —1}. As
(C(t), A(t)) is a Markov process only when C(t) = 0, in order to work with a Markov
process also in the case C'(t) = 1 we introduce a supplementary variable z(t), equal to
the elapsed service time. Let

p1j(x)de = tlim P(Ct)=1, A(t) =j, x < 2(t) < x + dx),
—00

py = lim P(C(t) =i, A(t) = j), i=0,1, j=0,1,....N -1 (1)
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In a general way we obtain the equations of statistical equilibrium

%Pu(«%‘) = =[N =7 =DA+n(@) +j(1 = pulpyj() + (N = j)Aprja(z)  (2)

+(j + 1) = p)up1jp1(x), pr—1(x) =pin(z) =0,

i+ (N = §)A\lpo; = / " py(@)n(@)de, 3)
p1;(0) = (N — 7)Apo; + (J + D ppoj41, j=0,1,...,N —1, (4)
Here
G

is the service rate at instant x after start of a service.

Recurrent formulas for computing the solutions of the system (2]) - () in case p =1
are obtained in [9] with the help of discrete transformations and in [3] directly, by
means of mathematical induction. For arbitrary p, no formulas are known to us for the
solution of this system.

As described before, in the second restricted model we assume that if the (k +
1)-th attempt of an active subscriber fails, & = 1,2,..., the subscriber leaves the
orbit and becomes free again. So, the state of the system at time ¢ can be described
by the process (C(t), Ai(t), Aa(t),..., Ag(t)), where A;(t) is the number of those
active subscribers in the orbit which have made exactly k£ attempts before the moment
t, A(t) = Ai(t) + Aa(t) + - - -+ Ag(t). Introducing the steady state probabilities

Pjigo..js (T)dw = lim P(C(t) =1, A () = ji,- ., Ap(t) = jr, & < 2(t) < 2+ d),
Dijijoje = tligloP(C’(t) =1, Ai(t) = j1, As(t) = Jo, ..., Ax(t) = Jk),
k
©20,i=01, Y ji<N-1 ji>01<I<k
=1

for the joint stationary distribution p;; of the server state and the orbit size () it holds

N-1

Dij = § : Pijijo...jr-

Ji+jeteti=g
The equations of statistical equilibrium are very complicated even for small k. For
k =1 this is the system (2]) - (@) with p = 0, for £ = 2 the system has the form

%Pljm (2) = —=[(N =7 = DA+ (@) + julpijig () + (N = 5)Ap1 1,5 (7)

+(]2 + 1):“’p1,j1,,j2+1(x) + (]1 + 1):“’p1,j1+1,j271(x)7
i+ (N — ) \posu = / P (@) da,
0

P1j1j2(0) = (N — ) Apoj + (J2 + 1) o gy jos1 + (1 + 1) 1400,y 1,5
j = jl +j2’ p1j1j2($) = Pijij> = 0 lf]k % [OaN - 1]7 k= 172'
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3. SIMULATIONS

In this section, on the basis of obtained via simulations results we study the proper-
ties of the orbit size and the server state. The simulations are performed in the case of
exponentially distributed service times. Assuming that in the beginning of the process
the server is free and there are no active subscribers, the simulation follows the short
time changes of the system state as the direction of transformations is chosen according
to the probability of each transformation and using generated random numbers. The
method is described in detail in [2].

Five examples are presented as illustrations: simulation of the first restricted model
with probability p = 0.5, of the second restricted model for £k = 1, £k = 2 and £ = 3 and
of model without restrictions. The observed mean E[A], standard deviations std[A]
and the partition E[A], F[As], E[As] (in case k = 2 and k = 3) of the orbit size as
well as the probability P; of a busy channel are given in table 1. The corresponding
theoretically obtained values in the system without losses (calculated according to the
derived in [3] formulas) are also given. The values of the parameters are the same in
each of these examples: A = 0.012, 4 = 0.1, v =1, N = 50, n = 10000, where n is
the duration of the simulation (the number of time steps). The results presented in the
table show that the type of the model greatly influences the observed characteristics,
especially the mean number of the active subscribers.

Tablel
P, E[A] (st.dev.) E[A)] E[As] E[A;]
I restr. model, p = 0.5 0.69 9.22 (2.97) - - -
IT restr. model, k =1 0.66 6.35 (2.5) - - -
IT restr. model, k = 2 0.70 10.11 (3.16) 6.06 4.05 -
IT restr. model, £k =3 0.72 12.73 (3.16) .88 4.07 2.77
Unrestr. model 0.73 18.93 (4.02) - - -
Theor. results (unrestr. m.) 0.72 19.10 (4.15) - - -

In figures 1 - 2 we can see the effect not only of the system’s type but also of the
system’s parameters on the considered characteristics. The graphs on fig.1 represent
the dependence of the active subscribers mean percentage E[A].100/N on the system’s
parameters: A (the upper-left corner), p (the upper-right corner), v (the lower-left cor-
ner) and N (the lower-right corner). The dashed lines show the theoretically obtained
values of E[A].100/N in the unrestricted model (when active subscribers repeat their
attempts until enter service) and the solid lines - the corresponding empirical means
for the second restricted model with & = 2 (when active subscribers leave the orbit if
their third attempt fails), each one obtained via simulations with 10000 steps. Fig.2
has the same structure as Fig.1, but it concerns the busy channel probability P;. As we
can see the behaviour of E[A].100/N and P; in both considered models is similar, but
the difference between these models is clearly shown as well.
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