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omThe 
losed single-server queueing model with repeated attempts is studied in anumber of papers. In all these papers it is assumed that a reje
ted subs
riber repeatshis attempts until he is satis�ed. In the present paper we 
onsider the same model,assuming some restri
tions on the number of retrials, whi
h the 
ustomer is in
lined(or is allowed) to make. The theoreti
al study of these models being too hard, weinvestigate them via simulations.Keywords: Closed queueing systems, repeated 
alls, simulations1. INTRODUCTION AND MATHEMATICAL MODELThe queuing systems with repeated attempts (or retrials) are widely used to modelproblems in telephone, 
omputer, 
ommuni
ation systems, et
. The most obvious ex-ample of a retrial queue appears in a telephone 
all, when a person phones and �ndsthe line engaged. Usually in su
h a situation the subs
riber repeats his attempt aftersome time. A des
ription of other situations in whi
h retrials arise 
an be found in[5℄, and more re
ent appli
ations of retrial models - in [1℄. The standard assumption inanalysis of retrial queues is that ea
h 
ustomer repeats his attempts until he is satis�ed.However, in many real situations this assumption does not hold. It does not alwayshold even in the 
lassi
al example of the telephone subs
riber who �nds engaged line.The obje
tive of the present paper is investigation of retrial queueing models, where thenumber of repetitions is in some way restri
ted. The theoreti
al study of su
h systemsis too di�
ult, so in the present paper a method of simulations is applied.We 
onsider retrial queueing system of typeM=G=1==N in Kendall's notation. Thismeans that the system has one server, whi
h serves N; (2 � N < 1) 
ustomers (sub-s
ribers) and ea
h one of the 
ustomers produ
es a Poisson pro
ess of demands (
alls)with intensity �. These 
ustomers are identi�ed as primary or free 
ustomers or sour
esof primary 
alls. When an arriving primary 
ustomer �nds the server busy, he leavesthe servi
e area and repeats the request after some random time. Between trials a
ustomer is said to be in orbit (queue), or to be a sour
e of repeated 
alls, or an a
tive
ustomer. Thus, when a sour
e is free at time moment t (i.e. is not being served andis not waiting for servi
e) it may generate a primary 
all during the interval (t; t+ dt)with probability �dt: If the server is free at the instant of arrival of a primary 
all then52



the 
all starts to be served. During the servi
e time the sour
e 
annot generate a newprimary 
all. After servi
e the sour
e moves into a free state and 
an generate a newprimary 
all. If the 
hannel is busy at time of the arrival of a primary 
all, then thesour
e starts generating a Poisson �ow of repeated 
alls with intensity �: As in the
ase of a primary 
all, after servi
e the sour
e be
omes free and 
an generate a newprimary 
all. We assume that primary 
alls, repeated attempts and servi
e times aremutually independent and denote the servi
e time distribution fun
tion by G(x) bothfor primary and repeated 
alls and its �rst moment by ��1:This queueing system and its variants are useful in modeling magneti
 disk memorysystems [9℄, a star-like lo
al area networks [6℄, [8℄, telephone networks [7℄, et
 and isstudied in a number of papers ([3℄, [4℄, [7℄, [9℄ and others). All these papers deal onlywith the 
ase, when ea
h se
ondary 
ustomer repeats his retrials until he is satis�ed.Now we 
onsider two variants of the des
ribed system, regarding some restri
tions onthe number of retrials, that a se
ondary subs
riber is in
lined (or is allowed) to makebefore he rea
hes the server free. In the �rst variant we assume that if the server is busyat the instant of arrival of a se
ondary subs
riber (an a
tive subs
riber), this subs
riber
ontinues his repeated attempts with probability p and with probability 1�p; 0 � p � 1he refuses to try entering server any more and be
omes again a free one. In the se
ondmodel we assume, that ea
h se
ondary 
ustomer stops his retrials if his (k + 1)-thattempt fails, k = 1; 2; : : : (if not served before). Further in this paper we will 
all ea
hof these three models as the model without restri
tions (unrestri
ted model or a modelwithout losses), the �rst restri
ted model and the se
ond restri
ted model, respe
tively.Obviously, if in the �rst restri
ted model we take p = 1; or in the se
ond one k =1 weget the model without restri
tions. In the same way, if p = 0 the �rst restri
ted model
oin
ides with the se
ond one with k = 1:2. ANALYSIS OF THE RESTRICTED MODELSLet C(t) be the number of busy 
hannels at time t (i.e. C(t) is 0 or 1 a

ording towhether the 
hannel is free or busy at time t) and A(t) - the number of a
tive 
ustomersat time t (orbit size or queue length). In the �rst restri
ted model (where a reje
tedse
ondary subs
riber 
ontinues his attempts with probability p and with probability1 � p stops the retrials) the dynami
s of the system 
an be des
ribed by the pro
ess(C(t); A(t)): It should be noted that the situation C(t) = 0; A(t) = N is impossible andthus the state spa
e of the pro
ess (C(t); A(t)) is the set f0; 1g� f0; 1; : : : ; N � 1g: As(C(t); A(t)) is a Markov pro
ess only when C(t) = 0, in order to work with a Markovpro
ess also in the 
ase C(t) = 1 we introdu
e a supplementary variable z(t); equal tothe elapsed servi
e time. Letp1j(x)dx = limt!1P (C(t) = 1; A(t) = j; x < z(t) � x + dx);pij = limt!1P (C(t) = i; A(t) = j); i = 0; 1; j = 0; 1; : : : ; N � 1: (1)53



In a general way we obtain the equations of statisti
al equilibriumddxp1j(x) = �[(N � j � 1)�+ �(x) + j(1� p)�℄p1j(x) + (N � j)�p1;j�1(x) (2)+(j + 1)(1� p)�p1;j+1(x); p1;�1(x) = p1N (x) = 0;[j�+ (N � j)�℄p0j = Z 10 p1j(x)�(x)dx; (3)p1j(0) = (N � j)�p0j + (j + 1)�p0;j+1; j = 0; 1; : : : ; N � 1; (4)Here �(x) = G0(x)1�G(x)is the servi
e rate at instant x after start of a servi
e.Re
urrent formulas for 
omputing the solutions of the system (2) - (4) in 
ase p = 1are obtained in [9℄ with the help of dis
rete transformations and in [3℄ dire
tly, bymeans of mathemati
al indu
tion. For arbitrary p, no formulas are known to us for thesolution of this system.As des
ribed before, in the se
ond restri
ted model we assume that if the (k +1)-th attempt of an a
tive subs
riber fails, k = 1; 2; : : : , the subs
riber leaves theorbit and be
omes free again. So, the state of the system at time t 
an be des
ribedby the pro
ess (C(t); A1(t); A2(t); : : : ; Ak(t)); where Ai(t) is the number of thosea
tive subs
ribers in the orbit whi
h have made exa
tly k attempts before the momentt; A(t) = A1(t) + A2(t) + � � �+ Ak(t): Introdu
ing the steady state probabilitiesp1j1j2:::jk(x)dx = limt!1P (C(t) = 1; A1(t) = j1; : : : ; Ak(t) = jk; x < z(t) � x+ dx);pij1j2:::jk = limt!1P (C(t) = i; A1(t) = j1; A2(t) = j2; : : : ; Ak(t) = jk);x � 0; i = 0; 1; kXl=1 jl � N � 1; jl � 0; 1 � l � k;for the joint stationary distribution pij of the server state and the orbit size (1) it holdspij = N�1Xj1+j2+���+jk=j pij1j2:::jk :The equations of statisti
al equilibrium are very 
ompli
ated even for small k. Fork = 1 this is the system (2) - (4) with p = 0; for k = 2 the system has the formddxp1j1j2(x) = �[(N � j � 1)�+ �(x) + j�℄p1j1j2(x) + (N � j)�p1;j1�1;j2(x)+(j2 + 1)�p1;j1;;j2+1(x) + (j1 + 1)�p1;j1+1;j2�1(x);[j�+ (N � j)�℄p0j1j2 = Z 10 p1j1j2(x)�(x)dx;p1j1j2(0) = (N � j)�p0j + (j2 + 1)�p0;j1;j2+1 + (j1 + 1)�p0;j1+1;j2;j = j1 + j2; p1j1j2(x) = p1j1j2 = 0 if jk =2 [0; N � 1℄; k = 1; 2:54



3. SIMULATIONSIn this se
tion, on the basis of obtained via simulations results we study the proper-ties of the orbit size and the server state. The simulations are performed in the 
ase ofexponentially distributed servi
e times. Assuming that in the beginning of the pro
essthe server is free and there are no a
tive subs
ribers, the simulation follows the shorttime 
hanges of the system state as the dire
tion of transformations is 
hosen a

ordingto the probability of ea
h transformation and using generated random numbers. Themethod is des
ribed in detail in [2℄.Five examples are presented as illustrations: simulation of the �rst restri
ted modelwith probability p = 0:5; of the se
ond restri
ted model for k = 1; k = 2 and k = 3 andof model without restri
tions. The observed mean E[A℄, standard deviations std[A℄and the partition E[A1℄; E[A2℄; E[A3℄ (in 
ase k = 2 and k = 3) of the orbit size aswell as the probability P1 of a busy 
hannel are given in table 1. The 
orrespondingtheoreti
ally obtained values in the system without losses (
al
ulated a

ording to thederived in [3℄ formulas) are also given. The values of the parameters are the same inea
h of these examples: � = 0:012; � = 0:1; � = 1; N = 50; n = 10000; where n isthe duration of the simulation (the number of time steps). The results presented in thetable show that the type of the model greatly in�uen
es the observed 
hara
teristi
s,espe
ially the mean number of the a
tive subs
ribers.Table1P1 E[A℄ (st.dev.) E[A1℄ E[A2℄ E[A3℄I restr. model, p = 0:5 0.69 9.22 (2.97) - - -II restr. model, k = 1 0.66 6.35 (2.5) - - -II restr. model, k = 2 0.70 10.11 (3.16) 6.06 4.05 -II restr. model, k = 3 0.72 12.73 (3.16) 5.88 4.07 2.77Unrestr. model 0.73 18.93 (4.02) - - -Theor. results (unrestr. m.) 0.72 19.10 (4.15) - - -In �gures 1 - 2 we 
an see the e�e
t not only of the system's type but also of thesystem's parameters on the 
onsidered 
hara
teristi
s. The graphs on �g.1 representthe dependen
e of the a
tive subs
ribers mean per
entage E[A℄:100=N on the system'sparameters: � (the upper-left 
orner); � (the upper-right 
orner), � (the lower-left 
or-ner) and N (the lower-right 
orner). The dashed lines show the theoreti
ally obtainedvalues of E[A℄:100=N in the unrestri
ted model (when a
tive subs
ribers repeat theirattempts until enter servi
e) and the solid lines - the 
orresponding empiri
al meansfor the se
ond restri
ted model with k = 2 (when a
tive subs
ribers leave the orbit iftheir third attempt fails), ea
h one obtained via simulations with 10000 steps. Fig.2has the same stru
ture as Fig.1, but it 
on
erns the busy 
hannel probability P1: As we
an see the behaviour of E[A℄:100=N and P1 in both 
onsidered models is similar, butthe di�eren
e between these models is 
learly shown as well.55
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