
A CLOSED SINGLE-LINEQUEUEING SYSTEM WITHREPEATED CALLS AND LOSSESV. DragievaUniversity of ForestrySo�a, Bulgariavildrag2001�yahoo.omThe losed single-server queueing model with repeated attempts is studied in anumber of papers. In all these papers it is assumed that a rejeted subsriber repeatshis attempts until he is satis�ed. In the present paper we onsider the same model,assuming some restritions on the number of retrials, whih the ustomer is inlined(or is allowed) to make. The theoretial study of these models being too hard, weinvestigate them via simulations.Keywords: Closed queueing systems, repeated alls, simulations1. INTRODUCTION AND MATHEMATICAL MODELThe queuing systems with repeated attempts (or retrials) are widely used to modelproblems in telephone, omputer, ommuniation systems, et. The most obvious ex-ample of a retrial queue appears in a telephone all, when a person phones and �ndsthe line engaged. Usually in suh a situation the subsriber repeats his attempt aftersome time. A desription of other situations in whih retrials arise an be found in[5℄, and more reent appliations of retrial models - in [1℄. The standard assumption inanalysis of retrial queues is that eah ustomer repeats his attempts until he is satis�ed.However, in many real situations this assumption does not hold. It does not alwayshold even in the lassial example of the telephone subsriber who �nds engaged line.The objetive of the present paper is investigation of retrial queueing models, where thenumber of repetitions is in some way restrited. The theoretial study of suh systemsis too di�ult, so in the present paper a method of simulations is applied.We onsider retrial queueing system of typeM=G=1==N in Kendall's notation. Thismeans that the system has one server, whih serves N; (2 � N < 1) ustomers (sub-sribers) and eah one of the ustomers produes a Poisson proess of demands (alls)with intensity �. These ustomers are identi�ed as primary or free ustomers or souresof primary alls. When an arriving primary ustomer �nds the server busy, he leavesthe servie area and repeats the request after some random time. Between trials austomer is said to be in orbit (queue), or to be a soure of repeated alls, or an ativeustomer. Thus, when a soure is free at time moment t (i.e. is not being served andis not waiting for servie) it may generate a primary all during the interval (t; t+ dt)with probability �dt: If the server is free at the instant of arrival of a primary all then52



the all starts to be served. During the servie time the soure annot generate a newprimary all. After servie the soure moves into a free state and an generate a newprimary all. If the hannel is busy at time of the arrival of a primary all, then thesoure starts generating a Poisson �ow of repeated alls with intensity �: As in thease of a primary all, after servie the soure beomes free and an generate a newprimary all. We assume that primary alls, repeated attempts and servie times aremutually independent and denote the servie time distribution funtion by G(x) bothfor primary and repeated alls and its �rst moment by ��1:This queueing system and its variants are useful in modeling magneti disk memorysystems [9℄, a star-like loal area networks [6℄, [8℄, telephone networks [7℄, et and isstudied in a number of papers ([3℄, [4℄, [7℄, [9℄ and others). All these papers deal onlywith the ase, when eah seondary ustomer repeats his retrials until he is satis�ed.Now we onsider two variants of the desribed system, regarding some restritions onthe number of retrials, that a seondary subsriber is inlined (or is allowed) to makebefore he reahes the server free. In the �rst variant we assume that if the server is busyat the instant of arrival of a seondary subsriber (an ative subsriber), this subsriberontinues his repeated attempts with probability p and with probability 1�p; 0 � p � 1he refuses to try entering server any more and beomes again a free one. In the seondmodel we assume, that eah seondary ustomer stops his retrials if his (k + 1)-thattempt fails, k = 1; 2; : : : (if not served before). Further in this paper we will all eahof these three models as the model without restritions (unrestrited model or a modelwithout losses), the �rst restrited model and the seond restrited model, respetively.Obviously, if in the �rst restrited model we take p = 1; or in the seond one k =1 weget the model without restritions. In the same way, if p = 0 the �rst restrited modeloinides with the seond one with k = 1:2. ANALYSIS OF THE RESTRICTED MODELSLet C(t) be the number of busy hannels at time t (i.e. C(t) is 0 or 1 aording towhether the hannel is free or busy at time t) and A(t) - the number of ative ustomersat time t (orbit size or queue length). In the �rst restrited model (where a rejetedseondary subsriber ontinues his attempts with probability p and with probability1 � p stops the retrials) the dynamis of the system an be desribed by the proess(C(t); A(t)): It should be noted that the situation C(t) = 0; A(t) = N is impossible andthus the state spae of the proess (C(t); A(t)) is the set f0; 1g� f0; 1; : : : ; N � 1g: As(C(t); A(t)) is a Markov proess only when C(t) = 0, in order to work with a Markovproess also in the ase C(t) = 1 we introdue a supplementary variable z(t); equal tothe elapsed servie time. Letp1j(x)dx = limt!1P (C(t) = 1; A(t) = j; x < z(t) � x + dx);pij = limt!1P (C(t) = i; A(t) = j); i = 0; 1; j = 0; 1; : : : ; N � 1: (1)53



In a general way we obtain the equations of statistial equilibriumddxp1j(x) = �[(N � j � 1)�+ �(x) + j(1� p)�℄p1j(x) + (N � j)�p1;j�1(x) (2)+(j + 1)(1� p)�p1;j+1(x); p1;�1(x) = p1N (x) = 0;[j�+ (N � j)�℄p0j = Z 10 p1j(x)�(x)dx; (3)p1j(0) = (N � j)�p0j + (j + 1)�p0;j+1; j = 0; 1; : : : ; N � 1; (4)Here �(x) = G0(x)1�G(x)is the servie rate at instant x after start of a servie.Reurrent formulas for omputing the solutions of the system (2) - (4) in ase p = 1are obtained in [9℄ with the help of disrete transformations and in [3℄ diretly, bymeans of mathematial indution. For arbitrary p, no formulas are known to us for thesolution of this system.As desribed before, in the seond restrited model we assume that if the (k +1)-th attempt of an ative subsriber fails, k = 1; 2; : : : , the subsriber leaves theorbit and beomes free again. So, the state of the system at time t an be desribedby the proess (C(t); A1(t); A2(t); : : : ; Ak(t)); where Ai(t) is the number of thoseative subsribers in the orbit whih have made exatly k attempts before the momentt; A(t) = A1(t) + A2(t) + � � �+ Ak(t): Introduing the steady state probabilitiesp1j1j2:::jk(x)dx = limt!1P (C(t) = 1; A1(t) = j1; : : : ; Ak(t) = jk; x < z(t) � x+ dx);pij1j2:::jk = limt!1P (C(t) = i; A1(t) = j1; A2(t) = j2; : : : ; Ak(t) = jk);x � 0; i = 0; 1; kXl=1 jl � N � 1; jl � 0; 1 � l � k;for the joint stationary distribution pij of the server state and the orbit size (1) it holdspij = N�1Xj1+j2+���+jk=j pij1j2:::jk :The equations of statistial equilibrium are very ompliated even for small k. Fork = 1 this is the system (2) - (4) with p = 0; for k = 2 the system has the formddxp1j1j2(x) = �[(N � j � 1)�+ �(x) + j�℄p1j1j2(x) + (N � j)�p1;j1�1;j2(x)+(j2 + 1)�p1;j1;;j2+1(x) + (j1 + 1)�p1;j1+1;j2�1(x);[j�+ (N � j)�℄p0j1j2 = Z 10 p1j1j2(x)�(x)dx;p1j1j2(0) = (N � j)�p0j + (j2 + 1)�p0;j1;j2+1 + (j1 + 1)�p0;j1+1;j2;j = j1 + j2; p1j1j2(x) = p1j1j2 = 0 if jk =2 [0; N � 1℄; k = 1; 2:54



3. SIMULATIONSIn this setion, on the basis of obtained via simulations results we study the proper-ties of the orbit size and the server state. The simulations are performed in the ase ofexponentially distributed servie times. Assuming that in the beginning of the proessthe server is free and there are no ative subsribers, the simulation follows the shorttime hanges of the system state as the diretion of transformations is hosen aordingto the probability of eah transformation and using generated random numbers. Themethod is desribed in detail in [2℄.Five examples are presented as illustrations: simulation of the �rst restrited modelwith probability p = 0:5; of the seond restrited model for k = 1; k = 2 and k = 3 andof model without restritions. The observed mean E[A℄, standard deviations std[A℄and the partition E[A1℄; E[A2℄; E[A3℄ (in ase k = 2 and k = 3) of the orbit size aswell as the probability P1 of a busy hannel are given in table 1. The orrespondingtheoretially obtained values in the system without losses (alulated aording to thederived in [3℄ formulas) are also given. The values of the parameters are the same ineah of these examples: � = 0:012; � = 0:1; � = 1; N = 50; n = 10000; where n isthe duration of the simulation (the number of time steps). The results presented in thetable show that the type of the model greatly in�uenes the observed harateristis,espeially the mean number of the ative subsribers.Table1P1 E[A℄ (st.dev.) E[A1℄ E[A2℄ E[A3℄I restr. model, p = 0:5 0.69 9.22 (2.97) - - -II restr. model, k = 1 0.66 6.35 (2.5) - - -II restr. model, k = 2 0.70 10.11 (3.16) 6.06 4.05 -II restr. model, k = 3 0.72 12.73 (3.16) 5.88 4.07 2.77Unrestr. model 0.73 18.93 (4.02) - - -Theor. results (unrestr. m.) 0.72 19.10 (4.15) - - -In �gures 1 - 2 we an see the e�et not only of the system's type but also of thesystem's parameters on the onsidered harateristis. The graphs on �g.1 representthe dependene of the ative subsribers mean perentage E[A℄:100=N on the system'sparameters: � (the upper-left orner); � (the upper-right orner), � (the lower-left or-ner) and N (the lower-right orner). The dashed lines show the theoretially obtainedvalues of E[A℄:100=N in the unrestrited model (when ative subsribers repeat theirattempts until enter servie) and the solid lines - the orresponding empirial meansfor the seond restrited model with k = 2 (when ative subsribers leave the orbit iftheir third attempt fails), eah one obtained via simulations with 10000 steps. Fig.2has the same struture as Fig.1, but it onerns the busy hannel probability P1: As wean see the behaviour of E[A℄:100=N and P1 in both onsidered models is similar, butthe di�erene between these models is learly shown as well.55
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