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The main goal of this paper is to investigate various monotonicity properties of a
single server retrial queue with a first-come-first-served (FCFS) orbit and general retrial
times using the stochastic order relations (strong stochastic (<), increasing convex
(<icz), and Laplace ordering (<)) in order to derive performance indices bounds.
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1. INTRODUCTION

The retrial queueing system has been studied extensively due to its wide applica-

bility. Apart from theoretical interest, it has been successfully applied in telephone
switching systems, telecommunication networks, and computer networks [I].
In almost all models of retrial queues, the time between retrials for any customer is
assumed to be exponentially distributed. In recent years, retrial queueing systems with
general service times and nonexponential retrial time distribution have received little
attention [3, 6]. An important characteristic of the general retrial times policy is that
we always obtain analytical solutions in terms of closed-form expressions. The general
retrial times policy arises naturally in problems where the server is required to search
for customers, that is, this policy is related to many service systems where, after each
service completion, the processor will spend a random amount of time in order to find
the next item to be processed.

Many efforts have been devoted to derive performance measures such as queue length
distribution, waiting times distribution, busy period distribution etc. in retrial queues.
In many cases the behavior of the retrial queue is described by the Markov chain
with spatially inhomogeneous infinitesimal generator (or transition probability matrix)
caused by transitions due to repeated attempts. This spatial inhomogeneity often leads
the analytical complexity and bounds and/or approximations are used instead.
Stochastic comparison methods have been used to produce bounds and approximations
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for queue length processes and waiting times in many queueing systems. For the de-
tailed results about the comparison methods and their applications, e.g. see [4] (]

In this paper we study some monotonicity properties similar to Boualem et al. [2],
for an M/G/1 queue with general service times and nonexponential retrial time distri-
bution under FCFS orbit discipline. The performance characteristics of such a system
are available in Gémez-Corral [3]. We prove the monotonicity of the transition oper-
ator of the embedded Markov chain relative to strong stochastic ordering and convex
ordering. We obtain comparability conditions for the distribution of the number of
customers in the system. Inequalities are derived for the mean characteristics of the
busy period, number of customers served during a busy period, number of orbit busy
periods and waiting times.

2. DESCRIPTION OF THE QUEUEING SYSTEM

We consider a single server retrial queue with general service times and nonexponen-
tial retrial time distribution under FCFS orbit discipline. Primary customers arrive in a
Poisson process with rate A. If the server is free, the primary customer is served imme-
diately and leaves the system after service completion. Otherwise, the customer leaves
the service area and enters the retrial group in accordance with an FCFS discipline. We
will assume that only the customer at the head of the orbit is allowed for access to the
server. If the server is busy upon retrial, the customer joins the orbit again. Such a pro-
cess is repeated until the customer finds the server idle and gets the requested service at
the time of a retrial. Successive inter-retrial times of any customer follow an arbitrary
law with common probability distribution function A(z), Laplace-Stieltjes transform
La(s) and first moment «;. The service times are independently and identically dis-
tributed with probability distribution function B(z), Laplace-Stieltjes transform Lg(s)
and first two moments (i, 5. We suppose that inter-arrival times, retrial times and
service times are mutually independent. The performance characteristics of such a sys-
tem are available in Gémez-Corral [3].

Let 7, be the time of the nth departure and (?,, the number of customers in the
orbit just after the time 7,,. We have the following fundamental recursive equation:

Qn+1 = Qn + Un+1 - 6Qn+1a

where v™*! is the number of primary customers arriving at the system during the service

time which ends at 7,,11. Its distribution is given by k; = [~ (Az)(j!) 'e **dB(z), j >
0, with generating function k(z) = Y k;27 = Lg(A(1 — 2)).
>0
The Bernoulli random variable 6Qn-.i7-; is equal to 1 or 0 depending on whether the cus-
tomer who leaves the system at time 7,,,; proceeds from the orbit or otherwise.
The sequence of random variables {@,} forms an embedded Markov chain for our
queueing system which is irreductible and aperiodic on the state-space N. The inequal-

ity AB1 < L4(A) is a necessary and suffcient condition for the system to be stable [3].
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2.1. Some useful lemmas. This subsection presents several useful lemmas which
will be used later in establishing the main results. Consider two M/G/1 retrial queues
with classical retrial policy and feedback with parameters A, ) and B?, i = 1,2. Let
kj(-l) be the distribution of the number of primary calls which arrive during the service
time of a call in the ith system.

The following two lemmas turns out to be a useful tool for showing the monotonicity
properties of the embedded Markov chain.

Lemma 1. If \() < X\® and BY) <, B®) | then {k,(ll)} <s {kT(f)}, where <g is one
of the symbols <z or <.

Proof. the proof is known in the more general setting of a random summation. O
Lemma 2. If A\ < X® and BO <; B® | then {k"} <, {kPY.
Proof. We have

KD (2) = 3" kK2 = Loy W1 = 2)), i = 1,2

n>0

where k(V(z), k) (z) are the corresponding distributions of the number of new arrivals
during a service time.
Let AU < X® BW <, B@ To prove that {kg)} <r {k,(f)}, we have to establish that

LB(I)()\(I)(]. - Z)) Z LB(Q)()\(Q)(]_ - Z))

0

3. MONOTONICITY PROPERTIES OF THE EMBEDDED
MARKOV CHAIN

The one-step transition probabilities of the embedded Markov chain {Q,,n > 1} is
defined in the following formulae
Pom = (1 - LA()‘))km—n + LA()‘)km—n-I-la for n 7A 0 and m > 07
Pom = km, for m > 0.

Let T be the transition operator of an embedded Markov chain which associates
to every distribution w = {wp,}m>o a distribution Tw = {vy,}m>o such that v, =

> WpPpm- From Stoyan [5], 7' is monotone with respect to <y if and only if
n>0

Pom — Pn—1m > 0 forall n and m,

and is monotone with respect to <, if and only if

Prtim + Posim — 2Dpm > 0 forall n and m.

00 00
Here, ﬁn,m = Z Pn,i and ﬁn,m = Z ﬁn,l-
I=m l=m
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Theorem 1. T is monotone with respect to the orders <g and <;...

Proof. In our case:

Pom = (1 - LA()‘))Em—n + LA()‘)Em—n-I—l = (1 - LA()‘))km—n + Em—n—l—la
ﬁnm = (1 - LA()\))Emfn + EmfnJrl-

Thus

ﬁnm - ﬁn—lm = (1 - LA()‘))km*n + LA()‘)kmfnJrl Z 0;
ﬁnflm +Z:)n+1m - 2§nm = (1 - LA()‘))km—n—l + LA()‘)km—n Z 0.

O

In the following two theorems, we give comparability conditions of two transition
operators. Consider two M /G /1 retrial queues with nonexponential retrial times with
parameters AV, A BM and A®, A® B® respectively. Let T' and T? be the
transition operators of the corresponding embedded Markov chains.

Theorem 2. If \(V < \® B < B® gnd AN <; A® | then T' <, T?, i.e. for
any distribution w, we have T'w <, T?w, where < is one of the symbols <y or <jcs.

Proof. From Stoyan [5], it is well known that to prove T! <, T? we have to show the

following numerical inequalities for the one-step transition probabilities pq(ll,%, pq(f,%:

ﬁgllrab < ﬁgrgw vna m, (fOI‘ Sszgst)a (1)
:S,L < 23512“)1, vn, m, (for <,=<i.), (2)

To prove inequality (I), we have

_ —(1
PO = (1= Ly AO))ED 5L

Since A < A® and AM < A® | then L, (AM) > L4 (A?) and

_ —(1
P, < (1= Lao AODEGL, +Fy .

nm — m—-—n

But

—(1 —(1 —(1
(1= Lo A@NED + 5D = (1= Law AONEY 4+ Lo AL

m—n m—n
By Lemma [Il we have ES) < EELZ), Vn > 0.

Using these inequalities we get:

— (2 (2 —
Phon < (1= Laey M)k Ly + Laey M)k L = P
Following the technique above it is possible to establish inequality (2)). O
Theorem 3. If \(V < \X® BM <, B® and AW <; AP then T' <, T2
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Proof. Let w = (w,,) be a distribution and T, = v = (v,,), where

Vm = Y WnPnm = Wokm + D, WnPpm, for all m > 0.
n>0 n>1
Let k(z) = Y kn2™ and w(z) = Y wy2™ be the generating functions of (k,) and (w,)
n>0 n>0
respectively. The generating function of v is given by

G(Z) = Z l/mzm = Z anpnmzm = Z[wokm + anpnm]zm

m>0 m>0 n>0 m>0 n>1

— k(2 + %k(z)(w(z) — o)z 4 (1= 2)La(N).

If the conditions of Theorem [ are fulfilled, then £ (z) > k@ (2) by Lemma 2l and
(1 —2) L0y (AD) > (1 = 2) L4 (A?)), ¥V 2 € [0,1]. Hence G (2) > GP(2). O

4. BOUNDS FOR THE MEAN CHARACTERISTICS OF
THE SYSTEM

The main characteristics of a system busy period, the orbit busy period and waiting
time are:
L: the length of a system busy period,
I: the number of service completions occurring during (0, L],
Ny: the number of orbit busy periods which take place in (0, L],
W: the waiting time.
Gomez-Corral [3] shows that, if A3} < La(\), then
D) = s, P() = pili B(W) = S, and () = St
Suppose once more that we have two M/G/1 retrial queues with nonexponential
retrial times with parameters A1), A® BW and A®, A®) B® respectively. Let L),
10, Nb(i) and W be the length busy period, the number of customers served during
a busy period, the number of orbit busy periods which take place in (0, L(i)] and the
waiting time respectively, in the i-th system, ¢ = 1, 2.
Theorem 4. If \() < \® BW < B® and A <; A®) | then BE(LM) < B(L®),
and E(IM) < E(I®), where <, is one of the symbols <y, <jca, <1.

Proof. The quantities E(L) and E(I) which are increasing with respect to A and 3y,
decreasing with respect to L4(.). Under conditions of Theorem [ we obtain the desired
inequalities. Recall that X <;Y implies F(X™) < E(Y™") for all n. O

Theorem 5. For any M/G/1 retrial queue,
B(L) < —2 and E(I) < -

-~ e—Aali/\ﬁla e—kali/\ﬁl'

If A and B are L, then E(L) > %, and E(I) > m

Proof. We consider auxiliary M/D/1 and M/M/1 retrial queues with the same arrival
rates A\, mean service times [5; and mean retrial times «;. A is Dirac distribution at a;
for the M/D/1 system, and is exponential distribution for the M/M/1 system. Using
the theorem above we obtain the stated results. O
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Theorem 6. If \(V < \X® BM <, B® gnd AD <, A® | then

E(NY) < B(N®), and E(WM) < B(W®),

Proof. The quantities E(N,) and E(W) are increasing with respect to A, #; and [,
decreasing with respect to Lp(.) and L4(.). Under the conditions of Theorem [6 we
obtain the desired inequalities. O

Theorem 7. For any M/G/1 retrial queue,
. _e— A
E(N,) < ¥ —1, and E(W) < 222000,
If B and A are L, then

AB2(1+dan)+2)08 2AB242p31(1—e~ 1)
E(Nb) > )‘517 and 22(17/\[30&1«%/\0411))041 < E(W) < 21(87/\;1*)\51) .

Proof. The proof is similar to that of Theorem Bl In addition, if a given distribution F’
is £ then 8, < 2/3%. O
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