
STOCHASTIC BOUNDS FOR THEMEAN CHARACTERISTICS OF ANM/G/1 QUEUE WITH GENERALRETRIAL TIMESM. Boualem1, N. Djellab2, D. A��ssani11 Laboratory of Modelization and Optimization of Systems(LAMOS), University of B�eja��a,2 Department of Mathemati
s, University of Annaba1 B�eja��a, Algeria2 Annaba, Algeriarobertt15dz�yahoo.frThe main goal of this paper is to investigate various monotoni
ity properties of asingle server retrial queue with a �rst-
ome-�rst-served (FCFS) orbit and general retrialtimes using the sto
hasti
 order relations (strong sto
hasti
 (�st), in
reasing 
onvex(�i
x), and Lapla
e ordering (�L)) in order to derive performan
e indi
es bounds.Keywords: Retrial queues, Sto
hasti
 ordering, Monotoni
ity, Ageing distributions.1. INTRODUCTIONThe retrial queueing system has been studied extensively due to its wide appli
a-bility. Apart from theoreti
al interest, it has been su

essfully applied in telephoneswit
hing systems, tele
ommuni
ation networks, and 
omputer networks [1℄.In almost all models of retrial queues, the time between retrials for any 
ustomer isassumed to be exponentially distributed. In re
ent years, retrial queueing systems withgeneral servi
e times and nonexponential retrial time distribution have re
eived littleattention [3, 6℄. An important 
hara
teristi
 of the general retrial times poli
y is thatwe always obtain analyti
al solutions in terms of 
losed-form expressions. The generalretrial times poli
y arises naturally in problems where the server is required to sear
hfor 
ustomers, that is, this poli
y is related to many servi
e systems where, after ea
hservi
e 
ompletion, the pro
essor will spend a random amount of time in order to �ndthe next item to be pro
essed.Many e�orts have been devoted to derive performan
e measures su
h as queue lengthdistribution, waiting times distribution, busy period distribution et
. in retrial queues.In many 
ases the behavior of the retrial queue is des
ribed by the Markov 
hainwith spatially inhomogeneous in�nitesimal generator (or transition probability matrix)
aused by transitions due to repeated attempts. This spatial inhomogeneity often leadsthe analyti
al 
omplexity and bounds and/or approximations are used instead.Sto
hasti
 
omparison methods have been used to produ
e bounds and approximations38



for queue length pro
esses and waiting times in many queueing systems. For the de-tailed results about the 
omparison methods and their appli
ations, e.g. see [4, 5℄In this paper we study some monotoni
ity properties similar to Boualem et al. [2℄,for an M=G=1 queue with general servi
e times and nonexponential retrial time distri-bution under FCFS orbit dis
ipline. The performan
e 
hara
teristi
s of su
h a systemare available in G�omez-Corral [3℄. We prove the monotoni
ity of the transition oper-ator of the embedded Markov 
hain relative to strong sto
hasti
 ordering and 
onvexordering. We obtain 
omparability 
onditions for the distribution of the number of
ustomers in the system. Inequalities are derived for the mean 
hara
teristi
s of thebusy period, number of 
ustomers served during a busy period, number of orbit busyperiods and waiting times.2. DESCRIPTION OF THE QUEUEING SYSTEMWe 
onsider a single server retrial queue with general servi
e times and nonexponen-tial retrial time distribution under FCFS orbit dis
ipline. Primary 
ustomers arrive in aPoisson pro
ess with rate �. If the server is free, the primary 
ustomer is served imme-diately and leaves the system after servi
e 
ompletion. Otherwise, the 
ustomer leavesthe servi
e area and enters the retrial group in a

ordan
e with an FCFS dis
ipline. Wewill assume that only the 
ustomer at the head of the orbit is allowed for a

ess to theserver. If the server is busy upon retrial, the 
ustomer joins the orbit again. Su
h a pro-
ess is repeated until the 
ustomer �nds the server idle and gets the requested servi
e atthe time of a retrial. Su

essive inter-retrial times of any 
ustomer follow an arbitrarylaw with 
ommon probability distribution fun
tion A(x), Lapla
e-Stieltjes transformLA(s) and �rst moment �1. The servi
e times are independently and identi
ally dis-tributed with probability distribution fun
tion B(x), Lapla
e-Stieltjes transform LB(s)and �rst two moments �1, �2. We suppose that inter-arrival times, retrial times andservi
e times are mutually independent. The performan
e 
hara
teristi
s of su
h a sys-tem are available in G�omez-Corral [3℄.Let �n be the time of the nth departure and Qn the number of 
ustomers in theorbit just after the time �n. We have the following fundamental re
ursive equation:Qn+1 = Qn + vn+1 � ÆQn+1 ;where vn+1 is the number of primary 
ustomers arriving at the system during the servi
etime whi
h ends at �n+1. Its distribution is given by kj = R10 (�x)j(j!)�1e��xdB(x); j �0, with generating fun
tion k(z) = Pj�0 kjzj = LB(�(1� z)).The Bernoulli random variable ÆQn+1 is equal to 1 or 0 depending on whether the 
us-tomer who leaves the system at time �n+1 pro
eeds from the orbit or otherwise.The sequen
e of random variables fQng forms an embedded Markov 
hain for ourqueueing system whi
h is irredu
tible and aperiodi
 on the state-spa
e N . The inequal-ity ��1 < LA(�) is a ne
essary and su�
ient 
ondition for the system to be stable [3℄.39



2.1. Some useful lemmas. This subse
tion presents several useful lemmas whi
hwill be used later in establishing the main results. Consider two M=G=1 retrial queueswith 
lassi
al retrial poli
y and feedba
k with parameters �(i), �(i) and B(i), i = 1; 2. Letk(i)j be the distribution of the number of primary 
alls whi
h arrive during the servi
etime of a 
all in the ith system.The following two lemmas turns out to be a useful tool for showing the monotoni
ityproperties of the embedded Markov 
hain.Lemma 1. If �(1) � �(2) and B(1) �s B(2), then fk(1)n g �s fk(2)n g, where �s is oneof the symbols �st or �i
x.Proof. the proof is known in the more general setting of a random summation.Lemma 2. If �(1) � �(2) and B(1) �L B(2), then fk(1)n g �L fk(2)n g.Proof. We have k(i)(z) =Xn�0 k(i)n zn = LB(i)(�(i)(1� z)); i = 1; 2where k(1)(z), k(2)(z) are the 
orresponding distributions of the number of new arrivalsduring a servi
e time.Let �(1) � �(2), B(1) �L B(2). To prove that fk(1)n g �L fk(2)n g; we have to establish thatLB(1)(�(1)(1� z)) � LB(2)(�(2)(1� z)):3. MONOTONICITY PROPERTIES OF THE EMBEDDEDMARKOV CHAINThe one-step transition probabilities of the embedded Markov 
hain fQn; n � 1g isde�ned in the following formulaepnm = (1� LA(�))km�n + LA(�)km�n+1; for n 6= 0 and m � 0,p0m = km; for m � 0.Let T be the transition operator of an embedded Markov 
hain whi
h asso
iatesto every distribution ! = f!mgm�0 a distribution T! = f�mgm�0 su
h that �m =Pn�0!npnm. From Stoyan [5℄, T is monotone with respe
t to �st if and only ifpnm � pn�1m � 0 for all n and m;and is monotone with respe
t to �v if and only ifpn�1m + pn+1m � 2pnm � 0 for all n and m:Here, �pn;m = 1Pl=m pn;l and ��pn;m = 1Pl=m �pn;l.40



Theorem 1. T is monotone with respe
t to the orders �st and �i
x.Proof. In our 
ase:pnm = (1� LA(�))km�n + LA(�)km�n+1 = (1� LA(�))km�n + km�n+1;pnm = (1� LA(�))km�n + km�n+1:Thus pnm � pn�1m = (1� LA(�))km�n + LA(�)km�n+1 � 0;pn�1m + pn+1m � 2pnm = (1� LA(�))km�n�1 + LA(�)km�n � 0:In the following two theorems, we give 
omparability 
onditions of two transitionoperators. Consider two M=G=1 retrial queues with nonexponential retrial times withparameters �(1), A(1), B(1) and �(2), A(2), B(2) respe
tively. Let T1 and T2 be thetransition operators of the 
orresponding embedded Markov 
hains.Theorem 2. If �(1) � �(2), B(1) �s B(2) and A(1) �L A(2), then T1 �s T2, i.e. forany distribution !, we have T1! �s T2!, where �s is one of the symbols �st or �i
x.Proof. From Stoyan [5℄, it is well known that to prove T1 �s T2, we have to show thefollowing numeri
al inequalities for the one-step transition probabilities p(1)nm; p(2)nm:p(1)nm � p(2)nm; 8n; m; (for �s=�st); (1)p(1)nm � p(2)nm; 8n; m; ( for �s=�i
x); (2)To prove inequality (1), we havep(1)nm = (1� LA(1)(�(1)))k(1)m�n + k(1)m�n+1:Sin
e �(1) � �(2) and A(1) �L A(2), then LA(1)(�(1)) � LA(2)(�(2)) andp(1)nm � (1� LA(2)(�(2)))k(1)m�n + k(1)m�n+1:But (1� LA(2)(�(2)))k(1)m�n + k(1)m�n+1 = (1� LA(2)(�(2)))k(1)m�n + LA(2)(�(2))k(1)m�n+1:By Lemma 1, we have k(1)n � k(2)n ; 8n � 0:Using these inequalities we get:p(1)nm � (1� LA(2)(�(2)))k(2)m�n + LA(2)(�(2))k(2)m�n+1 = p(2)nm:Following the te
hnique above it is possible to establish inequality (2).Theorem 3. If �(1) � �(2), B(1) �L B(2) and A(1) �L A(2), then T1 �L T2:41



Proof. Let ! = (!m) be a distribution and T! = � = (�m), where�m = Pn�0!npnm = !0km + Pn�1!npnm; for all m � 0.Let k(z) = Pn�0 knzn and !(z) = Pn�0!nzn be the generating fun
tions of (kn) and (!n)respe
tively. The generating fun
tion of � is given byG(z) = Xm�0 �mzm =Xm�0Xn�0 !npnmzm =Xm�0[!0km +Xn�1 !npnm℄zm= !0k(z) + 1z k(z)(!(z)� !0)(z + (1� z)LA(�)):If the 
onditions of Theorem 3 are ful�lled, then k(1)(z) � k(2)(z) by Lemma 2 and(1� z)LA(1)(�(1)) � (1� z)LA(2)(�(2)), 8 z 2 [0; 1℄. Hen
e G(1)(z) � G(2)(z).4. BOUNDS FOR THE MEAN CHARACTERISTICS OFTHE SYSTEMThe main 
hara
teristi
s of a system busy period, the orbit busy period and waitingtime are:L: the length of a system busy period,I: the number of servi
e 
ompletions o

urring during (0; L℄,Nb: the number of orbit busy periods whi
h take pla
e in (0; L℄,W : the waiting time.G�omez-Corral [3℄ shows that, if ��1 < LA(�), thenE(L) = �1LA(�)���1 ; E(I) = LA(�)LA(�)���1 ; E(Nb) = 1�LB(�)LB(�) ; and E(W ) = ��2+2�1(1�LA(�))2(LA(�)���1) :Suppose on
e more that we have two M=G=1 retrial queues with nonexponentialretrial times with parameters �(1), A(1), B(1) and �(2), A(2), B(2), respe
tively. Let L(i),I(i), N (i)b and W (i) be the length busy period, the number of 
ustomers served duringa busy period, the number of orbit busy periods whi
h take pla
e in (0; L(i)℄ and thewaiting time respe
tively, in the i-th system, i = 1; 2:Theorem 4. If �(1) � �(2), B(1) �s B(2) and A(1) �L A(2), then E(L(1)) � E(L(2)),and E(I(1)) � E(I(2)), where �s is one of the symbols �st, �i
x, �L.Proof. The quantities E(L) and E(I) whi
h are in
reasing with respe
t to � and �1,de
reasing with respe
t to LA(:). Under 
onditions of Theorem 4, we obtain the desiredinequalities. Re
all that X �s Y implies E(Xn) � E(Y n) for all n.Theorem 5. For any M=G=1 retrial queue,E(L) � �1e���1���1 ; and E(I) � e���1e���1���1 :If A and B are L, then E(L) � �1(1+��1)1���1(1+��1) ; and E(I) � 11���1(1+��1) :Proof. We 
onsider auxiliary M=D=1 and M=M=1 retrial queues with the same arrivalrates �, mean servi
e times �1 and mean retrial times �1. A is Dira
 distribution at �1for the M=D=1 system, and is exponential distribution for the M=M=1 system. Usingthe theorem above we obtain the stated results.42



Theorem 6. If �(1) � �(2), B(1) �st B(2) and A(1) �L A(2), thenE(N (1)b ) � E(N (2)b ); and E(W (1)) � E(W (2)):Proof. The quantities E(Nb) and E(W ) are in
reasing with respe
t to �, �1 and �2,de
reasing with respe
t to LB(:) and LA(:). Under the 
onditions of Theorem 6 weobtain the desired inequalities.Theorem 7. For any M=G=1 retrial queue,E(Nb) � e��1 � 1; and E(W ) � ��2+2�1(1�e���1 )2(e���1���1) :If B and A are L, thenE(Nb) � ��1; and ��2(1+��1)+2��1�12(1���1(1+��1)) � E(W ) � 2��21+2�1(1�e���1 )2(e���1���1) :Proof. The proof is similar to that of Theorem 5. In addition, if a given distribution Fis L then �2 � 2�21 . REFERENCES1. Artalejo J.R. , G�omez-Corral A. Retrial queueing system: A 
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