
VERIFICATION OF STABILITYREGION OF A RETRIAL QUEUINGSYSTEM BY REGENERATIVEMETHODK. Avrahenkov1, R. Goriheva2, E. Morozov21 INRIA,2 IAMR KarSC RAS1Sophia-Antipolis, Frane,2Petrozavodsk, RussiaKonstantin.Avrathenkov�sophia.inria.fr, lana��mail.ru,emorozov�karelia.ruRegenerative proesses play an important role in the modeling and simulation of themodern teleommuniation systems. In this note, we apply the regenerative approahto estimate the steady-state bloking probability in a single-lass retrial system withonstant retrial rate. Moreover, this estimation allows to verify stability region of thissystem.This work is supported by Russian Foundation for Basi Researh under grant 10-07-00017.Keywords: retrial queueing system; regenerative simulation; bloking probability;on�dent estimation; stability ondition1. DESCRIPTION OF THE MODEL AND ITSSTABILITY CONDITIONWe onsider a M=G=1=1-type retrial system with Poisson input with rate � andgeneral servie time with rate � (ES = 1=�). Arrivals who �nd the server busy join thein�nite apaity orbit, and then return to the system after exponentially distributedretrial time with rate �0. Thus, the total input stream to the server onsists of two(generally, dependent) streams: a Poisson ��input of primary ustomers and the inputof retrial (or orbit ustomers) with a rate ~�0 � �0, where ~�0 = �0 when the orbit isnot empty, and ~�0 = 0, otherwise, beause this input may have gaps when the orbit isempty. We denote this original system as �.This retrial model is motivated by modelling telephone exhange systems [5℄, ALOHAtype multiple aess protools [4℄, and short TCP transfers [2℄. In partiular, the modelwith one server and no bu�ering onsidered in the present work represents well anALOHA type multiple aess hannel. If there are n retrying ustomers, eah ustomerretries with the rate �0=n. 22



Note that, following [1℄, analysis below an be extended to a wider lass of retrialsystems ontaining more that one server, non-zero bu�er for waiting ustomers, and ageneral renewal �� input of primary ustomers.We also onstrut an auxiliary single-server loss (with no bu�er) system �̂ as follows.The system �̂ has the same Poisson ��input, the servie time but, unlike originalsystem, it also has an independent Poisson input of ustomers with rate �0 (we allthem �0-ustomers). Moreover, arriving ustomer in the system �̂ who �nds the serverbusy leaves the system forever and do not a�et the future state.It is easy to see that the server in the original system is less loaded sine the atualinput rate from the orbit to the server ~�0 � �0. It is expeted that the distribution ofthe states (busy or empty) of system � approahes the orresponding distribution ofsystem �̂ provided the orbit size in � inreases. It shows that the stability ondition ofthe orbit whih is fed by the rejeted ustomers in system �̂ must guarantee stabilityof the orbit in (less loaded) system �. Indeed this fat has been proved in [1℄.Spei�ally, denote by Ploss the stationary loss probability in system �̂ (whih al-ways exists under our assumptions). Then it has been proved in [1℄ that the followingondition (�+ �0)Ploss < �0; (1)is su�ient stability ondition of the orbit in system �.In partiular, it implies �niteness of the mean regeneration period of the system (tobe de�ned below) in ontinuous and disrete time.There are some systems for whih expliit expressions for the probability Ploss isknown. In partiular, if system ~� is the -server Erlang model (that is M/G// losssystem), then stability ondition (1) takes the form�(�+ �0)=��! 24 Xn=0 �(�+ �0)=��nn! 35�1 < �0�+ �0 : (2)It allows us to write the stability ondition (1) forM=G=1=1 system under onsiderationin an expliit form as follows: �+ �0�+ �0 + � < �0�+ �0 : (3)2. REGENERATIVE ANALYSIS OF THE RETRIALSYSTEMIn this setion, we onsider the regenerative approah to simulate original retrialsystem and, in partiular, desribe various regenerative strutures of the original system.Denote by N(t) the number of retrial ustomers (orbit size) at instant t and let �(t) bethe state of server (0 or 1) at instant t. Let ftng be arrival instants of �-ustomers inboth systems, and denote N(t�n ) = Nn, �(t�n ) = �n; n � 1. Also denote X = fX(t) =23



N(t) + �(t); t � 0g; and let X(t�n ) = Xn := Nn + �n; n � 1. We note that system�̂ regenerates at the instants when the �-ustomers �nd the server empty, beause atthese instants we may use the memoryless property of the input of �0-ustomers. (Thisproedure an be extended to a general renewal �-input, see [1℄.) Thus, regenerationsof the disrete-time basi proess fXng are de�ned as follows. Let �0 = 0, then�n+1 = infk (k > �n : Xk = 0); n � 0; (4)are required (lassial) regenerations. (Constrution of regenerations for ontinuous-time proess X is evident.) Denote by R(t) the total number of rejeted ustomersin system � in interval [0; t℄, and let A(t) be the total number of alls (primary �-ustomers and �0-ustomers) in interval [0; t℄. Denote also by R and A the numberof orbit ustomers and total number of arrivals, respetively, during the regenerationyle. It has been proved in [1℄ that under ondition (3) the proess fR(t); t � 0g ispositive reurrent with the embedded regenerations f�ng and, in partiular, there existsthe limit with probability 1 (w.p.1)limt!1 R(t)A(t) = EREA: (5)Let In = 1 if the nth ustomer is rejeted (otherwise, In = 0). It is easy to show thatthe regeneration period is aperiodi and hene, the weak limit In ) I exists. Moreover,(by uniform integrability of indiators) the following onvergene holdsP(In = 1)! Porb; n!1; (6)where Porb := EI is the stationary probability to join the orbit. Also by the standardresult of regenerative theory,P̂orb(n) := Pnk=1 Ikn ! EREA = Porb; n!1; (7)that is the sample mean estimator of probability Porb onverges w. p. 1 to Porb. Thus,both limit ratios (see also (5)) are onsistent and give the same expression for stationaryprobability Porb.Beause original system is less loaded than �̂, then in the stability region one anexpet that the basi proess X is positive reurrent (that is E� < 1) and thus thefollowing onvergene and inequality hold:P̂orb(n)! Porb � Ploss; as n!1: (8)On the other hand, in the instability region, an unlimited inrease of the orbit sizeis expeted. Under this ondition, the output of retrial ustomers (going from orbit toserver) approahes to the Poisson input with rate �0 that is ~�0 ! �0, and we expetthat the estimator P̂orb(n) must approah Ploss. But in this ase the proess X is notpositive reurrent regenerative, and the existene of the limit in (8) is, in general, an24



open problem. Hopefully, we an use another type of regenerations, more exatly, quasi-regenerations, to estimate Porb in this ase. As quasi-regenerations of original (unstable)system we an take the instants when arriving primary ustomer meets an empty server(while the orbit size may be arbitrary). Namely, take �0 = 0, then quasi-regenerationsare de�ne as follows: �n+1 = infk (k > �n : �k = 0); n � 0: (9)It follows from the previous disussion that �more� the system is unstable (that isif parameters �; �; �0 are taken �deeper� in the instability region), the less di�erenePloss�P̂orb(n)must be in the limit as n!1. In this regard, it is important to note thatin the instability region lassial regenerations are expeted to be rare and to terminate�nally. More orretly, we expet that in the instability region, after a �nite (w.p.1)time t0, the orbit will never be empty, and thus after this instant the original systemompletely ouples with the auxiliary system ~� fed by the two independent �� and�0-inputs. In other words, quasi-regenerations beome lassial regenerations but forthe proess f�ng onsidered in isolation. As a result, the estimate P̂orb(n) will onvergeto Ploss w.p.1 as n ! 1. A di�erene between quasi-regenerations and lassial onesare expeted to appear at the stability boundary and around the boundary.The purpose of this note is to hek by regenerative (or quasi-regenerative) sim-ulation stability/instability of the original system, in partiular, omparing estimateP̂orb(n) with expliit formula for Ploss.Note that detailed desription of regenerative method an be found in [3, 6, 7℄.3. SIMULATION RESULTSIn this setion, we present some simulation results related to the estimation of thebloking probability in the original system both in stability and instability regions.We onsider the M=G=1=1 system with the servie time to be either exponential orPareto and assuming � = 1. Reall that our main goal is to verify stability of theoriginal system by simulation assuming that stability ondition (3) holds. (Reall thatondition (3) relates formally to system �̂.)Note that for the servie time with Pareto distribution P(S > x) = (x=x0)��; x �x0 (P(S > x) = 1; x � x0); assumption � > 2 implies �niteness of the 2nd moment,ES2 <1, and, as a result, the �niteness of the 2nd moment of the regeneration period,E�2 < 1 (see [9℄). Thus, the on�dene estimation of the probability Porb based onthe regenerative simulation an be applied [6℄, although we present below only pointestimation.Denote by Æ = Ploss � P̂orb(n) the di�erene between the estimator value and theexpliit value of loss probability (see (2))Ploss = � + �0�+ �0 + �:25



Denote also by � the di�erene between two sides of stability ondition (3), that is� = �0�+ �0 � �+ �0�+ �0 + �:Note that � > 0 in the stability region, � < 0 in the instability region, and � = 0orresponds to the boundary of stability region. One expet that the value of the �dis-tane� � losely related with the obtained estimate P̂orb(n) and hene with Æ. Namely,we expet that the bigger � > 0 (in the stability region), the bigger is Æ > 0, while if� # 0, one an expet Æ # 0. On the other hand, we expet the approximation Æ � 0 inthe instability region, where � < 0.Simulation results for M/M/1/1 systems are presented in Table 1, where n is indeeda number of regenerations (4) in the stability region, where � > 0, and is the numberof quasi-regenerations (9) in the instability region, where � < 0, obtained during thesimulation. Table 1: Simulation of M=M=1=1�0 � n Ploss P̂orb(n) Æ �2 4 10829 0,4286 0,302 0,1266 0,23814 3 8301 0,625 0,4685 0,1565 0,17506 2,5 6023 0,7368 0,5992 0,1376 0,12030,6 3 2059 0,3478 0,3325 0,0153 0,02722 1,6 946 0,6522 0,6388 0,0134 0,01456 1,3 705 0,8434 0,8275 0,0159 0,01382 1,4 6349 0,6818 0,6793 0,0025 -0,01524 1,1 3655 0,8197 0,8167 0,0030 -0,01970,5 2,3 11988 0,3947 0,3946 0,0001 -0,06144 0,1 385 0,9804 0,9804 0,0000 -0,18040,1 2 12910 0,3548 0,3537 0,0011 -0,26390,1 0,1 1748 0,9167 0,9125 0,0042 -0,8258Similar results are obtained for M/Pareto/1/1 systems with Pareto servie timedistribution P(S � x) = (x=x0)�2;5; x � x0, see Table 2. Note that we put the rowsin the tables in the orrespondene with the �distane� from the stability boundary,expressed by the value of �.Note that stability an also be empirially veri�ed by observation that there is notendeny in the dynamis of the orbit size, while instability e�et is expressed by visualunlimited growth of the orbit size. Indeed, the dynamis of the orbit size is illustratedby Figure 1 when stability ondition (3) holds, while Figure 2 shows this dynamiswhen this ondition is violated. 26



Table 2: Simulation of M=Pareto=1=1�0 x0 n Ploss P̂orb(n) Æ �2,7 0,1 14335 0,9569 0,2057 0,7512 0,34831 0,1 12715 0,9231 0,1808 0,7423 0,25002 0,2 7809 0,9000 0,4033 0,4967 0,16672,2 0,4 710 0,8276 0,6631 0,1645 0,00660,6 0,22 423 0,8136 0,3666 0,4470 0,00531,65 0,37 339 0,8112 0,5986 0,2126 0,00231 0,36 9022 0,7692 0,5470 0,2222 -0,04552 0,5 5652 0,7826 0,7159 0,0667 -0,04760,1 0,4 11537 0,6226 0,4224 0,2002 -0,3322
Fig. 1. Stable dynamis of orbit in M/M/1/1, �0 = 4, � = 3.
Fig. 2. Instability of orbit in M/M/1/1, �0 = 0; 5, � = 2; 3.Thus, the simulation results on�rm the theoretial analysis. Moreover, in fat, weon�rm by simulation that the given su�ient stability ondition is also neessary one.4. CONCLUSIONIn this note, we onsider a new retrial systems whih an be used to desribe, forinstane, behavior of short TCP transfers or ALOHA type multiple aess protool.For a single-server system with no bu�er and Poisson input we estimate bloking prob-ability both in the stability region and in the instability region. In partiular, in thestability region we use lassial regenerative simulation, while in the instability region27



we rely on the quasi-regenerations appearing when primary ustomers meet the emptyserver. Simulation of M/M/1/1 and M/Pareto/1/1 retrial systems show a remarkableonsistene with the know analytial results for the Erlang type retrial systems.REFERENCES1. Avrahenkov K., Morozov E. V. Stability analysis of GI/G//K Retrial Queuewith Constant Retrial Rate, INRIA, Researh Report No 7335, July 2010 (SophiaAntipolis).2. K. Avrahenkov and U. Yehiali, �Retrial networks with �nite bu�ers and their ap-pliation to Internet data tra��, Probability in the Engineering and InformationalSienes, v.22, pp.519-536, 2008.3. Bratley P. , Fox B. L. A guide to simulation // New York: Springer-Verlag. 1987.4. Choi B.D., Rhee K.H., Park K.K. The M/G/1 retrial queue with retrial rate ontrolpoliy. // Probability in the Engineering and Informational Sienes. 1993. V. 7,P. 29-46.5. Fayolle G. A simple telephone exhange with delayed feedbak, In O.J. Boxma,J.W. Cohen and H.C. Tijms (eds.) Teletra� Analysis and Computer PerformaneEvaluation. 1986. V. 7. P. 245-253,6. Glynn P. W., Iglehart D. L. Conditions for the appliability of the regenerativemethod // Management Siene. 1993. V. 39. P. 1108�1111.7. Law A. M. , Kelton W. D. Simulation modeling and analysis // New York:MGraw- Hill . 1991.8. Morozov E. V. Weak regeneration in modeling of queueing proesses // QueueingSystems. 2004. V. 46. P. 295�315.9. Wol� R. W. Stohasti Modeling and the Theory of Queues // Prentie-Hall .1989.
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