

УДК 517.9

М.А. ЗАРЕНОК

p-АДИЧЕСКОЕ ЯДРО ДИРИХЛЕ И СХОДИМОСТЬ МНОГОМЕРНОГО РЯДА ФУРЬЕ ДЛЯ НЕПРЕРЫВНЫХ И СУММИРУЕМЫХ ФУНКЦИЙ НА \mathbb{Z}_p^n

Convergence of Fourier series for continuous and integrable complex-valued functions on \mathbb{Z}_p^n is discussed. Notions p-adic Dirichlet kernel Fourier series partial sum and p-adic Steklov average are introduced. Formula representing Fourier series partial sum using p-adic Dirichlet kernel is derived. These partial sums turn out to be Steklov average. We prove that Fourier series for integrable function converge both with respect to the norm in $L_1(\mathbb{Z}_p^n)$ and almost everywhere. We show that Fourier series for continuous function converges uniformly on \mathbb{Z}_p^n .

В статье рассматривается вопрос сходимости ряда Фурье для непрерывных и суммируемых комплекснозначных функций на \mathbb{Z}_p^n , где \mathbb{Z}_p – кольцо целых p-адических чисел. Одним из полученных

результатов является определение порядка суммирования ряда Фурье и понятия ядра Дирихле на множестве \mathbb{Z}_p^n . Данный вопрос актуален, так как в действительном многомерном случае характер сходимости ряда Фурье существенно зависит от порядка суммирования. В работе (теорема 5) показано, что ряд Фурье непрерывной на \mathbb{Z}_p^n функции сходится равномерно на \mathbb{Z}_p^n . Ряд Фурье суммируемой функции $f \in L_1(\mathbb{Z}_p^n)$ сходится по норме $L_1(\mathbb{Z}_p^n)$ (теорема 3), а также — точечно почти всюду на \mathbb{Z}_p^n (теорема 4). Доказательство теорем о сходимости рядов Фурье основывается на том, что частичные суммы ряда Фурье являются осреднением по Стеклову (теорема 2). Основы p-адического анализа можно найти в [1,2].

Замкнутый шар с центром в точке a радиуса p^{γ} обозначим через $B[a,p^{\gamma}]$, а функцию-индикатор множества $A \subset \mathbb{Q}_p^n$ — через I_A . Характером ϕ абелевой топологической группы G называется непрерывный гомоморфизм из абелевой группы G в мультипликативную группу $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Всякий аддитивный характер группы $G = \mathbb{Q}_p$ будет аддитивным характером группы $B[0,p^{\gamma}], \ \gamma \in \mathbb{Z}$. Обозначим $\chi_p(x) \doteqdot \exp(2\pi i \{x\}_p)$, где $\{x\}_p$ — дробная часть числа $x \in \mathbb{Q}_p$. Известно [1], что произвольный аддитивный характер на \mathbb{Z}_p имеет вид $\chi(x) = \chi_p(kx)$, где $k \in \mathbb{Q}_p$ имеет нулевую целую часть. Такие k находятся во взаимно однозначном соответствии с элементами факторгруппы $\mathbb{Q}_p / \mathbb{Z}_p$.

 $\textit{Определение 1.} \ \ \mathsf{Частичной суммой ряда} \ \ \Phi \mathsf{урье} \ \ \mathsf{функции} \ \ f(t) \colon \mathbb{Z}_p \to \mathbb{C} \ \ \mathsf{будем} \ \ \mathsf{называть} \ \ \mathsf{функцию}$ $(S_N f)(x) = \sum_{|k| \le p^N} c_k \chi_p(kx), \ \ \mathsf{где} \ \ c_k = \int_{\mathbb{Z}_p} f(t) \overline{\chi_p(kt)} dt, \ \ k \in \mathbb{Q}_p \ / \ \mathbb{Z}_p.$

Вопрос сходимости рядов Фурье различных классов функций, а именно $L_1(\mathbb{Z}_p)$ и $C(\mathbb{Z}_p)$, был рассмотрен Тейблесоном. Его результат в наших обозначениях таков.

Теорема 1 ([4]). (а) Если $f \in L_1(\mathbb{Z}_p)$, то частичные суммы ряда Фурье $(S_N f)(x)$ сходятся κ f(x) почти всюду. (б) Если $f \in L_q(\mathbb{Z}_p)$, $1 \le q < +\infty$, то частичные суммы ряда Фурье $(S_N f)(x)$ сходятся κ f(x) по норме $L_q(\mathbb{Z}_p)$. (в) Если $f \in C(\mathbb{Z}_p)$, то частичные суммы ряда Фурье $(S_N f)(x)$ сходятся κ f(x) равномерно.

Обозначим \mathbb{Z}_p^n через G. Очевидно, что G — компактная группа. Пусть $H_0 \subseteq G$ — открыто компактная подгруппа, а $H_N = p^N H_0 \subset \mathbb{Z}_p^n$. С учетом двойственности Понтрягина [6] имеем последовательности $H \to G \twoheadrightarrow G / H$, $\hat{H} \twoheadleftarrow \hat{G} \leftarrow \widehat{G / H} = H_G^\perp$. Факторгруппа компактной группы по открытой подгруппе является конечной. Так как $(H_N)_G^\perp \cong G / H_N$, то $(H_N)_G^\perp$ имеет конечное число элементов.

Определение 2. Частичной суммой ряда Фурье функции $f(t): \mathbb{Z}_p^n \to \mathbb{C}$ будем называть функцию $(S_N f)(x) = \sum_{k \in (H_N)_G^{\perp}} f_k \chi_p((k,x))$, где $(k,x) = \sum_{j=1}^n k_j x_j$, k_j – представитель класса смежности из $\mathbb{Q}_p / \mathbb{Z}_p$ такой, что $[k_j]_p = 0$. Коэффициенты Фурье находим по формуле $f_k = \int_{\mathbb{Z}_p^n} f(t) \overline{\chi_p((k,t))} dt$.

 $\label{eq:Dnpedenehue 3.9} Определение 3. \ \, \text{Ядром Дирихле степени } N \ \, \text{будем называть функцию } D_N: \mathbb{Z}_p^n \to \mathbb{C}, \ \, \text{определяемую равенством } D_N(x) = \sum_{k \in (H_N)_G^\perp} \chi_p((k,x)) = \sum_{k \in (H_N)_G^\perp} \chi_p(k_1x_1 + k_2x_2 + \ldots + k_nx_n).$

Определение 4. Средним по Стеклову от функции $f: \mathbb{Z}_p^n \to \mathbb{C}$ называется функция $(A_\delta f)(t) = \frac{1}{\mu(B[t,\delta])} \int_{\mathbb{Z}_p^n} f(\tau) I_{B[t,\delta]}(\tau) d\tau = \frac{1}{\mu(B[t,\delta])} \int_{B[t,\delta]} f(\tau) d\tau, \delta > 0$, где $B[t,\delta] = B[t_1,\delta_1] \times ... \times B[t_n,\delta_n]$, $I_{B[t,\delta]}(\tau) = \prod_{i=1}^n I_{B[t_i,\delta_i]}(\tau_i)$, а $\mu(B[t,\delta]) = \prod_{i=1}^n \mu(B[t_i,\delta_i])$.

Рассмотрим подгруппу, которая имеет специальную структуру. Пусть $H_0 = (p^{\alpha_1}\mathbb{Z}_p) \times (p^{\alpha_2}\mathbb{Z}_p) \times ... \times (p^{\alpha_n}\mathbb{Z}_p)$. В общем случае $(H_0)_G^\perp = 0_{G/H_0} \subset G/H_0$. С учетом выбора группы H_0 получаем, что если $k \in (H_0)_G^\perp$, то $|k_i|_p \leq p^{\alpha_i}$, $i = \overline{1,n}$, а значит, для $k \in (H_N)_G^\perp$ имеем оценку $|k_i|_p \leq p^{N+\alpha_i}$, $i = \overline{1,n}$.

Лемма 1. Ядро Дирихле выражается при помощи формулы

$$D_N(x) = \sum_{k \in (H_N)_{c}^{\perp}} \chi_p((k,x)) = \prod_{i=1}^n (p^{\alpha_i + N} I_{B[0,p^{-(\alpha_i + N)}]}(x_i)), \ \ \partial e \ \ x = (x_1, x_2, ..., x_n) \in \mathbb{Z}_p^n.$$

Доказательство

$$\begin{split} &\sum_{k \in (H_N)_G^{\perp}} \chi_p((k,x)) = \sum_{k \in (H_N)_G^{\perp}} \chi_p(k_1 x_1 + k_2 x_2 + \ldots + k_n x_n) = \sum_{|k_i|_p \le p^{\alpha_i + N}, i = \overline{1,n}} \left(\prod_{i=1}^n \chi_p(k_i x_i) \right) = \\ &= \sum_{|k_1|_p \le p^{\alpha_1 + N}} \ldots \sum_{|k_n|_p \le p^{\alpha_n + N}} \chi_p(k_1 x_1) \ldots \chi_p(k_n x_n) = \sum_{|k_1|_p \le p^{\alpha_1 + N}} \chi_p(k_1 x_1) \ldots \sum_{|k_n|_p \le p^{\alpha_n + N}} \chi_p(k_n x_n) = \\ &= (p^{\alpha_1 + N} I_{B[0, p^{-(\alpha_1 + N)}]}(x_1)) \cdot \ldots \cdot (p^{\alpha_n + N} I_{B[0, p^{-(\alpha_n + N)}]}(x_n)) = \prod_{i=1}^n (p^{\alpha_i + N} I_{B[0, p^{-(\alpha_i + N)}]}(x_i)) . \, \Box \end{split}$$

Теорема 2. Частичная сумма ряда Фурье функции является средним по Стеклову. Доказательство.

$$(S_{N}f)(x) = \sum_{k \in (H_{N})_{G}^{\perp}} f_{k} \chi_{p}((k,x)) = \sum_{k \in (H_{N})_{G}^{\perp}} \left(\int_{\mathbb{Z}_{p}^{n}} f(t) \overline{\chi_{p}((k,t))} dt \right) \chi_{p}((k,x)) =$$

$$= \int_{\mathbb{Z}_{p}^{n}} \left(\sum_{k \in (H_{N})_{G}^{\perp}} f(t) \overline{\chi_{p}((k,t))} \chi_{p}((k,x)) \right) dt = \int_{\mathbb{Z}_{p}^{n}} \left(\sum_{k \in (H_{N})_{G}^{\perp}} f(t) \chi_{p}((k,-t)) \chi_{p}((k,x)) \right) dt =$$

$$= \int_{\mathbb{Z}_{p}^{n}} \left(\sum_{k \in (H_{N})_{G}^{\perp}} f(t) \chi_{p}((k,x-t)) \right) dt = \int_{\mathbb{Z}_{p}^{n}} f(t) \prod_{i=1}^{n} \left(p^{N+\alpha_{i}} I_{[0,p^{-(N+\alpha_{i})}]}(x_{i}-t_{i}) \right) dt =$$

$$= \prod_{i=1}^{n} \left(p^{N+\alpha_{i}} \right) \int_{\mathbb{Z}_{p}^{n}} f(t) \prod_{i=1}^{n} \left(I_{[0,p^{-(N+\alpha_{i})}]}(x_{i}-t_{i}) \right) dt =$$

$$= \prod_{i=1}^{n} \left(p^{N+\alpha_{i}} \right) \int_{\mathbb{Z}_{p}^{n}} f(t) \prod_{i=1}^{n} I_{[x_{i},p^{-(N+\alpha_{i})}]}(t_{i}) dt = (A_{\alpha_{N}}f)(x), \text{ rde } \alpha_{N} = (p^{-(N+\alpha_{1})}, ..., p^{-(N+\alpha_{n})}). \square$$

Пусть $\alpha=(\alpha_1,\alpha_2,...,\alpha_n)$, где $\alpha_i\in\mathbb{N}, i=\overline{1,n}$, упорядочены естественным образом. Тогда $B[x,p^{-\alpha}]=\prod_{i=1}^n B[x_i,p^{-\alpha_i}].$

Теорема 3. Для любой функции $f(x) \in L_1(\mathbb{Z}_p^n)$ средние по Стеклову $(A_{p^{-a}}f)(t)$ являются локально постоянными функциями и, как следствие, равномерно непрерывными. Имеет место сходимость средних по Стеклову $A_{p^{-a}}f$ по норме $L_1(\mathbb{Z}_p^n)$, а значит, и частичных сумм ряда Фурье S_Nf .

Доказательство. Зафиксируем $\varepsilon > 0$. Пусть $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ и $x, y \in \mathbb{Z}_p^n$ такие, что $|x_i - y_i|_p < p^{-\alpha_i}$ для любого $i = \overline{1,n}$, из чего следует, что $I_{B[x,p^{-\alpha}]}(t) = I_{B[y,p^{-\alpha}]}(t)$ для любого $t \in \mathbb{Z}_p^n$, так как $B[x,p^{-\alpha}] = B[y,p^{-\alpha}]$. Тогда

$$|(A_{p^{-\alpha}}f)(x) - (A_{p^{-\alpha}}f)(y)| = \left| \frac{1}{\mu(B[x, p^{-\alpha}])} \int_{\mathbb{Z}_p} f(\tau) (I_{B[x, p^{-\alpha}]}(\tau) - I_{B[y, p^{-\alpha}]}(\tau)) \right| = 0.$$

Это означает, что средние по Стеклову $(A_{p^{-a}}f)$ являются локально постоянными функциями и, в частности, равномерно непрерывными. Далее,

$$\rho(f(t), (A_{p^{-\alpha}}f)(t)) = \int_{\mathbb{Z}_p^n} \left| f(t) - \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{B[t, p^{-\alpha}]} f(\tau) d\tau \right| dt =$$

$$= \int_{\mathbb{Z}_{p}^{n}} \left| \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{B[t, p^{-\alpha}]} f(t) d\tau - \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{B[t, p^{-\alpha}]} f(\tau) d\tau \right| dt \le$$

$$\le \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{\mathbb{Z}_{p}^{n}} \int_{B[t, p^{-\alpha}]} |f(t) - f(\tau)| d\tau dt = [\tau - t = s] =$$

$$= \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{\mathbb{Z}_{p}^{n}} \int_{B[0, p^{-\alpha}]} |f(t) - f(t + s)| ds dt = \frac{1}{\mu(B[t, p^{-\alpha}])} \int_{B[0, p^{-\alpha}]} \int_{\mathbb{Z}_{p}^{n}} |f(t) - f(t + s)| dt ds.$$

Так как $f(t) \in L_1(\mathbb{Z}_p^n)$, то при малых s имеет место следующее неравенство: $\int_{\mathbb{Z}_p^n} |f(t) - f(t+s)| dt < \varepsilon$.

Тогда $\frac{1}{\mu(B[t,p^{-\alpha}])} \int_{B[0,p^{-\alpha}]} \int_{\mathbb{Z}_p^n} |f(t)-f(t+s)| \, dt ds < \varepsilon$. Таким образом, $\rho(f(t),(A_{p^{-\alpha}}f)(t)) \to 0$ при $\alpha \to \infty$, что означает сходимость средних по Стеклову по норме $L_1(\mathbb{Z}_p^n)$. \square

Определение 5. Максимальной функцией Харди — Литлвуда называется функция $\mathcal{M}: L_1(\mathbb{Z}_p^n) \to L_1(\mathbb{Z}_p^n)$, определяемая следующей формулой:

$$(\mathcal{M}f)(x) = \sup_{\delta} \left\{ \frac{1}{\mu(B[x,\delta])} \int_{B[x,\delta]} |f(t)| \, dt \right\},\,$$

где $B[x,\delta] = B[x_1,\delta_1] \times ... \times B[x_n,\delta_n]$, а $\mu(B[x,\delta]) = \prod_{i=1}^n \mu(B[x_i,\delta_i])$.

Лемма 2 (Харди — Литлвуда). Если $f(x) \in L_1(\mathbb{Z}_p^n)$, то для всех $\alpha > 0$ ($\mathcal{M}f$)(x) удовлетворяет неравенству $\mu(\{(\mathcal{M}f)(x) > \alpha\}) \leq c \frac{\|f\|_{L_1}}{\alpha}$.

Доказательство. Пусть $A=\{x\in\mathbb{Z}_p^n:(\mathcal{M}f)(x)>\alpha\}$, тогда для любого $x\in A$ существует шар $B_x:=B[x,\delta_x]=B[x_1,\delta_{x_1}]\times...\times B[x_n,\delta_{x_n}]\subseteq\mathbb{Z}_p^n$ такой, что

$$\frac{1}{\mathsf{u}(B_x)} \int_{B_x} |f(t)| \, dt > \alpha. \tag{1}$$

Обозначим через $B = \bigcup_{x \in A} B_x$. Очевидно, что $A \subset B$. Из регулярности меры Хаара следует, что существует компактное множество $A^* \subseteq A$ такое, что $(1-\varepsilon)\mu(A) \le \mu(A^*)$, где ε фиксированное число и $0 < \varepsilon < 1$. Тогда из покрытия $\{B_x\}_{x \in A}$, которое также является покрытием A, можно выделить конечное подпокрытие $\coprod_{k=1}^n B_{x_k} \supseteq A$, которое можно выбрать дизьюнктным в силу того, что в \mathbb{Q}_p^n два параллелепипеда всегда либо не пересекаются, либо один содержится в другом [1]. Из неравенства (1) следует, что $\mu(B_x) < \frac{1}{G} \int_{B_x} |f(t)| \, dt$. Тогда с учетом $\prod_{k=1}^n B_{x_k} \subseteq \mathbb{Z}_p^n$ и предыдущей формулы имеем

$$(1-\varepsilon)\mu(A) \leq \mu(A) \leq \sum_{k=1}^{n} \mu(B_{x_k}) < \frac{1}{\alpha} \sum_{k=1}^{n} \int_{B_{x_k}} |f(t)| dt \leq \frac{1}{\alpha} \int_{\mathbb{Z}_p^n} |f(t)| dt = \frac{1}{\alpha} \|f\|_{L_1}.$$

Из чего следует, что $\mu(\{(\mathcal{M}f)(x) > \alpha\}) \le \frac{\|f\|_{L_1}}{\alpha(1-\varepsilon)}$. \square

Отметим, что приведенное выше доказательство p-адической леммы Харди — Литлвуда значительно проще действительного аналога.

Теорема 4. Если $f(x) \in L_1(\mathbb{Z}_p^n)$, то средние по Стеклову $(A_{p^{-a}}f)(x)$ сходятся κ f(x) для почти всех $x \in \mathbb{Z}_p^n$, значит, сходятся почти всюду частичные суммы ряда Фурье.

Доказательство. Имеем
$$|(A_{p^{-\alpha}}f)(x)-f(x)| \leq \frac{1}{\mu(B[x,p^{-\alpha}])} \int_{B[x,p^{-\alpha}]} |f(t)-f(x)| dt$$
.

Отметим, что если $f \in C(\mathbb{Z}_p^n)$, то для заданного $x \in \mathbb{Z}_p^n$ и $\epsilon > 0$ существует параллелепипед $B[x,p^{-\alpha}]$ такой, что $|f(x)-f(t)| < \epsilon$ для любой точки $t \in B[x,p^{-\alpha}]$, следовательно, $\frac{1}{\mu(B[x,p^{-\alpha}])} \int_{B[x,p^{-\alpha}]} |f(x)-f(t)| \, dt < \epsilon.$ Получаем, что для любой точки непрерывности функции выполняется

$$\lim_{\alpha \to +\infty} \frac{1}{\mu(B[x, p^{-\alpha}])} \int_{B[x, p^{-\alpha}]} |f(x) - f(t)| \, dt = 0. \tag{2}$$

Определим на $L_1(\mathbb{Z}_p^n)$ оператор \mathcal{L} следующим образом:

$$(\mathcal{L}f)(x) = \lim_{\alpha \to +\infty} \frac{1}{\mu(B[x, p^{-\alpha}])} \int_{B[x, p^{-\alpha}]} |f(t) - f(x)| \, dt.$$

Несложно видеть, что имеет место неравенство $(\mathcal{L}f)(x) \le (\mathcal{M}f)(x) + |f(x)|$.

Пусть $\varepsilon > 0$. Существует непрерывная функция $\varphi \in L_1(\mathbb{Z}_p^n)$ такая, что $\|f - \varphi\|_{L_1} < \varepsilon$. В качестве функции ϕ по теореме 3 можно взять функцию $(A_{\alpha}f)(t)$. Из (2) вытекает, что для непрерывной функции \mathbf{C} этого $(\mathcal{L}f)(x) = \mathcal{L}(f - \varphi + \varphi)(x) \le$ $\leq \mathcal{L}(f-\varphi)(x) + (\mathcal{L}\varphi)(x) = \mathcal{L}(f-\varphi)(x) \leq \mathcal{M}(f-\varphi)(x) + |f(x)-\varphi(x)|.$ Тогда $\forall \alpha > 0$ имеем $\{(\mathcal{L}f)(x) > \alpha\} \subset \{\mathcal{M}(f - \varphi)(x) > \alpha/2\} \cup \{|f(x) - \varphi(x)| > \alpha/2\}$. Используя утверждение леммы Харди неравенство Чебышева $|f-\varphi|$, Литлвуда для $\mu(\{(\mathcal{L}f)(x) > \alpha\}) \le 2 \frac{c \|f - \varphi\|_{L_1}}{\alpha} + 2 \frac{\|f - \varphi\|_{L_1}}{\alpha} \le \frac{C\varepsilon}{\alpha}.$

Предыдущее неравенство верно для любого $\varepsilon > 0$, следовательно, $\mu(\{(\mathcal{L}f)(x) > \alpha\}) = 0$. Поскольку $\alpha > 0$ произвольное, то $(\mathcal{L}f)(x) = 0$ почти всюду. Из чего и следует утверждение теоремы. \square

Определение 6. Глобальным модулем непрерывности функции $f(t): \mathbb{Z}_p^n \to \mathbb{C}$ будем называть функции $\omega_f(\delta) = \sup\{|f(s) - f(t)|: |s_i - t_i|_p \le \delta_i, i = 1,...,n\}$. Также будем считать, что в точке 0 модуль непрерывности равен 0, т. е. $\omega_f(0) = 0$.

Функция $\omega_f(\delta)$ неотрицательна и монотонно не возрастает при $\delta \to 0$. Из равномерной непрерывности f на \mathbb{Z}_p^n следует, что $\lim_{\delta \to +0} \omega_f(\delta) = 0$.

Теорема 5. Пусть $f(x) \in C(\mathbb{Z}_p^n)$, тогда ряд Фурье сходится равномерно на \mathbb{Z}_p^n .

Доказательство. С учетом того, что $\prod_{i=1}^n p^{N+\alpha_i} \int_{\mathbb{Z}_p^n} \prod_{i=1}^n I_{B[x_i,p^{-(N+\alpha_i)}]}(t_i) dt = 1$, имеем

$$\begin{split} |f(x)-(S_{N}f)(x)| &= \left|f(x)-\prod_{i=1}^{n}p^{N+\alpha_{i}}\int_{\mathbb{Z}_{p}^{n}}f(t)\prod_{i=1}^{n}I_{B[x_{i},p^{-(N+\alpha_{i})}]}(t_{i})dt\right| = \\ &= \left|\prod_{i=1}^{n}p^{N+\alpha_{i}}\int_{\mathbb{Z}_{p}^{n}}f(x)\prod_{i=1}^{n}I_{B[x_{i},p^{-(N+\alpha_{i})}]}(t_{i})dt - \prod_{i=1}^{n}p^{N+\alpha_{i}}\int_{\mathbb{Z}_{p}^{n}}f(t)\prod_{i=1}^{n}I_{B[x_{i},p^{-(N+\alpha_{i})}]}(t_{i})dt\right| \leq \\ &\leq \prod_{i=1}^{n}p^{N+\alpha_{i}}\int_{\mathbb{Z}_{p}^{n}}|f(t)-f(x)|\prod_{i=1}^{n}I_{B[x_{i},p^{-(N+\alpha_{i})}]}(t_{i})dt \leq \\ &\leq \sup\{|f(x)-f(t)|:|x_{i}-t_{i}|_{p}\leq p^{-(N+\alpha_{i})}, i=1,...,n\}\left|\prod_{i=1}^{n}p^{N+\alpha_{i}}\int_{\mathbb{Z}_{p}^{n}}\prod_{i=1}^{n}I_{B[x_{i},p^{-(N+\alpha_{i})}]}(t_{i})dt\right| \leq \\ &\leq \sup\{|f(x)-f(t)|:|x_{i}-t_{i}|_{p}\leq p^{-(N+\alpha_{i})}, i=1,...,n\} = \omega_{f}(\alpha_{p^{-\alpha_{N}}}), \end{split}$$

где $\alpha_N = (p^{-(N+\alpha_1)},...,p^{-(N+\alpha_n)})$. Так как $f(x) \in C(\mathbb{Z}_p^n)$, то $\omega_f(\alpha_N) \to 0$ при $N \to \infty$, значит $f(x) = (S_N f)(x) \to 0$ при $N \to \infty$. \square