УДК 515.12

В.Л. ТИМОХОВИЧ, Д.С. ФРОЛОВА

ИНФИМАЛЬНАЯ ТОПОЛОГИЯ ПРОСТРАНСТВА ОТОБРАЖЕНИЙ И ОТОБРАЖЕНИЕ ВЫЧИСЛЕНИЯ

The subject of the study is a family of different topologies on the set of continuous maps C(X,Y) with metrizable Y, especially the topologies of uniform convergence

 $\tau_{\mu}^{(X,Y)}$ and the topology $\tau_{inf}^{(X,Y)}$ determined as the infimum of all topologies of the type $\tau_{\mu}^{(X,Y)}$.

Necessary and sufficient conditions under which the topology $\tau_{\inf}^{(X,Y)}$ is admissible in the sense of Arens – Dugundji (i. e. the evaluation map $X \times C_{\inf}(X,Y) \to Y : (x,f) \to f(x)$ is continuous) were established.

Under certain natural restrictions on X and Y the admissibility is equivalent to each of the following conditions: 1) for any $x \in X$ and $f \in C(X,Y)$ there are neighborhoods $U \ni x$ and $V \ni f$ such that the closure of g(U) is compact for each $g \in V$; 2) X is locally pseudo compact or Y is locally compact.

Основной объект исследования, начатого авторами в работах [1–4], – множество C(X,Y) непрерывных отображений пространства X в пространство Y (под пространством понимается топологическое T_1 -пространство) в случае, когда Y метризуемо. При этом на C(X,Y) возникают топологии равномерной сходимости $\tau_{\mu}^{(X,Y)}$ ($\mu = \mu(\rho)$ – метрика равномерной сходимости, порожденная допустимой метрикой ρ на Y), а также инфимальная топология $\tau_{\inf}^{(X,Y)}$ – наибольшая по включению, содержащаяся во всех топологиях вида $\tau_{\mu}^{(X,Y)}$. Рассматривается вопрос о допустимости в смысле Аренса – Дугунджи топологии $\tau_{\inf}^{(X,Y)}$, т. е. является ли непрерывным отображение вычисления (evaluation map)

 $X \times C_{\inf}(X,Y) \stackrel{E}{\longrightarrow} Y:(x,f) \to f(x)$ ($C_{\inf}(X,Y)$ – пространство C(X,Y) с топологией $\tau_{\inf}^{(X,Y)}$). Такого рода исследования были начаты в работах Аренса и Дугунджи [5, 6] и в настоящее время активно продолжаются (см., например, [7–9]). Интерес к допустимым топологиям на C(X,Y) объясняется следующим фактом. Как было показано еще в работе [6], непрерывность отображения вычисления $E: X \times C_{\tau}(X,Y) \to Y$ ($C_{\tau}(X,Y)$ – пространство C(X,Y) с топологией τ) равносильна тому, что для любых пространства Z и непрерывного отображения $Z \stackrel{g}{\longrightarrow} C_{\tau}(X,Y): z \to f_{z}(x)$ непрерывным является и отображение $F(x,z) = f_{z}(x)$ (т. е. $F \in C(X \times Z,Y)$). Последнее означает, что необходимым условием непрерывной зависимости семейства отображений $\{f_{z} \mid z \in Z\}$ от параметра z является непрерывность отображения F(x,z), заданного на произведении $X \times Z$. Известно также (см., например, [10, с. 390]), что любая топология равномерной сходимости $\tau_{\mu}^{(X,Y)}$ допустима. Однако при переходе от топологий вида $\tau_{\mu}^{(X,Y)}$ к топологии $\tau_{\inf}^{(X,Y)}$ допустимость топологии может не сохраниться.

В предлагаемой статье устанавливаются некоторые необходимые и достаточные условия непрерывности отображения вычисления $X \times C_{\inf}(X,Y) \stackrel{E}{\longrightarrow} Y$, в частности, показано, что достаточным, а также (при некоторых дополнительных ограничениях) и необходимым условием непрерывности E является выполнение условия (*): при любом выборе точки $x \in X$ и отображения $f \in C(X,Y)$ можно указать окрестности $U \ni x$ и $V \ni f(V \in \tau_{\inf}^{(X,Y)})$ такие, что замыкание $[g(U)]_Y$ множества g(U) компактно для любого отображения $g \in V$.

Были получены следующие основные результаты:

- 1) (Теорема 3.1). Если пространство $C_{\inf}(X,Y)$ удовлетворяет условию (*) (определение 2.6), то отображение E непрерывно.
- 2) (Теорема 3.2). Если при локально транзитивно подвижном (определение 2.1) и DC-связанном (определение 2.2) пространстве Y отображение E непрерывно на $X \times C_{\inf}(X,Y)$, то для пространства $C_{\inf}(X,Y)$ выполняется условие (*).
- 3) (Теорема 3.3). Для того чтобы пространство $C_{\inf}(X,Y)$ удовлетворяло условию (*), достаточно, а в случае, когда X вполне регулярно, а Y локально линейно связно, и необходимо выполнение хотя бы одного из условий: (a) X локально псевдокомпактно, (б) Y локально компактно.
- **1. Основные понятия и обозначения.** Они те же, что и в работах [1–4]. Напомним лишь некоторые. Для произвольных пространства X, множества $A \subset X$ и точки $x \in X$ обозначим: τ_X и ϕ_X топология и соответственно семейство всех замкнутых множеств в X, $\tau_X(A) = \{U \in \tau_X \mid U \supset A\}$ ($\tau_X(x)$ при $A = \{x\}$), $[A]_X$ замыкание множества A в X. Если ρ допустимая (т. е. задающая топологию τ_X) метрика на X, $\varepsilon > 0$, то $B_{\rho}(x,\varepsilon) = \{y \in X \mid \rho(x,y) < \varepsilon\}$, $B_{\rho}(A,\varepsilon) = \bigcup \{B_{\rho}(a,\varepsilon) \mid a \in A\}$. Пространство X называют коллективно нормальным [10, с. 452], если любое дискретное в X семейство $\{F_t \in \phi_X \mid t \in T\}$ допускает дискретное в X семейство окрестностей $\{U_t \in \tau_X(F_t) \mid t \in T\}$. Каждый паракомпакт, в частности любое метризуемое пространство, коллективно нормальны [10, с. 453]. Скажем, что пространство X псевдокомпактно, если любое дискретное в X семейство непустых открытых в X множеств конечно. Для вполне регулярного X это определение совпадает с общепринятым [10, с. 310]. Отметим, что счетно компактность влечет псевдокомпактность, а в классе нормальных пространств верно и обратное [10, с. 310], и что псевдокомпактность сохраняется при непрерывных отображениях. Ясно также, что если пространство X псевдокомпактно, то псевдокомпактно и любое множество вида $[U]_X$, где $U \in \tau_X$. Наконец, назовем X локально псевдокомпактным, если для любой точки $x \in X$ найдется окрестность $U \in \tau_X(x)$, для которой $[U]_X$ псевдокомпактно.

2. Предварительные рассмотрения.

2.1. Определение [4]. Пару (U,V) открытых в X множеств назовем отмеченной, если $\varnothing \neq V \subset U$ и для любой упорядоченной пары (x,y) точек множества V найдется отображение $f \in C(X,X)$, для которого $f(U) \subset U, f(z) = z$ при $z \in X \setminus U$ и f(x) = y. Скажем, что пространство X локально транзитивно подвижное, если для любых точки $x \in X$ и окрестности $U \in \tau_X(x)$ можно подобрать окрестность $V \in \tau_X(x)$ так, чтобы пара (U,V) была отмеченной.

- **2.2.** Определение [4]. Пространство X назовем DC-связанным, если для любых бесконечных дизьонктных и дискретных в X множеств A и B найдется дискретное в X семейство связных компактных множеств F_n , $n \in \mathbb{N}$, причем $F_n \cap A \neq \emptyset$, $F_n \cap B \neq \emptyset$ при любом $n \in \mathbb{N}$.
- **2.3.** Лемма [4]. Если пространство X локально транзитивно подвижное, то для любых непустого компактного связного множества $F \subset X$ и окрестности $U \in \tau_X(F)$ можно указать окрестность $V \in \tau_X(F)$ такую, что пара (U,V) отмеченная.
- **2.4. Лемма** [4]. Пусть пространство X метризуемо. Тогда для любых дискретного в X семейства непустых множеств $F_n \in \varphi_X$, $n \in \mathbb{N}$, и последовательности чисел $\varepsilon_n > 0$, $\lim_{n \to \infty} \varepsilon_n = 0$, найдется допустимая метрика σ на X такая, что $\sigma(x,y) < \varepsilon_n$ при $\{x,y\} \subset F_n$, $n \in \mathbb{N}$.

На множестве C(X,Y) зададим некоторую топологию τ . Полученное пространство обозначим $C_{\tau}(X,Y)$.

- **2.5.** Определение ([5, 6], см. также [10, с. 177]). Отображение $E: X \times C_{\tau}(X,Y) \to Y$, определенное формулой E(x,f) = f(x), называют отображением вычисления. В случае, когда E непрерывно, топологию τ называют допустимой.
- **2.6.** Определение. Скажем, что пространство $C_{\tau}(X,Y)$ удовлетворяет условию (*), если при любом выборе точки $x \in X$ и отображения $f \in C(X,Y)$ можно указать окрестности $U \in \tau_X(x)$ и $V \in \tau(f)$ такие, что множество $[g(U)]_V$ компактно для любого отображения $g \in V$.

Далее рассматривается множество C(X,Y) с метризуемым пространством Y, Ω_Y — множество всех допустимых метрик на Y . Для каждой метрики $\rho \in \Omega_Y$ на C(X,Y) определены метрика равномерной сходимости $\mu = \mu(\rho)$, $\mu(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}$, и соответствующая топология равномерной сходимости $\tau_{\mu}^{(X,Y)}$ (здесь допускается равенство $\mu(f,g) = \infty$, что, очевидно, не влияет на топологию). Кроме того, на C(X,Y) определена инфимальная топология $\tau_{\inf}^{(X,Y)} = \bigcap\{\tau_{\mu}^{(X,Y)} \mid \mu = \mu(\rho), \rho \in \Omega_Y\}$ [4]. Пространство C(X,Y) с топологией $\tau_{\inf}^{(X,Y)}$ обозначим $C_{\inf}(X,Y)$.

2.7. Лемма. Пусть $\emptyset \neq A \subset X$, $\emptyset \neq V \in \tau_{\inf}^{(X,Y)}$, $\emptyset \neq W \in \tau_{\gamma}$ и множество $[f(A)]_{\gamma}$ компактно для любого отображения $f \in V$. Тогда множество $\langle A; V; W \rangle = \{ f \in V \mid [f(A)]_{\gamma} \subset W \}$ открыто в пространстве $C_{\inf}(X,Y)$.

Доказательство. Фиксируем произвольную метрику $\rho \in \Omega_{\gamma}$ и соответствующую $\mu = \mu(\rho)$. Пусть $f_0 \in \langle A; V; W \rangle$. Тогда найдется $\varepsilon > 0$, при котором $B_{\mu}(f_0, \varepsilon) \subset V$ и $B_{\rho}([f_0(A)]_{\gamma}, \varepsilon) \subset W$. Рассмотрим произвольные отображение $f \in B_{\mu}(f_0, \frac{\varepsilon}{3})$ и точку $y \in [f(A)]_{\gamma}$. Подберем точку $z \in f(A)$, z = f(a), $a \in A$, такую, что $\rho(y, z) < \frac{\varepsilon}{3}$. Ясно, что $\rho(y, f_0(a)) \leq \rho(y, f(a)) + \rho(f(a), f_0(a)) < \frac{2\varepsilon}{3}$, откуда $y \in B_{\rho}(f_0(a), \varepsilon) \subset B_{\rho}([f_0(A)]_{\gamma}, \varepsilon)$, и, следовательно, $[f(A)]_{\gamma} \subset B_{\rho}([f_0(A)]_{\gamma}, \varepsilon) \subset W$. Но тогда $f \in \langle A; V; W \rangle$. Итак, показано, что $B_{\mu}(f_0, \frac{\varepsilon}{3}) \subset \langle A; V; W \rangle$, что влечет открытость $\langle A; V; W \rangle$ в топологии $\tau_{\mu}^{(X,Y)}$. В силу произвольности выбора ρ , очевидно, $\langle A; V; W \rangle \in \tau_{\inf}^{(X,Y)}$. Лемма доказана.

3. Основные результаты.

3.1. Теорема. Если пространство $C_{\inf}(X,Y)$ удовлетворяет условию (*), то отображение E непрерывно. Доказательство. Фиксируем произвольные $x_0 \in X$, $f_0 \in C(X,Y)$ и $W_0 \in \tau_Y(y_0)$, где $y_0 = f_0(x_0)$, и подберем $U_0 \in \tau_X(x_0)$ и $V_0 \in \tau_{\inf}^{(X,Y)}(f_0)$ так, чтобы множество $[g(U_0)]_Y$ было компактно для любого $g \in V_0$, и, кроме того, $[f_0(U_0)]_Y \subset W_0$. Обозначим $H_0 = \langle U_0; V_0; W_0 \rangle$. По лемме 2.7 $H_0 \in \tau_{\inf}^{(X,Y)}(f_0)$. Несложная проверка соотношения $E(U_0 \times H_0) \subset W_0$ завершает доказательство.

Обращение теоремы 3.1 докажем при некоторых дополнительных ограничениях.

3.2. Теорема. Если при локально транзитивно подвижном и DC-связанном пространстве Y отображение E непрерывно на $X \times C_{\inf}(X,Y)$, то для пространства $C_{\inf}(X,Y)$ выполняется условие (*).

Доказательство. Допустим от противного существование точки $x_0 \in X$ и отображения $f_0 \in C(X,Y)$ таких, что для любых окрестностей $U \in \tau_X(x_0)$ и $V \in \tau_{\inf}^{(X,Y)}(f_0)$ можно выбрать отображение $g \in V$, для которого множество $[g(U)]_{Y}$ не компактно. Фиксируем дискретное в Y бесконечное множество $P \subset Y \setminus \{y_0\}$, где $y_0 = f_0(x_0)$, и окрестность $W_0 \in \tau_Y(y_0)$, $W_0 \cap P = \emptyset$. Непрерывность E позволяет выбрать окрестности $U_0 \in \mathsf{t}_{\scriptscriptstyle X}(x_0)$ и $V_0 \in \mathsf{t}_{\scriptscriptstyle \inf}^{\scriptscriptstyle (X,Y)}(f_0)$ так, чтобы $E(U_0 \times V_0) \subset W_0$. По допущению существует отображение $g \in V_0$, для которого множество $[g(U_0)]_V$ не компактно и, следовательно, содержит бесконечное дискретное в Y множество T. Коллективная нормальность пространства Y влечет существование дискретного в Y семейства окрестностей $G_t \in \tau_y(t), t \in T$. Выбирая точки $b_t \in G_t \cap g(U_0)$, получим бесконечное дискретное в Y множество $B \subset g(U_0)$. DC-связанность пространства Y позволяет указать дискретное в Y семейство связных компактов F_n , $n \in \mathbb{N}$, и точки $p_n \in F_n \cap P$ и $b_n \in F_n \cap B$, $b_n = g(a_n)$, $a_n \in U_0$. Раздуем компакты F_n до дискретного в Y семейства окрестностей $H_n \in \tau_Y(F_n)$, затем подберем окрестности $Q_n \in \tau_Y(F_n)$, $[Q_n]_Y \subset H_n$, и, используя лемму 2.3, отображения $h_n \in C(Y,Y)$, $h_n(Q_n) \subset Q_n$, $h_n(y) = y$ при $y \in Y \setminus Q_n$ и $h_n(b_n) = p_n$. Далее обозначим $g_n = h_n \circ g$. По лемме 2.4 найдется метрика $\sigma \in \Omega_Y$, для которой $\sigma(y,z) < \frac{1}{n}$ при $\{y,z\} \subset [Q_n]_Y$. Очевидно, $\sigma(g(x), g_n(x)) < \frac{1}{n}$ для любой точки $x \in X$, откуда $\mu(g, g_n) \le \frac{1}{n}$, где $\mu = \mu(\sigma)$. Поскольку $B_{\mu}(g,\frac{2}{m})\subset V_0$ при некотором $m\in \mathbb{N}$, получаем $g_m\in V_0$, но тогда $g_m(U_0)\subset E(U_0\times V_0)\subset W_0$. Однако $g_m(a_m) = h_m(g(a_m)) = h_m(b_m) = p_m \notin W_0$. Получаем противоречие, что завершает доказательство.

3.3. Теорема. Для того чтобы пространство $C_{\inf}(X,Y)$ удовлетворяло условию (*), достаточно, а в случае, когда X вполне регулярно, а Y локально линейно связно, и необходимо выполнение хотя бы одного из условий: (a) X локально псевдокомпактно, (б) Y локально компактно.

Доказательство. Достаточность (а) очевидна. Покажем достаточность (б). Фиксируем произвольные $x_0 \in X$ и $f_0 \in C(X,Y)$ и выберем окрестность W_0 точки $y_0 = f_0(x_0)$, для которой замыкание $[W_0]_Y$ компактно. Подберем окрестность $U_0 \in \tau_X(x_0)$ так, чтобы $[f_0(U_0)]_Y \subset W_0$ и рассмотрим множество $H_0 = \{f \in C(X,Y) | [f(U_0)]_Y \subset W_0\}$. Очевидно, $f_0 \in H_0$ и множество $[f(U_0)]_Y$ компактно для любого $f \in H_0$. Остается показать, что $H_0 \in \tau_{\inf}^{(X,Y)}$. Для произвольных метрики $\rho \in \Omega_Y$ и отображения $g_0 \in H_0$ найдется $\epsilon > 0$ такое, что $B_{\rho}([g_0(U_0)]_Y, \epsilon) \subset W_0$. Рассуждая как при доказательстве леммы 2.7, покажем, что если $g \in B_{\mu}(g_0, \frac{\epsilon}{3})$, где $\mu = \mu(\rho)$, то $[g(U_0)]_Y \subset B_{\rho}([g_0(U_0)]_Y, \epsilon) \subset W_0$, откуда следует включение $B_{\mu}(g_0, \frac{\epsilon}{3}) \subset H_0$. Показав таким образом, что $H_0 \in \tau_{\mu}^{(X,Y)}$, мы получаем фактически $H_0 \in \tau_{\inf}^{(X,Y)}$. Достаточность (б) доказана.

Необходимость докажем, допустив от противного, что ни (a), ни (б) не выполняются. Тогда найдутся точки $x_0 \in X$ и $y_0 \in Y$ такие, что $[U]_X$ не псевдокомпактно и $[W]_Y$ не компактно при любом выборе окрестностей $U \in \tau_X(x_0)$ и $W \in \tau_Y(y_0)$. Рассмотрим отображение $f_0 \in C(X,Y), \ f_0(X) = \{y_0\},$ и подберем окрестности $U_0 \in \tau_X(x_0)$ и $V_0 \in \tau_{\inf}^{(X,Y)}(f_0)$ так, чтобы $[f(U_0)]_Y$ было компактно для любого $f \in V_0$. Далее фиксируем некоторую метрику $\rho \in \Omega_Y$ и выберем: $\varepsilon > 0$ так, чтобы $B_\mu(f_0,\varepsilon) \subset V_0$, где $\mu = \mu(\rho)$; линейно связную окрестность $W \in \tau_Y(y_0), \ W \subset B_\rho(y_0, \frac{\varepsilon}{2})$; дискретное в Y множество $\{b_n \mid n \in \mathbb{N}\} \subset W$; наконец, дискретное в X семейство непустых множеств $U_n \in \tau_X, \ n \in \mathbb{N}, \ U_n \subset U_0$ для любого $n \in \mathbb{N}$. Для каждого $n \in \mathbb{N}$ фиксируем точку $a_n \in U_n$ и зададим функцию $h_n \in C(X,I)$, где $I = [0;1], \ h_n(a_n) = 1, \ h_n(x) = 0$ при $x \in X \setminus U_n$, а также отображение $\varphi_n \in C(I,W), \ \varphi_n(0) = y_0, \ \varphi_n(1) = b_n$, затем положим $f_n = \varphi_n \circ h_n$. Рассмотрим отображение $f: X \to Y, f(x) = f_n(x)$ при $x \in U_n$,

 $f_n(x) = y_0$ при $x \in X \setminus \bigcup_{n=1}^\infty U_n$. В силу дискретности семейства $\{U_n \mid n \in \mathbf{N}\}$ отображение f непрерывно. Несложно также проверить, что $f \in V_0$, но $f(U_0) \supset \{b_n \mid n \in \mathbf{N}\}$, и, следовательно, $[f(U_0)]_Y$ не компактно. Пришли к противоречию. Теорема доказана.

Следующая теорема показывает, что инфимальная топология может оставаться допустимой при достаточном «удалении» от класса метризуемых пространств.

3.4. Теорема. Отображение E непрерывно, если для пространств X и $C_{\inf}(X,Y)$ выполняется первая аксиома счетности.

До казательство. От противного предположим, что E разрывно в точке $(x_0,f_0)\in X\times C_{\inf}(X,Y)$, т. е. существует окрестность W_0 точки $y_0=f_0(x_0)$ такая, что $E(U\times V)\not\subset W_0$ для любых окрестностей $U\in \tau_X(x_0)$, $V\in \tau_{\inf}^{(X,Y)}(f_0)$. Выберем окрестность $U_0\in \tau_X(x_0)$, для которой $f_0(U_0)\subset W_0$, и фиксируем локальные базы $\{U_n\mid n\in {\bf N}\}$ и $\{V_n\mid n\in {\bf N}\}$ точки x_0 и отображения f_0 соответственно, $U_0\supset U_n\supset U_{n+1},\ V_n\supset V_{n+1}$ для любого $n\in {\bf N}$. По предположению можно указать точки $x_n\in U_n$ и отображения $f_n\in V_n$ так, чтобы $f_n(x_n)\not\in W_0$ при каждом $n\in {\bf N}$. Рассмотрим компактное множество $F=\{x_n\mid n\in {\bf N}\}\bigcup\{x_0\}$ и множество $H_0=\{f\in C(X,Y)\mid f(F)\subset W_0\}$. Очевидно, $f_0\in H_0$ и H_0 открыто в компактно открытой топологии [10, с. 243]. Поскольку последняя содержится в любой топологии вида $\tau_{\mu}^{(X,Y)}$ [10, с. 390], она содержится и в $\tau_{\inf}^{(X,Y)}$. Но тогда $H_0\in \tau_{\inf}^{(X,Y)}$, и, следовательно, $H_0\supset V_m$ для некоторого $m\in {\bf N}$. С одной стороны, $E(F\times V_m)\subset E(F\times H_0)\subset W_0$. С другой — $E(F\times V_m)\ni E(x_m,f_m)=f_m(x_m)$, а $f_m(x_m)\not\in W_0$. Получили противоречие. Теорема доказана.

- 1. Тимохович В.Л., Фролова Д.С. // Вестн. БГУ. Сер. 1. 2009. № 3. С. 84.
- 2. Кукрак Г.О., Тимохович В.Л. // Там же. 2010. № 1. С. 144.
- 3. Фролова Д.С. // Там же. 2011. № 1. С. 116.
- 4. Тимохович В.Л., Фролова Д.С. // Там же. № 2. С. 136.
- 5. Arens R. // Annals of Math. 47. 1946. P. 480.
- 6. Arens R., Dugundji J. // Pacific J. Math. 1. 1951. P. 5.
- 7. McCoy R., Ntantu I. Topological Properties of Spaces of Continuous Functions. Lecture Notes in Math. Springer-Verlag, 1988. Vol. 1315.
 - 8. Escardo M.H., Heckmann R. // Topology Proceedings 26. 2001–2002. № 2. P. 545.
- 9. Georgiou D.N., Iliadis S.D., Mynard F. Function space topologies. Open Problems in Topology II by Elliott Pearl. Elsevier. 2007. P. 15.
 - 10. Энгелькинг Р. Общая топология. М., 1986.

Поступила в редакцию 13.04.11.

Владимир Леонидович Тимохович – кандидат физико-математических наук, доцент кафедры геометрии, топологии и методики преподавания математики.

Дарья Сергеевна Фролова – аспирант кафедры геометрии, топологии и методики преподавания математики. Научный руководитель – В.Л. Тимохович.