Геномика, протеомика, липидомика, феномика (и т.д.). Системная биология и биоинформатика

ГЕНЕТИЧЕСКИЕ ОСНОВЫ МАРКЕР-СОПУТСТВУЮЩЕЙ СЕЛЕКЦИИ ТОМАТА

Кильчевский А.В. 1 , Малышев С.В. 1 , Бабак О.Г. 1 , Грушецкая З.Е. 1 , Некрашевич Н.А. 1 , Аджиева В.Ф. 1 , Добродькин М.М. 2 , Зайцева И.Е. 2

ДНК-маркирование селекционного материала позволяет отбирать среди большого объема формы с ценными комбинациями генов и создавать в кратчайшие сроки гибриды с желаемой комбинацией признаков.

Целью наших исследований является разработка и использование ДНК-маркеров для создания форм томата с высокими вкусовыми и технологическими качествами, а также устойчивых к комплексу заболеваний.

Одним из направлений в селекции тепличных томатов является создание лёжких гибридов, где большой интерес представляет использование генов nor (non-ripening), rin (ripening ingibitor), alc (alcobaca- nor^4). Нами разработаны и протестированы STS маркеры к генам созревания томата rin и nor, CAPS и dCAPS маркеры к генам созревания томата alc и nor.

Вторым направлением является разработка и использование ДНК-маркеров в селекции на повышенное содержание каротиноидов в плодах томата по следующим генам: Beta carotene (B), old-gold (og), old-gold crimson (og c), tangerine (t), Delta (Del), high pigment 1 (hp-1), high pigment -2dg (hp-2dg), green flesh (gf), green flesh-3(gf-3), green flesh-5 (gf-5).

С целью комбинирования генов, удлиняющих период сохранности плодов (nor, rin, nor^A) и повышенное содержание каротиноидов (B, og^c , t, gf-3) были созданы гибриды по топкроссной схеме и проведены их двулетние испытания. В настоящее время ведется работа по отбору форм, сочетающих желаемые комбинации генов. Отобраны генотипы с комбинацией генов $nor/nor//og^c/og^c$ и $nor^{wt}/nor^{wt}//og^c/og^c$, nor/nor//B/B и $nor^{wt}/nor^{wt}//B/B$, $rin/rin//og^c/og^c$ и $rin^{wt}/rin^{wt}//og^c/og^c$, rin/rin//B/B и $rin^{wt}/rin^{wt}//B/B$, которые являются ценными родительскими линиями. Гибрид между данными формами имеет повышенное содержание каротиноидов и длительный период сохранности.

Третьим направлением является отбор селекционного материала с использованием методов MAS на устойчивость к заболеваниям. На основе ДНК-типирования материала на устойчивость к кладоспориозу (Cf-2, Cf-5), фузариозу (I-2) и нематоде (Mi- I.2) созданы гибриды с комплексной устойчивостью. Параллельно созданы гибриды, сочетающие гены повышенного содержания каротиноидов и устойчивости к заболеваниям. В настоящее время проводится их испытание и ДНК-скрининг интересуемых форм.

Применение данных методов позволит в кратчайшие сроки создавать промышленные гибриды, с высоким качеством плодов и комплексной устойчивостью к заболеваниям.

¹Институт генетики и цитологии НАН Беларуси, Минск, Беларусь; o.babak@igc.bas-net.bv

²Белорусская государственная сельскохозяйственная академия, Горки, Беларусь