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1. INTRODUCTION

In forecasting (prediction) and recognition of data
 that are dependent on time  and have stochastic

nature the time series models are used. The theory of
time series analysis is deep developed for “continu-
ous” data when the observation space  is some
Euclidean space or its subspace of nonzero Lebesgue
measure.

In practice, however, (because of “digitalization”
of our real world) the researchers need to use discrete-
valued models of time series [1–10] when the observa-
tion space  is some discrete set with cardinality

. Give some applied areas where discrete-val-
ued time series models are extremely helpful: bioinfor-
matics for analysis of genetic sequences; information
systems for information protection; meteorology for
weather prediction; social science for modelling of
dynamics of social behavior; public health and per-
sonalized medicine; prediction of environmental pro-
cesses; financial engineering; telecommunications;
alarm systems. In statistical analysis (estimation of
model parameters, hypotheses testing, forecasting,
pattern recognition) of integer-valued time series two
main approaches are used: (1) the approach based on
GLM-models developed by Fokianos and Kedem
[11]; (2) the approach based on thinning operators
[12].

In this paper we develop a new approach [8] based
on high-order Markov chains.
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2. MATHEMATICAL MODEL
AND ITS PROPERTIES

Let  be the complete probability space. In
this space we observe count time series  with
discrete time  and denumera-
ble state space . Let us say that this
time series satisfies the Poisson conditionally nonlin-
ear autoregressive model of order 
(abbreviation ) if the conditional probabil-
ity distribution of  under its prehistory is Poisson
distribution:

that is

(1)

where

(2)

 is the column vector of unknown
parameters,

is the column vector of prehistory of the depth s,

is the column vector of  predefined base functions;
 means transposition of matrix .
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Lemma 1. For the model (1), (2) the first and the sec-
ond order moments of the conditional probability distri-
bution are

(3)

Proof. Expressions (3) follow from the properties of
the Poisson probability distribution [13].

Lemma 2. For the model (1), (2) the following equa-
tions hold:

(4)

Proof. Expression (4) follows from (2).
Theorem 1. Count time series determined by the

model (1), (2) is the denumerable homogeneous Markov
chain of order  with state space  and the one-step tran-
sitions probabilities:

(5)

Proof. Expression (5) follows from (1), (2) and
definition of the high-order Markov chain [14]:

3. FREQUENCIES-BASED ESTIMATORS
AND THEIR PROPERTIES

To construct a statistical estimator for vector of
parameters  based on the observed realization

 =  ∈  of length  let us use the
approach proposed in [8] that exploits the so-called
frequencies-based estimators. Introduce the notation:

 = {1, if C is true, 0 else} is the indicator function
of the event ;

where , and  for all
.
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Theorem 2. For the model (1), (2), under the
observed realization  =  ∈  as

 and  the statistical estimator

(6)

is strongly consistent and asymptotically normal estima-
tor of the conditional mean  =  determined by
Lemma 1:

(7)

Proof. According to (6) estimator  is the sam-
ple mean for subsample , if  = , so using
Lemma 1 and properties of the sample mean [14] we
come to the conclusion.

Using Lemma 2 consider a system of  equa-
tions w.r.t.  unknown parameters :

(8)

Introduce the notation:

(9)

To solve the system (8) of  equations w.r.t. 
parameters we will minimize the quadratic loss func-
tion:

(10)

Theorem 3. For the model (1), (2), under the
observed realization  =  ∈ , if

 and , then the FBE-estimator of :

(11)
is the unique solution of the minimization problem (10),
where  is determined in (6).

Proof. The equation

where  means the vector with  zero components,
has only one stationary point

Second derivative  is positive defi-
nite matrix, because of definition (9) and Theorem 3
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condition: . Therefore,  is the unique
minimum in (10).

Theorem 4. Under Theorem 3 conditions the FBE-
estimator (11) is strongly consistent estimator of :

Proof. From Theorem 2 and from properties of
strongly consistent estimator [14] we get the following
almost sure convergence:

(12)

Multiplying expression  by , transposing

and summing by  we get

Using (12) we come to the expression

thus . From the last expression we get

.

4. FORECASTING OF TIME SERIES
Let us come to construction of forecasting statistics

to predict future values , , in  step
ahead, based on the observed realization  =

 ∈  of length .
Theorem 5. Under Theorem 3 conditions the optimal

forecasting statistic for the future state  ∈ ,
that minimizes the probability of error  is

(13)

where  means the floor function of , and  is deter-
mined by (11).

Proof. Using Theorem 1 on forecasting of homoge-
neous Markov chains from [7] we have:

According to [13] the mode of the Poisson distribu-
tion is [ ]. Using (5) and putting  from (11) instead of
the true value  we get (13).
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PATTERN RECOGNIT
Construction of forecasting statistics  for 
steps ahead is made iteratively by using (5) and putting

, …,  instead of their unknown values.

5. HYPOTHESES TESTING
In statistical forecasting we usually need to test

some hypotheses on true values of parameter .
Let us construct statistical test under 

model for two hypotheses:

(14)

where  is some known a priori hypothetical
value.

Theorem 6. Under Theorem 3 conditions the FBE-
estimator (11) is asymptotically normal estimator of :

(15)

where  is the asymptotic covariance matrix.
Proof. Expression (15) follows from Theorem 2 and

from theorem [14] on functional transformation of
asymptotically normal sequences.

Using Theorem 6 we construct the decision rule:

(16)

where  is the decision  is true},  is

the -quantile for the  distribution with  degrees
of freedom,  is the fixed significance level,

6. RESULTS OF COMPUTER EXPERIMENTS
Experiments were performed in R computer lan-

guage on simulated and real data.

6.1. Simulated Data
For the model (1), (2) with the following parameters
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Fig. 1. Dependence of the mean square error estimate from
. 
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Figure 1 presents dependence of the Monte-Carlo
estimate of the mean square error (MSE) for the con-
structed statistic (11)

From log2T, where M = 100 is the number of Monte-
Carlo replications. In experiments we use two values of K0:
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(a) ; (b) .
It is seen that increasing of  leads to decreasing of

the empirical MSE.
Figure 2 presents dependence of the power  of the

test (16) on  with the following parameters:

6.2. Real Data
We compare forecasting statistic (13) based on the

 model (1), (2) with forecasting statistic based
on Fokianos model [15] on the time series of the
monthly number of killed drivers of light goods vehi-
cles in Great Britain between January 1969 and
December 1984 [16] illustrated in Fig. 3.

For estimation of parameter  we use data between
January 1969 and December 1983  and for pre-
diction – values between January 1984 and December
1984 ( ). Figure 4 presents results of prediction in

 steps ahead by the model (1), (2), (11), (13) with

The estimate for θ computed by (11) is

As it is seen from Fig. 4 that the constructed in this
paper forecasting statistic is more precise for .

7. CONCLUSIONS
The following results are obtained in this paper.
(1) The Poisson conditionally nonlinear autore-

gressive model of order  ( ) is proposed.
(2) The strongly consistent frequencies-based esti-

mator for  is constructed.
(3) The asymptotic properties of the FBE are ana-

lyzed.
(4) Algorithm of forecasting for  steps ahead is

proposed.
(5) The performed computer experiments on real

and simulated data are in agreement with the theoret-
ical results.
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Fig. 4. Comparison of results of prediction. 
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