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Abstract—Poisson conditionally nonlinear autoregressive model is proposed for integer-valued time series.
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1. INTRODUCTION

In forecasting (prediction) and recognition of data

{x,} that are dependent on time ¢ and have stochastic
nature the time series models are used. The theory of
time series analysis is deep developed for “continu-
ous” data when the observation space A is some
Euclidean space or its subspace of nonzero Lebesgue
measure.

In practice, however, (because of “digitalization”
of our real world) the researchers need to use discrete-
valued models of time series [1—10] when the observa-
tion space A is some discrete set with cardinality
|A| < +o0. Give some applied areas where discrete-val-
ued time series models are extremely helpful: bioinfor-
matics for analysis of genetic sequences; information
systems for information protection; meteorology for
weather prediction; social science for modelling of
dynamics of social behavior; public health and per-
sonalized medicine; prediction of environmental pro-
cesses; financial engineering; telecommunications;
alarm systems. In statistical analysis (estimation of
model parameters, hypotheses testing, forecasting,
pattern recognition) of integer-valued time series two
main approaches are used: (1) the approach based on
GLM-models developed by Fokianos and Kedem
[11]; (2) the approach based on thinning operators
[12].

In this paper we develop a new approach [8] based
on high-order Markov chains.
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2. MATHEMATICAL MODEL
AND ITS PROPERTIES

Let (Q, F, P) be the complete probability space. In
this space we observe count time series x, € A with
discrete time € Z ={...,—1, 0, 1, ...} and denumera-
ble state space A = N, ={0, 1, ...}. Let us say that this
time series satisfies the Poisson conditionally nonlin-
ear autoregressive model of order se N ={l, 2, ...}
(abbreviation IICNAR(s)) if the conditional probabil-

ity distribution of x, under its prehistory is Poisson
distribution:

L{X, | X1, %5, = TI(A),

that is
Pix, = klx,_,x }:k—ke‘x ke A
t =19 V=25 k' ) D (1)
A =MXD),

where
MX[) = exp(0"P(X[5)) = exp(ze,-wxx,"j)], ()
i=1
0= (6,)e R" is the column vector of unknown
parameters,
X = (Xn X, Xy) € A
is the column vector of prehistory of the depth s,

W () = (Y (u), .y, (1)) : A — R

is the column vector of m predefined base functions;
Q' means transposition of matrix Q.
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Lemma 1. For the model (1), (2) the first and the sec-
ond order moments of the conditional probability distri-
bution are

W) = EX = 0 =MD,
O () = Vix|X =T = M), P e A
Proof. Expressions (3) follow from the properties of
the Poisson probability distribution [13].

Lemma 2. For the model (1), (2) the following equa-
tions hold.

3)

In(MJ) = 0¥, Jie A 4)

Proof. Expression (4) follows from (2).

Theorem 1. Count time series determined by the
model (1), (2) is the denumerable homogeneous Markov
chain of order s with state space A and the one-step tran-
sitions probabilities:

P D) 1= P, = JoalXiS = Iy = Ve °(5)
A=MJ)) =exp(O'W(,)), Jed, j,€A
Proof. Expression (5) follows from (1), (2) and
definition of the high-order Markov chain [14]:
Pix; = jboy = Jrooeen X = i)
= P{x, = jtlxt—l = Jitoee s Ximg = Jroshs
JiseeesJy €A, 1> 5.

3. FREQUENCIES-BASED ESTIMATORS
AND THEIR PROPERTIES

To construct a statistical estimator for vector of
parameters O € R” based on the observed realization

X! = (x,%,...,x;) € A" of length T let us use the
approach proposed in [8] that exploits the so-called
frequencies-based estimators. Introduce the notation:
I{C} = {1, if Cis true, 0 else} is the indicator function
of the event C;

T
VU = Y IS =00, S e A

t=s5+1
BXTY =0 e A :v(J) > 0 = 30, gy,

where K <T-s, and v(J;'") > vy for all
i<jij=1..K.
Define a function
Ky = K,(m,T,s): N> > N, m<K,(mT,s)<K,
nondecreasing w.r.t. m. Also define the subset
By =W g2 gsEy < px
with the cardinality | B)| = K,
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Theorem 2. For the model (1), (2), under the
observed realization X{ = (x,,%,...,x;) € A’ as

T — +o and v(J;) — +oo the statistical estimator

T
AU = D X (X = I/ (6)

t=s+1
is strongly consistent and asymptotically normal estima-

tor of the conditional mean W(J,) = MJ, ) determined by
Lemma 1:

VT@UT) = MID)) S NOAY)). (7

Proof. According to (6) estimator [i(J;) is the sam-

ple mean for subsample {x,, if X, ,’__Sl = J;'}, so using
Lemma 1 and properties of the sample mean [14] we
come to the conclusion.

Using Lemma 2 consider a system of K, > m equa-
tions w.r.t. m unknown parameters 6 = (6,,6,,...0,,)":

0'W(J)) = In(i(J})),
Introduce the notation:

W(0)= > OW()-In(@J))y,

J: € B, (8)

JeB,
D= WUHWU), ©)
JieB,
C = In@UuN)¥U).
JieB,

To solve the system (8) of K, equations w.r.t. m
parameters we will minimize the quadratic loss func-
tion:

W (0) — ming. (10)
Theorem 3. For the model (1), (2), under the
observed realization X! = (x1,X55..0sx7) € A", if
|D| # 0 and T — +oo, then the FBE-estimator of O:
6=D"'C (11)
is the unique solution of the minimization problem (10),
where (\(J}) is determined in (6).
Proof. The equation
VW (0)=2D6-2C =0,,

where 0,, means the vector with m zero components,
has only one stationary point

0=D"C.

Second derivative Vgl (0) = 2D is positive defi-
nite matrix, because of definition (9) and Theorem 3
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condition: |D| # 0. Therefore, 0 = D'C is the unique
minimum in (10).

Theorem 4. Under Theorem 3 conditions the FBE-
estimator (11) is strongly consistent estimator of ©:

650, T = +oo

Proof. From Theorem 2 and from properties of
strongly consistent estimator [14] we get the following
almost sure convergence:

> @) S D In@UD))ER).  (12)
JieB, JieB,
Multiplying expression (4) by W'(J;), transposing

and summing by J; € B, we get

2 U)W = [ 2 YUY, )Je = DO.

JieB, JieB,

Using (12) we come to the expression

> @YW S D In(u )W)

JieB, JieB,

= Y WUNHP'UDS,

JieB,

thus DO = C 3 DO. From the last expression we get

~ a.s.

06— 0.

4. FORECASTING OF TIME SERIES

Let us come to construction of forecasting statistics
to predict future values x;,.€ 4, T=1, in T step
ahead, based on the observed realization X 1T =
(X1, X500, xp) € A" of length T.

Theorem 5. Under Theorem 3 conditions the optimal
Jorecasting statistic for the future state x;,, € A(t =1),
that minimizes the probability of error P{X;,, # Xy} is

Zrn = exp(OW(X7,,)), (13)

where y means the floor function of y, and 0 is deter-
mined by (11).

Proof. Using Theorem 1 on forecasting of homoge-
neous Markov chains from [7] we have:

A . T
Xpy = argmax ;. 4 P Xri1-g)-

According to [13] the mode of the Poisson distribu-

tion is [A]. Using (5) and putting 6 from (11) instead of
the true value 6 we get (13).
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Construction of forecasting statistics X, for T > 2
steps ahead is made iteratively by using (5) and putting

X7 i ---» Xy4o_, iNstead of their unknown values.

5. HYPOTHESES TESTING
In statistical forecasting we usually need to test
some hypotheses on true values of parameter 6.

Let us construct statistical test under [IICNAR (s)
model for two hypotheses:

Hy =10 =06%,

— 14
H ={0=£06%=H, (9

where 0* € R" is some known a priori hypothetical
value.

Theorem 6. Under Theorem 3 conditions the FBE-
estimator (11) is asymptotically normal estimator of ©:

JT (6-0% > N(0,.J),

where J is the asymptotic covariance matrix.

Proof. Expression (15) follows from Theorem 2 and
from theorem [14] on functional transformation of
asymptotically normal sequences.

Using Theorem 6 we construct the decision rule:
0 A <A
1 Ar>A

(15)

d = dy(X]') = { (16)
where d = i is the decision {H, is true}, A = F);zl (d-71)is
the (1 — 1)-quantile for the an distribution with m degrees
of freedom, T € (0,1) is the fixed significance level,
Ay =TO —0%)J7' (6 - 6%),

Ky
2 1 -1 5,00 \qg 1y 7509\ =1
J=TY ———— D VY({U;""H)VY'(J;")D .
IR ‘ 1
6. RESULTS OF COMPUTER EXPERIMENTS

Experiments were performed in R computer lan-
guage on simulated and real data.

6. 1. Simulated Data
For the model (1), (2) with the following parameters

s=3, m=10, u=(u,u,uy), Y@ =1,
V() =w,  YsW) =y, Waw) = w3, Yu(u) = uy,
bs@) =w, W) =, ) =us,
Vs(u) = wy,  Wolu) = wuz,  Yyo(u) = w3,

0 =(—0.04, - 0.017, —0.034, 0.134, 0.004, —0.029,
—-0.083, 0.03, - 0.015, — 0.038).
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Fig. 3. Monthly number of killed drivers in Great Britain.

Figure 1 presents dependence of the Monte-Carlo
estimate of the mean square error (MSE) for the con-
structed statistic (11)

M
Efo-6y=> 0" -0"y@" - 6”)/M.
i=1

From log, 7, where M = 100 is the number of Monte-
Carlo replications. In experiments we use two values of K
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(a) K, = m = 10; (b) K, = 2m = 20.

Itis seen that increasing of K|, leads to decreasing of
the empirical MSE.

Figure 2 presents dependence of the power w of the
test (16) on 7" with the following parameters:

Yw) =1, W) =u,
Ys(u) =y, W) = uu,,
0* = (-0.03, 0.1, — 0.7, 0.1),
H, ={0=(-0.07, 0.1, - 0.5, 0.1},
£=0.05 K,=4

S=27 m:47 u:(ul7u2)’

6.2. Real Data

We compare forecasting statistic (13) based on the
ITCNAR model (1), (2) with forecasting statistic based
on Fokianos model [15] on the time series of the
monthly number of killed drivers of light goods vehi-
cles in Great Britain between January 1969 and
December 1984 [16] illustrated in Fig. 3.

For estimation of parameter O we use data between
January 1969 and December 1983 (I" = 180) and for pre-
diction — values between January 1984 and December
1984 (T = 12). Figure 4 presents results of prediction in
T = 12 steps ahead by the model (1), (2), (11), (13) with

s=4, m=5K,=K =176,
u =, uy,us,u,), Yi(u)=u,
Vo) =, W) =u;, W) = uy,
s(U) = uuy.

The estimate for 6 computed by (11) is
6= (0.148, 0.02, 0.019, 0.173, — 0.014).

As it is seen from Fig. 4 that the constructed in this
paper forecasting statistic is more precise for T < 6.

7. CONCLUSIONS

The following results are obtained in this paper.

(1) The Poisson conditionally nonlinear autore-
gressive model of order s (ITCNAR(s)) is proposed.

(2) The strongly consistent frequencies-based esti-
mator for [ICNAR (s) is constructed.

(3) The asymptotic properties of the FBE are ana-
lyzed.

(4) Algorithm of forecasting for t steps ahead is
proposed.

(5) The performed computer experiments on real
and simulated data are in agreement with the theoret-
ical results.
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Fig. 4. Comparison of results of prediction.

The developed IICNAR(s) model can be used in

robust statistical analysis [17].
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