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Детально исследованы модуляционные характеристики инжекционных полупроводниковых лазе-
ров, излучающих в области 1.5 мкм, которые служат основными источниками для применения в воло-
конно-оптических информационных системах. Наиболее подробно учтены и рассмотрены поляризацион-
ные эффекты при перестройке длины волны генерируемого излучения.  
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Введение  
На практике требуются одночастотные лазеры с узкой линией излучения. Часто линию 

излучения необходимо перестраивать в определенном диапазоне в пределах полосы усиления. 
Наиболее полно этим требованиям отвечают полупроводниковые лазеры с внешними волокон-
ными брэгговскими решетками [1]. При селекции длины волны поляризация излучения опреде-
ляет порог и мощность генерации [2, 3]. Поляризации излучения влияет также на режимы не-
линейного отклика лазера [4].  

В данной работе детально исследованы модуляционные характеристики полупроводни-
ковых лазеров, излучающих в области 1.5 мкм, которые служат основными источниками для 
применения в волоконно-оптических информационных системах. Подробно учтены поляриза-
ционные эффекты при перестройке длины волны излучения и рассмотрены амплитудно-
отстроечные характеристики (АОХ).  

1. Основные уравнения и используемые параметры  
Режимы модуляции динамически одночастотных (ДО) гетеролазеров рассмотрим в сис-

теме GaInAs–GaInAsP с двумя квантовыми ямами. Генерация осуществляется на одной про-
дольной моде, которая при использовании селективного резонатора относится к определенной 
области полосы усиления. Динамика генерации излучения на частоте g описывается системой 
скоростных уравнений для плотности фотонов в резонаторе S и концентрации неравновесных 
носителей тока N [4]:  
                         g l a sp( ( ) )S v k k S N R       ,    a sp sp g a' ( )N j edN R v k S N       . 

Здесь v — скорость света в активной области;  — коэффициент заполнения резонатора;  
 — параметр оптического ограничения; k(g) и kl — коэффициенты усиления и потерь;  
Rsp — скорость спонтанной рекомбинации; sp — квантовый выход люминесценции;  — ко-
эффициент, определяющий вклад спонтанного излучения в генерирующую моду; j — плот-
ность тока накачки;  — инжекционная эффективность; Na — число квантовых ям в активной 
области; d — ширина квантовых ям.  

Спектр усиления k(g) и скорость спонтанной рекомбинации Rsp определяются в модели 
оптических переходов без правила отбора по волновому вектору электрона [5, 6]. Начальные 
уровни электронных и дырочных основных подзон — Ec1, Evh1, Evl1. Усиление на переходах с 
участием тяжелых дырок начинается при g  1, а переходы на состояния легких дырок вклю-
чаются, если g ≥ 2. Энергии h1 и h2 соответствуют начальным переходам на состояния тя-
желых и легких дырок. Согласно [5, 6], для системы GaInAs–GaInAsP задавались следующие 
параметры: d = 5 нм, T = 300 K, Eg = 0.718 эВ, ΔEc = 0.137 эВ, ΔEv = 0.205 эВ, Ec1 = 69.7 мэВ, 
Evh1 = 27.0 мэВ, Evh2 = 104.5 мэВ, Evl1 =88.4 мэВ, Na = 2,  = 0.845  10–2, Na = 10–5,  = 1. Эф-
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фективные массы и параметры компонентов гетероструктуры взяты из [7]. Начальная энергия 
квантов h1 = Eg + Ec1 + Evh1 = 0.8147 эВ (1 = 1.52 мкм); h2 = Eg + Ec1 + Evl1 = 0.8761 эВ (2 = 1.42 
мкм). Переходы из состояний выше скачка зоны проводимости на состояния второй подзоны 
тяжелых дырок (с энергией Evh2) начинаются с h3 = Eg + ΔEc + Evh2 = 0.9595 эВ (3 = 1.29 мкм). 
Параметры sp и  полагаются близкими к единице (1/sp  1.2), и учет их изменений важен 
при анализе температурных эффектов.  

Для рассматриваемой квантоворазмерной системы выполняется прямая связь между 
химическими потенциалами для электронов c и дырок h и разностью квазиуровней Ферми F 
[8], что дает концентрацию носителей тока N и величину c в каждый момент времени t, а так-
же F и h. Спектр усиления излучения имеет типичный колоколообразный контур. На форме 
контура отражаются поляризационные характеристики (h и l) генерируемого излучения (ТЕ- 
или ТМ-мода). Модуляция тока накачки описывается в виде j(t) = jb + jmsin(2mt), где jm и m 
— глубина и частота модуляции, jb — постоянная составляющая тока. Уровень накачки задает-
ся как jb = xbjth и jm = xmjb, где jth = edNaRsp-th/sp — стационарный порог, Rsp-th — пороговая ско-
рость спонтанной рекомбинации, xb и xm — варьируемые параметры. В пороге Fth волноводное 
усиление на некоторой частоте g0 удовлетворяет условию g(g0) = k(g0) = kl. Значение Fth 
задает пороговое значение Rsp-th и, соответственно, jth. Число порогов xb определяет jb = xbjth, а 
величина xm — глубину модуляции jm. При перестройке в пределах полосы усиления эти значе-
ния фиксировались.  

2. Поляризационный фактор и спектры усиления  
Для оценки коэффициентов поляризации проводилось усреднение по углу θi, характери-

зующему ориентацию дипольного матричного элемента [8]. При hg = hi (i = 1, 2) угол θi = 0, с 
возрастанием энергии генерируемых квантов hg угол i стремится в пределе к /2. Поскольку 
для переходов без правила отбора происходит фактически суммирование (усреднение) по всем 
возможным начальным и конечным состояниям, поляризационные коэффициенты определя-
лись путем усреднения в интервале углов i от нуля до верхнего значения 0 [8]. Для переходов 
на состояния тяжелых дырок (ТЕ-мода) получаем h0 = 9/8 + 3sin2h0/16h0. Для Т 
М-моды h0 = 3/4 – 3sin2h0/8h0. Для переходов на состояния легких дырок находим для ТЕ-
моды l0 = 7/8 – 3sin2l0/16l0, для ТМ-моды l0 = 5/4 + 3sin2l0/8l0.  

Для рассматриваемой системы разность h2 – h1 составляет всего 61 мэВ, поэтому в 
этом диапазоне угол h изменяется от 0 до 0.7 рад. Величина h, например, для ТЕ-моды нахо-
дится в интервале 1.5—1.2. Среднее (интегральное) значение h равно 1.4. Для ТМ-моды h 
находится в интервале от 0 до 0.58, при этом среднее h равно 0.2. Для переходов на состояния 
легких дырок ограничимся интервалом от h2 до h3. Тогда угол l изменяется от 0 до 0.6 рад и 
величина l, в частности, для ТЕ-моды находится в интервале 0.50—0.76. Среднее значение l 
равно 0.6. Для ТМ-моды l находится в интервале от 2 до 1.48, среднее l равно 1.8. Для изо-
тропного излучения, очевидно, h = l = 1.  

Как видно, поляризационный коэффициент оказывается для ТЕ-моды выше в среднем в 
2.3 раза для переходов на состояния тяжелых дырок, чем для переходов с участием легких ды-
рок. Для ТМ-моды вероятнее переходы с участием легких дырок, для которых коэффициенты 
поляризации в среднем в девять раз больше по сравнению с переходами на состояния тяжелых 
дырок. Однако вклад подзоны легких дырок в усиление ограничен из-за недостаточной насе-
ленности этих состояний (при высокой добротности резонатора и в отсутствие специальной 
селекции излучения ТМ-мод).  

Спектры усиления проанализированы в [8]. В области h > h2 на переходы с участием 
легких дырок существенно накладываются переходы на состояния тяжелых дырок. Полосы 
суммарного усиления становятся деформированными и смещенными. Из пороговых характери-
стик для различных поляризаций и типов переходов следует, что стандартная линейная ап-
проксимация jth(kl)  kl хорошо выполняется в широком интервале для всех случаев. Наиболее 
низкие пороги наблюдаются, естественно, для ТЕ-мод и переходов с участием тяжелых дырок 
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(h-ТЕ). В области малых потерь, до 20 см–1, сравнительно не большие пороги (jth < 1 кА/см2) 
наблюдаются для переходов h-ТМ. В интервале kl > 20 см–1 реализуются в основном суммарные 
переходы (l + h)-TE. Селекция для ТМ-мод при невысокой добротности резонатора возможна 
при большой плотности порогового тока (1.5—3.5 кА/см2). Таким образом, выделяется два 
спектральных участка селекции частоты генерации: длинноволновый (от h1 до h2) и коротко-
волновый (выше h2). На первом участке усиление осуществляется на переходах с участием 
тяжелых дырок и пороговые накачки невелики, на втором участке в усиление неизбежно вклю-
чаются легкие дырки и пороги возрастают [8].  

3. Результаты расчета и их обсуждение  
На рис. 1 приведены АОХ при генерации ТЕ-моды для различных частот модуляции то-

ка. Поляризационные факторы принимались равными: h = 1.4 и l = 0.6. Отметим, что значе-
ния Sm представляют собой совокупность выборок амплитуд плотности фотонов через период 
модуляции Т = 1/m на некотором интервале времени Δt (здесь Δt = 20Т) в установившемся ре-
жиме. Для наглядности все максимальные и минимальные значения Sm соединены сплошными 
линиями. В диапазонах частот hg, где сплошные линии “раздваиваются”, реализуются режимы 
излучения, отличные от 1Т (наблюдается удвоение периода излучения, 2Т).  

При сравнительно малых частотах модуляции (рис. 1, а) реализуется квазистационар-
ный режим генерации, форма лазерного импульса воспроизводит форму импульса накачки. 
При увеличении частоты модуляции (рис. 1, б) динамическая составляющая отклика возрастает. 
Дальнейший рост m (рис. 1, в—д) ведет к уменьшению динамической составляющей отклика. 
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Рис. 1. АОХ при m = 0.1 (а), 2.0 (б), 5.0 (в), 7.0 (г), 12.0 (д) и 14.0 ГГц (е); xb = 1.2, 

xm = 0.6, генерация ТЕ-моды, kl = 25 см–1. 
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Рис. 2. АОХ при m = 0.1 (а), 1.0 (б), 1.8 (в), 2.6 (г), 3.6 (д) и 6.0 ГГц (е); xb = 3.0, 

xm = 0.6, генерация ТМ-моды, kl = 30 см–1. 
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Однако при этом в определенных спектральных диапазонах проявляются режимы с удвоением 
периода излучения. При больших частотах модуляции (рис. 1, е) из-за проявления “инерцион-
ности” глубина модуляции лазерного излучения и динамическая составляющая отклика стре-
мятся к нулю. Поскольку уровень возбуждения активной среды сравнительно мал, переходы с 
участием легких дырок при генерации ТЕ-моды не проявляются.  

На рис. 2 приведены АОХ для генерации ТМ-моды (h = 0.2 и l = 1.8), когда уровень 
возбуждения активной среды увеличен (xb = 3.0). Тогда энергия hg = h2 = 0.8761 эВ, соответ-
ствующая начальным переходам на состояния легких дырок, служит некоторой “характерной” 
точкой. В окрестности этой точки на АОХ образуются либо прогибы (рис. 2, а—г), либо она 
ограничивает величину отклика со стороны низких частот генерации при сравнительно боль-
ших частотах модуляции тока.  

Заключение  
Изменение частоты и глубины модуляции тока, а также селекция мод резонатора в пре-

делах полосы усиления позволяют управлять динамической составляющей АОХ, а следова-
тельно, временными и энергетическими параметрами излучения лазеров. Знание величины 
динамической составляющей отклика может быть использовано либо для стабилизации выход-
ных характеристик при технических флуктуациях параметров лазера, либо, наоборот, для уси-
ления реакции системы на возмущения. Тип генерируемой моды существенно влияет на вели-
чину и спектральный отклик лазера.  
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