
 30

Анализ энергетической структуры и спектров усиления квантово-
каскадных лазеров терагерцового диапазона 

Д. В. Ушаков а, Р. А. Хабибуллин б 

а Белорусский государственный университет, Минск, Беларусь; e-mail: ushakovdv@bsu.by  
б Институт сверхвысокочастотной полупроводниковой электроники  

Российской АН, Москва, Россия 

Проведен краткий обзор терагерцовых квантово-каскадных лазеров с активной областью из трех 
квантовых ям. Проанализированы энергетические характеристики и спектры усиления структур на осно-
ве Al0.15Ga0.85As/GaAs. Рассчитаны коэффициенты потерь для различных металлических волноводов. 
Показано согласие результатов расчета с известными теоретическими и экспериментальными данными. 
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Введение 

Квантовые каскадные лазеры (ККЛ) ТГц диапазона с активной областью, состоящей из 
трех квантовых ям (КЯ) реализованы в настоящее время на основе структур GaAs/AlGaAs c 
дизайном “резонансное испускание оптического фонона”, основанным на быстром опустоше-
нии нижнего рабочего уровня за счет резонансного испускания оптического фонона [1–4]. Мак-
симальные рабочие температуры, достигающие 199.5 К [4], получены за счет как оптимизации 
характеристик резонатора [2], так и увеличении силы осциллятора fnm и матричных элементов 
дипольных переходов Znm между рабочими уровнями. Характеристики полученных ККЛ на 
трех КЯ представлены в табл. 1.  

Т а б л и ц а  1. Параметры выращенных ККЛ на трех КЯ 

nm, ТГц hnm/k, К Tmax
 эксп, К Znm, Å fnm Ec, мэВ Ссылка 

3.4 163 142 47 0.51 129 [1] 
3.0 144 178 61 — 133 [2] 
3.9 187 186 37 0.38 135 [3] 
3.2 154 199.5 — 0.58 133 [4] 

 
В работе [5] предложена оптимизированная конструкция ККЛ на основе 

Al0.15Ga0.85As/GaAs/Al0.15Ga0.85As с тремя КЯ, позволяющая получить силу осциллятора 0.91, 
что в 1.57 раза превышает значение 0.58 из работы [4]. В [6, 7] предложены пути продвижения в 
область меньших частот ТГц-диапазона за счет введения в структуру широкой КЯ 
Al0.02Ga0.98As/Al0.15Ga0.85As узкой КЯ из GaAs, а также изменения высоты коллекторного барьера 
за счет варьирования содержания алюминия. 

В работе [8] на базе структуры [4] с двойным металлическим волноводом получена гене-
рации в области 3 ТГц при гелиевых температурах и впервые продемонстрирована возмож-
ность создания ККЛ ТГц-диапазона в России. В настоящей работе подробно исследуются энер-
гетические и спектральные характеристики ККЛ на основе Al0.15Ga0.85As/GaAs/Al0.15Ga0.85As с 
тремя КЯ [4].  

Теоретическая модель и обсуждение результатов 

Энергии, волновые функции, матричные элементы дипольных переходов, а также про-
филь потенциальной энергии находились kp-методом в расширенной модели Бастарда [9, 10] 
на основе самосогласованного решения уравнений Шредингера и Пуассона. Степень заполне-
ния уровней энергии и соответствующие квазиуровни Ферми находились путем численного 
решения системы балансных уравнений [11]. Коэффициент усиления g для внутриподзонных 
переходов в зависимости от частоты света находился в многоуровневом приближении с учетом 
несимметричного контура уширения линии излучения [12] c параметром уширения 5 мэВ. 
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На рис. 1 приведены расчеты зонной структуры, уровней энергии, волновых функций, а 
также концентрации электронов на уровнях ККЛ с активной областью из трех КЯ на основе 
GaAs–Al0.15Ga0.85As, полученной в работе [4]. Толщины слоев структуры слева направо: 
41/160/43/89/24.6/81.5 Å. Во всей последовательности слоев КЯ GaAs выделены жирным. Цен-
тральная часть широкой КЯ легирована примесями Si со слоевой концентрацией 31010см-2. При 
вычислениях высота потенциальных барьеров в зоне проводимости полагалась равной 
Ec = 133 мэВ. Рассчитанные эффективные массы носителей тока составляли m* = 0.080m0 для 
барьерных слоев Al0.15Ga0.85As и m* = 0.067m0 для КЯ GaAs.  

На рис. 1 нумерация уровней идет снизу вверх 1—5 и в предыдущем каскаде 1'—5'. Осо-
бую роль в структуре играет уровень 5 (верхний уровень в широкой КЯ). Когда он между уров-
нями 3' и 4' (что тоже между 3 и 4), выполняется условие фононного резонанса и уровни 3 и 4 
(3', 4') эффективно опустошаются. Длина волны генерации усредняется по основным переходам 
1'—4 (2.7 ТГц) и 2'—4 (3.4 ТГц) и составляет ~3 Тгц, что хорошо согласуется с данными [4].  

 

а

           

б

 
 

Рис. 1. Диаграмма зоны проводимости Ec(z) и квадраты модулей волновых функций электронов в элек-
трическом поле E = 12.2 кВ/cм (а) и концентрации электронов на уровнях (б) при напряженностях поля  

E = 11.5 (1), 11.8 (2), 12.1 (3), 12.2 (4), 12.4 (5), 12.6 (6), 12.9 кВ/cм (7) 
 

     а      б 

 
Рис. 2. Спектры усиления при E = 11.5 (1), 11.8 (2), 12.1 (3), 12.2 (4), 12.4 (5), 12.6 (6) 12.9 кВ/cм (7) (а)  

и коэффициент внутренних потерь металлического волновода (б) 
 

При напряженности электрического поля E = 12.2 кВ/см достигается оптимум населенно-
сти между рабочими уровнями 1'—4 и 2'—4. При этом максимум коэффициента усиления со-
ставляет 30 см

–1 на частоте ~3 ТГц. При данном коэффициенте усиления, как следует из рис. 2, б, 
толщина активной области для различных металлических волноводов должна быть больше  
3.5 (Cu), 4.7 (Ag) и 6.2 мкм (Au). Как видно из рис. 2 а, при изменении напряженности поля от 
11.8 до 12.5 кВ/см коэффициент усиления составляет 30 см–1 и практически не изменяется. 
Это обусловлено тем, что условие фононного резонанса бызызлучательного перехода на уро-
вень 2' выполняется поочередно для уровней 3'—2', 4'—2', 5—2'. Уровень 5 позволяет расши-
рить диапазон напряженностей поля, в котором коэффициент усиления практически не меняет-
ся. Следовательно, с температурой будет большая стабильность. Результаты расчета зонной 
структуры и спектров усиления хорошо согласуются с теоретическими и экспериментальными 
данными [4]. 
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A brief review of terahertz quantum-cascade lasers with an active region of 3 quantum wells are given. 
The energy characteristics and gain spectra of structures based on Al0.15Ga0.85As/GaAs are analyzed. The loss 
coefficients for various metal waveguides are calculated. A good agreement of the calculation results with 
known theoretical and experimental data are shown. 
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