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Исследования в области нанокластеров и наносистем лежат в основе создания новой 

технологии XXI века – нанотехнологии. Кластерные катализаторы позволяют развивать новые 

направления управления конверсией и селективностью каталитических реакций за счет размера 

кластера и взаимодействия его с матрицей. Урановые катализаторы в исходном состоянии 

могут содержать соединения трех-, четырех, пяти- или шестивалентного металла. Это 

предполагает большее разнообразие в составе активных центров, чем при использовании 

производных лантанидов, имеющих, как правило, трехвалентное состояние. 

Необычные свойства наноматериалов обусловлены как особенностями отдельных частиц 

(кристаллитов), так и их коллективным поведением, зависящим от характера взаимодействия 

между наночастицами, а структура и дисперсность наноматериала существенно зависит от 

способа их получения. В частности, было показано [1], что добавление незначительного 

количества (до 0,3 масс.%) наночастиц (10-20 нм) UO2 позволяет изготовить спеченные 

таблетки необычной микроструктуры, с высокой плотностью и теплопроводностью. Сделано 

предположение, что подобный эффект связан со значительным уменьшением температуры 

плавления наноразмерных частиц диоксида урана по сравнению с микрофазами, вследствие 

чего процесс спекания таблетки, возможно, сопровождается образованием некоторого 

количества жидкой фазы.  

Более четверти века назад было предложено применять распыленные в активной газовой 

среде мелкодисперсные урансодержащие частицы для преобразования ядерной энергии в 

энергию оптического излучения [2].  

Применение мелкодисперсных урансодержащих частиц по сравнению с традиционно 

применяющимися методами гетерогенной ядерной накачки активных газовых сред может 

повысить долю энергии, выносимой осколками деления из конденсированной фазы в газовую 

среду, в десять и более раз. Это создает предпосылки для повышения эффективности 

преобразования ядерной энергии в энергию оптического излучения.  

Из-за чрезвычайно сложных технических проблем и жестких требований к ядерной 

безопасности при работе с радиоактивными аэрозолями экспериментально такой метод ядерно-

оптического преобразования энергии практически не исследован.  
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Получение окислов урана из нитратов уранила связано с рядом трудностей 

технологического и аппаратурного характера. Термическая диссоциация гексагидрата нитрата 

уранила протекает по уравнениям: 

UO2(NO3)2.6H2O  (при 200-450 0C)  →UO3 + N2O3 + 6H2O, 

3UO2(NO3)2.6H2O  (при 600-900 0C)  →U3O8 + 6NO2 + 2О2 + 18H2O 

Физические свойства трехокиси урана зависят лишь от температуры прокаливания и 

скорости подъема температуры [3]. Медленное и быстрое нагревание гексагидрата нитрата 

уранила при температуре 350-400 0С приводит к образованию треокиси урана с насыпным 

весом 2,8 – 4,2 г/см3 соответственно. Первый из образцов обладает значительно большей 

реакционной способностью, чем второй. Размер кристаллов трехокиси урана колеблется в 

пределах около одного микрона. Все отмеченные закономерности разложения уранилнитрата 

характерны для статических условий. Значительно более эффективно процесс протекает в 

неравновесных условиях. 

Система «уран – кислород» представляет собой  одну  из  самых  сложных двойных 

систем.  Три  оксида  урана  –  диоксид  UO2,  закись-окись  U3O8  и триоксид  UO3  известны  

уже  более  ста  лет.  Исследования  последнего  времени показали,  что  возможно  

существование  монооксида  UO,   а   также   таких соединений урана с кислородом, как U4O9, 

U3O7, U2O5 и  что  эти  соединения, как и три ранее  известных  оксида,  не  являются  

стехиометрическими,  и  в действительности  существует  разнообразие  нестехиометрических  

форм.   

При изучении системы «уран–кислород» обнаружено  несколько  гомогенных областей с 

переменным составом урана и кислорода.  Одна  из  таких  областей лежит, например, между 

составами  UO2  –  UO2,25.  Существование  стабильной фазы монооксида урана не доказано. В 

системе U-O особый интерес представляет и область UO2,25 … UO2,67, где достоверно 

идентифицирован ряд фаз, часть из которых являются весьма устойчивыми это  гептаоксиды 

триурана. Окисление UO2 на воздухе до форм U3O7  и U3O8, интенсивно исследовали в 

последние 40 лет вследствие особой важности сухого хранения и последующего захоронения 

отработанного ядерного топлива, хранения порошка, а так же некоторых вопросов переработки 

топлива. Несмотря на многочисленные исследования метастабильных фаз, их структура на 

сегодняшний день достаточно точно не установлена [4].  

Диоксид урана UO2 (точнее, UO2(Х)) – нестехиометрическое  соединение может  иметь  

состав  от  UO1,6  до  UO2,25. Кристаллическая двуокись урана представляет собой порошок от 

бурого до черного цвета.  
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Триоксид урана UO3 – один из промежуточных  продуктов  в  производстве чистых солей 

урана. UO3 – оранжево-желтый порошок, существующий в одной  аморфной  и  пяти 

кристаллических формах, плотностью 5,92 – 7,54  г/см3.  

Закись-окись урана  U3O8  –  нестехиометрическое  соединение,  имеющее несколько 

модификаций в зависимости от условий приготовления. Цвет  вещества– от зеленого до 

оливково-зеленого и черного.   

      Большое практическое значение для практики имеют физические способы получения 

порошков, при которых образование частиц происходит в неравновесных условиях, что 

приводит к формированию ультрадисперсной структуры твердой фазы. Одним из 

перспективных способов получения нанопорошков оксидов урана может быть способ, 

основанный на процессе воздействия импульсов лазерного излучения на пористые тела, 

содержащие в себе различные соединения  нитратов уранила. В зависимости от состава 

соединений в данном способе возможно получение нанопорошков как чистых оксидов урана, 

так и нанопорошков композиционного состава. 

Для проведения исследований нами использовался лазерный многоканальный атомно-

эмиссионный спектрометр LSS-1. В качестве источника абляции и возбуждения 

приповерхностной плазмы спектрометр включает в себя двухимпульсный неодимовый лазер с 

регулируемыми энергией и интервалом между импульсами (модель LS2131 DM). Лазер 

обладает широкими возможностями как для регулировки энергии импульсов (от 10 до 80 мДж), 

так и временного интервала между импульсами (от 0 до 100 мкс). Средняя длительность 

импульса    15 нс. 

В качестве модельных систем для закрепления сухих остатков растворов уранилнитрата 

нами выбраны беззольные фильтры (синяя лента) — диаметр пор 1-2 нм. Для проведения 

экспериментов кусочек фильтра размером 8х8 мм2 наклеивался с помощью двухстороннего 

скотча на поверхность держателя образцов, а затем на поверхность фильтра наносились 

растворы солей уранилнитрата различной концентрации. 

При проведении исследований на фильтры было нанесено по 25 мкл раствора 

исследуемого элемента с концентрацией урана 5%, 0,5%, 5.10-2% и 5.10-3%. Синтез оксидов 

проводился при облучении мишеней расфокусированным лазерным излучением (диаметр пятна 

обучения  1 мм, средняя плотность мощности облучения 2.108 Вт/см2). Цвет пятна после 

облучения мишени с концентрацией урана 5% светлооранжевый. Согласно выше описанному 

образуемый продукт по цвету ближе всего к триоксиду урана UO3 и U3O8. Для меньших 

концентраций цвет пятен менее контрастен. 

 Динамика развития процессов абляции и приповерхностного плазмообразования 

исследовалась методом атомно-эмиссионной многоканальной спектрометрии при воздействии 
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сдвоенных лазерных импульсов на поверхность пористых образцов с растворами солей 

уранилнитрата различной концентрации в атмосфере воздуха при энергии импульсов 

излучения 30-67 мДж и различных временных интервалах (0-20 мкс). В качестве примера на 

рис. 1а приведены результаты исследований зависимости интенсивности ионной линии U II 

(=385,958 нм) в спектре для концентрации 5% от временного интервала между сдвоенными 

импульсами равном 0-14 мкс при различных энергиях лазерных импульсов. На рис. 1б, в 

качестве примера,  приведены зависимости интенсивности ионной линии U II (=385,958 нм) в 

спектре от энергии лазерных импульсов. 
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Рис. 1. Зависимость интенсивности ионной линии U II (=385,958 нм) в спектрах: а - от 
интервала между  лазерными импульсами для различных энергий их (в рамке); б - от энергии 
лазерных импульсов при различных интервалах между импульсами (в рамке). 

 

Как видно из приведенных примеров наиболее оптимальным между импульсным 

интервалом является интервал 4-10 мкс. При большой энергии лазерных импульсов может быть 

использован и нулевой интервал.  

 
Таким образом, выполненные спектроскопические исследования приповерхностной 

лазерной плазмы, образуемой вблизи поверхности пористого тела, содержащего микро- и нано 
количества соединений уранила, при воздействии на нее двух последовательных импульсов 
показали перспективность использования лазернохимического получения нанокластеров 
оксидов урана в объеме пористого тела при воздействии на него сдвоенными лазерными 
импульсами с одновременной возможностью определения содержания урана с хорошей 
чувствительностью.   
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