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Аннотация. Описано получение никелевых нанопроволок восстановлением хлорида никеля гидразингид
ратом в этиленгликоле. Показана возможность управления размером и толщиной никелевых нанопроволок пу-
тем приложения постоянного магнитного поля к реакционной смеси. Выявлено, что электрохимическая моди
фикация электрода на основе никелевых нанопроволок в растворе NaОН приводит к образованию активных 
слоев Ni(OH)2 – NiOOH на поверхности нанопроволок. Установлено, что формирование композитной системы 
Ni(OH)2 – NiOOH – Ni является перспективным для вольтамперометрического обнаружения формальдегида вви-
ду специфической химической сорбции молекул формальдегида на поверхности электрода и их последующего 
окисления NiOOH. Линейный диапазон обнаружения формальдегида составил 1–45 ммоль/л, нижний предел 
обнаружения формальдегида – 0,027 ммоль/л, коэффициент чувствительности – 210 нА ⋅ мкг−1 ⋅ ммоль/л−1.
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Abstract. The preparation of nickel nanowires by reduction of nickel chloride with hydrazine hydrate in ethylene gly
col is described. The possibility of controlling the size and thickness of nickel nanowires by applying a constant magnetic 
field to the reaction mixture is demonstrated. It was revealed that electrochemical modification of electrode based on nickel 
nanowires in NaOH solution leads to the formation of active Ni(OH)2 – NiOOH layers on the surface of nanowires. The for-
mation of the Ni(OH)2 – NiOOH – Ni composite system is promising for the voltammetric detection of formaldehyde due 
to the specific chemical sorption of formaldehyde molecules on the electrode surface and their subsequent oxidation with 
NiOOH. The linear range of formaldehyde determination was 1–45 mmol/L, the lower limit of determination of formal-
dehyde – 0.027 mmol/L, the sensitivity coefficient – 210 nA ⋅ μg−1 ⋅ mmol/L−1.
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Введение
Формальдегид является канцерогенным веществом, которое содержится в сточных водах различных 

производств [1]. Его молекулы были обнаружены в обработанной бутилированной питьевой воде, где 
они образовались в основном за счет окисления органических веществ во время озонирования [2]. Кроме 
того, формальдегид может быть найден в предметах домашнего обихода. Попадая в организм человека, 
он оказывает выраженное токсическое действие на центральную нервную систему, легкие, печень, поч-
ки и органы зрения. Предельно допустимая концентрация формальдегида в воде составляет 0,05 мг/л. 
По этой причине контроль уровня данного вещества является очень важной и актуальной задачей для 
специалистов в областях химии, экологии и медицины [1].

Традиционные методы количественного химического анализа содержания органических загрязните-
лей сточных вод (спектрофотометрия, хроматография и т. д.) отличаются применением дорогостоящего 
оборудования, дорогих и редких химических реагентов, а также сложной процедурой пробоподготовки, 
поэтому стоит вопрос разработки простых и эффективных методов анализа [3; 4]. Доступной альтер-
нативой являются электрохимические методы обнаружения формальдегида, известные своей высокой 
чувствительностью, селективностью и возможностью осуществления мониторинга в режиме реального 
времени. Для определения формальдегида в воде методом вольтамперометрии используются электро-
ды из таких химически стойких и стабильных в работе драгоценных металлов, как платина, палладий 
и золото [5–8]. Однако применение драгоценных металлов сопровождается рядом проблем, связанных 
с их стоимостью, сложностью при регенерации и производстве, селективностью. 

В целях замены дорогих электродов на более дешевые рассматривается использование более до-
ступных материалов, например никеля и его сплавов. Электроды на данной основе могут применяться 
для окисления и обнаружения формальдегида в щелочных средах благодаря образованию активных 
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слоев Ni(OH)2 – NiOOH на их поверхности [9–11]. Поверхностные свойства таких систем можно регули-
ровать для оптимизации электрохимического окисления молекул формальдегида и повышения чувстви-
тельности сенсоров. В настоящее время исследовательские усилия направлены на получение сплавов, 
композитов и наноструктур никеля, а также на поиск носителя для улучшения эффективности и стабиль-
ности этих катализаторов [5]. Так, модифицированные электроды на основе никелевых нанопроволок 
отличаются высокой чувствительностью, воспроизводимостью, селективностью и низким пределом 
обнаружения молекул формальдегида [9; 12; 13]. Кроме того, никелевые нанопроволоки превосходят 
другие наноструктурированные никелевые электроды и имеют пределы обнаружения, сопоставимые 
с достигнутыми пределами обнаружения для благородных металлов [9].

Наиболее распространенные методы получения никелевых нанопроволок основаны на использовании 
матриц (темплатов), пространственно ограничивающих область роста цепочечных структур. С помощью 
темплатного синтеза можно получать нанопроволоки различной морфологии и длины, которые будут 
определяться характеристиками используемой матрицы. Однако названные способы являются много-
стадийными, дорогостоящими и сложными для реализации из-за необходимости подготовки матрицы 
к синтезу и ее последующего удаления из конечного продукта [14; 15]. Альтернативным подходом может 
быть применение методов химического восстановления металлов. Среди таких методов выделяются 
металлоорганический путь получения, заключающийся в восстановлении газообразным водородом ме
таллоорганических комплексов в присутствии поверхностно-активных веществ, и восстановление ни
кельсодержащих соединений в водных и органических средах [16]. В качестве восстановителей могут 
выступать борогидрид и его производные, гипофосфит, гидразин, а также редокс-пары ионов металлов 
переменной валентности. Методы химического восстановления металлов являются более перспектив-
ными при их реализации в условиях реального технологического процесса благодаря относительной 
простоте и низкой стоимости [16]. 

Применение методов химического восстановления имеет ряд особенностей из-за влияния множества 
факторов на процесс формирования конечного продукта и его качество. Например, получение цепочеч-
ных структур при восстановлении борогидридом характерно только для железа и сплавов Fe – Co, Fe – Ni, 
тогда как кобальт, никель и сплав Co – Ni не образуют цепочечных структур в данных условиях [17]. 
Это явление связано с изменением магнитных свойств при переходе от железа к кобальту и никелю. 
Для получения никелевых нанопроволок в качестве восстановителя чаще всего используется гидразин 
гидрат, который может формировать комплексы различного состава с ионами никеля, тем самым влияя 
на структуру формирующихся нанопроволок [16; 18–21]. Введение поверхностно-активных веществ, 
полимеров и органических лигандов препятствует образованию цепочечных структур, тогда как при-
ложение внешнего магнитного поля способствует упорядоченной ориентации частиц [22]. 

В последнее время отмечается широкий научный интерес к получению никелевых наночастиц ме-
тодом восстановления их солей в высококипящих органических жидкостях [16; 21; 23; 24]. Обычно 
в качестве растворителей используются алифатические полиолы (глицерин, этиленгликоль, триэтилен
гликоль и тетраэтиленгликоль), с помощью которых можно контролировать микроструктуру частиц за 
счет комплексообразования с ионами Ni2+. Кроме того, алифатические полиолы являются стабилизато-
рами, ограничивающими рост частиц и препятствующими их агломерации [16; 21; 23; 24]. Также они 
способствуют формированию высококристаллических частиц [25]. Однако механизм формирования 
никелевых наноструктур в полиольных средах изучен не до конца, поскольку их физические свойства 
(размер, форма и кристаллическая структура частиц) сильно зависят от условий синтеза, которые ока-
зывают влияние на стадии зародышеобразования и роста.

Цель настоящей работы – получение никелевых нанопроволок во внешнем магнитном поле путем 
восстановления хлорида никеля гидразингидратом в среде этиленгликоля, а также последующая элек-
трохимическая модификация образованных наноструктур для вольтамперометрического обнаружения 
формальдегида в щелочной среде.

Материалы и методы исследования
Никелевые нанопроволоки были синтезированы по представленной в исследовании [26] методике с не-

которыми изменениями. Типичная процедура синтеза была следующей. Смешивали 87 мл 0,1 моль/л раст
вора NaOH в этиленгликоле и 19 мл 65 % гидразингидрата. Полученную смесь заливали в трехгорлую 
колбу и нагревали до температуры 100 °С. В нее по каплям добавляли 12,5 мл 0,1 моль/л раствора NiCl2 
в этиленгликоле. Синтез проводили в присутствии неодимового магнита, опущенного в колбу в стеклян-
ной пробирке, с напряженностью магнитного поля 0,5 Тл. Формирующиеся никелевые нанопроволоки 
сразу захватывались магнитом. После завершения реакции никелевые нанопроволоки были промыты 
последовательно водой и этанолом. Аналогичный синтез был проведен также в обычных условиях.
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Морфологические особенности образцов исследовали методом сканирующей электронной микро-
скопии (СЭМ) с применением микроскопа LEO-1420 (Сarl Zeiss, Германия). Фазовый состав определяли 
методом рентгенофазового анализа. Рентгенограммы регистрировали на приборе ДРОН-3.0 (АО «Инно
вационный центр “Буревестник”», Россия) с использованием CoKα-излучения. Идентификацию фаз 
осуществляли с помощью картотеки JCPDS. Термогравиметрический анализ никелевых нанопроволок 
проводили на приборе STA 449C (Netzsch, Германия) в области температур 20–1000 °С в воздушной 
атмосфере со скоростью нагрева 10 °С/мин.

Вольтамперограммы и хроноамперограммы получали с помощью потенциостата-гальваностата  
Autolab PGSTAT 302N (Eco Chemie, Нидерланды) в трехэлектродной электрохимической ячейке 
с ртутно-оксидным (Hg /HgO) электродом сравнения (Radiometer Analytical, Франция), заполненным 
1 моль/л раствором KОН (все потенциалы в работе приведены относительно данного электрода сравне-
ния), и вспомогательным электродом, в качестве которого использовалась платиновая пластина. Рабочий 
электрод готовили следующим образом. Суспензию никелевых нанопроволок в изопропаноле (концент
рация 10 мг/мл) наносили на поверхность стеклоуглеродного электрода в количестве 1 мкл (10 мкг) 
и сушили. После этого этапа поверх модифицированного стеклоуглеродного электрода прикапывали 
0,5 мкл раствора Nafion DE1020 (0,6 вес. %) в изопропаноле для фиксации порошка на поверхно-
сти электрода. Электрохимическую модификацию поверхности никелевых нанопроволок проводили 
в 0,5 моль/л растворе NaОН методом циклической вольтамперометрии (ЦВА) при скорости развертки 
потенциала 200 мВ/с. Электрохимическое детектирование формальдегида осуществляли в потенцио-
статическом режиме в щелочных растворах формальдегида в токе аргона с предварительной продувкой 
не менее 30 мин, для чего записывали хроноамперограммы в фоновом электролите (0,1 моль/л раство-
ра NaOH) с различной концентрацией формальдегида при потенциале 0,58 В. Нижний предел обнару-
жения формальдегида рассчитывали как отношение трехкратного стандартного отклонения фонового 
тока к коэффициенту чувствительности. 

Результаты и их обсуждение
В процессе синтеза образцов в обычных условиях были получены серые комковатые осадки. Ре

зультаты СЭМ-исследования этих образцов показали, что наряду с цепочечными структурами дли-
ной 10,0–40,0 мкм и толщиной 0,1–0,5 мкм присутствуют неупорядоченные агрегаты мелких частиц Ni 
(рис. 1, а и в). Можно сделать вывод, что образцы никелевых волокон, сформированные в геомагнитных 
условиях, являются структурно-неоднородными.

Рис. 1. СЭМ-микрофотографии агрегатов мелких частиц Ni, полученных синтезом  
в отсутствие магнитного поля (а, в) и в присутствии внешнего магнитного поля с напряженностью 0,5 Тл (б, г) 

Fig. 1. Scanning electron microscopy images of aggregates of small Ni particles obtained by synthesis  
in the absence of magnetic field (a, c) and in the presence of external magnetic field with a strength of 0.5 T (b, d )
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В присутствии внешнего магнитного поля в объеме реакционного сосуда произошло образование 
осадка с целлюлозоподобной структурой, ориентированного по направлению приложенного магнит-
ного поля. СЭМ-исследование полученных образцов подтвердило формирование системы цепочечных 
агрегатов, характеризующихся высокой однородностью распределения по толщине и практически не со-
держащих боковых ответвлений. Длина полученных цепочек превышает 20,0–50,0 мкм, а диаметр лежит 
в пределах 0,15–0,25 мкм (рис. 1, б и г). Таким образом, в системе сформировались металлические на-
нопроволоки с соотношением длины и ширины, превышающим значение 100. 

Результаты проведения рентгенофазового анализа отражены на рис. 2. Все образцы содержат фазу 
металлического α-Ni c характерной для него кубической гранецентрированной решеткой (пики при 52,1°, 
60,9°, 91,8°, 114,5° и 123,1° относятся к плоскостям (111), (200), (220), (311) и (222) соответственно). 

Рис. 2. Рентгенограмма никелевых нанопроволок 
Fig. 2. X-ray diffraction pattern of nickel nanowires

Стабильность никелевых нанопроволок на воздухе была охарактеризована с помощью термогравимет
рической (ТГ) кривой и кривой дифференциальной сканирующей калориметрии (ДСК) (рис. 3). Небольшая 
потеря веса, наблюдавшаяся при температуре до 300 °C, вызвана потерей адсорбционной воды и реакци
ей разложения примеси Ni(OH)2. Никелевые нанопроволоки начали окисляться при температуре 300 °C; 
конечный прирост массы составил около 23,6 %, что мало отличается от теоретического привеса (27,3 %) 
при идеальном превращении чистого Ni в оксид NiO. Окисление сопровождалось экзотермическим 
эффектом на кривой ДСК. Превращение Ni в оксид NiO завершилось при температуре около 500 °C. 

Рис. 3. Кривые ТГ – ДСК никелевых нанопроволок,  
полученных при приложении внешнего магнитного поля

Fig. 3. Thermogravimetric and differential scanning calorimetric curves  
of nickel nanowires obtained by applying an external magnetic field
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На рис. 4 представлены циклические вольтамперограммы для электрода на основе никелевых нано-
проволок в 0,5 моль/л растворе NaОН при скорости развертки потенциала 200 мВ/с. Анодный пик при 
потенциале 0,56 В можно отнести к окислению поверхности никелевых нанопроволок с образованием 
активного слоя Ni(OH)2 – NiOOH [27]. В процессе окисления протекали следующие реакции:

Ni + 2OH− ↔ α-Ni(OH)2 + 2e−,
α-Ni(OH)2 → β-Ni(OH)2,

	 β-Ni(OH)2 + OH− ↔ NiOOH + H2O + 1e−.	  (1)
Стабильной фазой, которая не может быть удалена электрохимическим образом с поверхности Ni, 

является β-Ni(OH)2 [12]. Сопряженный катодный пик при потенциале 0,4 В связан с восстановлением 
NiOOH до β-Ni(OH)2. При потенциалах более 0,7 В зафиксирован экспоненциальный рост анодного 
тока, обусловленный реакцией выделения кислорода (4OH− → O2 + H2O + 4e−). Некоторый рост анодно-
го и катодного пиков, наблюдавшийся при увеличении числа циклов от 1 до 50, связан с постепенным 
утолщением электроактивного слоя Ni(OH)2 – NiOOH на поверхности никелевых нанопроволок [27; 28]. 
Существенное увеличение анодного и катодного пиков после 50-го цикла не происходило. 

Рис. 4. ЦВА-кривые никелевых нанопроволок в 0,5 моль/л растворе NaОН  
при скорости развертки потенциала 200 мВ/с: 1 – 1-й цикл; 2 – 20-й цикл; 3 – 50-й цикл

Fig. 4. Сyclic voltammetry curves of nickel nanowires in 0.5 mol/L NaOH solution  
at a potential scanning rate of 200 mV/s: 1 – 1st cycle; 2 – 20th cycle; 3 – 50th cycle

После добавления формальдегида в 0,1 моль/л раствор NaOH анодный пик заметно увеличился, тогда 
как значение катодного пика уменьшилось, что свидетельствует об активном участии сформировавше-
гося электроактивного слоя Ni(OH)2 – NiOOH в окислении молекул формальдегида (рис. 5). Постепен-
ный сдвиг анодного пика в положительную сторону обусловлен динамическим процессом окисления 
формальдегида за счет перехода иона Ni3+ в ион Ni2+ в активном гидроксидном слое и одновременным 
восполнением NiOOH согласно реакции (1). Ток анодного пика рос с увеличением концентрации фор-
мальдегида до 40 ммоль/л. При концентрациях выше 40 ммоль/л заметное увеличение анодного тока не 
наблюдалось. Данный эффект может быть обусловлен полным расходованием в слое электрохимически 
формирующегося активного NiOOH в процессе химического окисления формальдегида. 

Градуировочные зависимости окисления формальдегида на никелевых нанопроволоках, модифи-
цированных слоем Ni(OH)2 – NiOOH, были получены в потенциостатическом режиме при потенциале 
0,58 В в 0,1 моль/л растворе NaOH с различной концентрацией HCHO (рис. 6). При добавлении фор
мальдегида в электролит наблюдалось резкое увеличение тока на хроноамперограмме. Переходный 
процесс завершился довольно быстро, и ток достиг стационарного значения примерно за 100–150 с. 
Градуировочный график для определения концентрации формальдегида в растворе линеен в диапазоне 
концентраций 1–45 ммоль/л (см. рис. 6). Нижний предел обнаружения формальдегида на никелевых 
нанопроволоках, модифицированных слоем Ni(OH)2 – NiOOH, составил 0,027 ммоль/л. Коэффициент 
чувствительности был равен 210 нА ⋅ мкг−1 ⋅ ммоль/л−1. Диапазон линейности в случае с модифициро
ванными слоем Ni(OH)2 – NiOOH никелевыми нанопроволоками, полученными в геомагнитных усло-
виях, был уже (0,021–5,0 ммоль/л), а абсолютные величины токов были ниже при аналогичных концен-
трациях формальдегида. 
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Рис. 6. Стационарные токи при потенциале 0,58 В в 0,1 моль/л растворе NaOH  
с различной концентрацией HCHO, которые были измерены  

на модифицированном электроде на основе никелевых нанопроволок,  
полученных при приложении внешнего магнитного поля

Fig. 6. Steady-state currents at a potential of 0.58 V in 0.1 mol/L NaOH solution  
with different HCHO concentrations, which were measured  

on a modified electrode based on nickel nanowires  
obtained by applying an external magnetic field

Появление электрокаталитической активности электродов на основе никелевых нанопроволок может 
быть связано с образованием редокс-активных слоев Ni(OH)2 – NiOOH, что соответствует данным иссле-
дований [12; 29–31]. Согласно работе [31] слой Ni(OH)2 – NiOOH имеет хороший электрический контакт 
с металлическим Ni, электроны легко переходят от него к названному слою. Более того, NiOOH явля
ется мягким окислителем, способным окислять молекулы формальдегида и в то же время не создавать 
барьеров для транспорта электронов через границу гидроксид – металл. Стоит отметить, что молекулы 
формальдегида могут специфически хемосорбироваться на поверхности гидроксида с формированием 

Рис. 5. ЦВА-кривые модифицированных никелевых нанопроволок  
в 0,1 моль/л растворе NaОН при скорости развертки потенциала 100 мВ/с  

до добавления формальдегида (1) и после его добавления до конечной концентрации  
10 ммоль/л (2), 20 ммоль/л (3), 30 ммоль/л (4), 40 ммоль/л (5), 50 ммоль/л (6) 

Fig. 5. Сyclic voltammetry curves of modified nickel nanowires  
in 0.1 mol/L NaOH at a potential scanning rate of 100 mV/s  

before adding formaldehyde (1) and after adding it to the final concentration  
of 10 mmol/L (2), 20 mmol/L (3), 30 mmol/L (4), 40 mmol/L (5), 50 mmol/L (6)



19

Оригинальные статьи
Original Papers

переходных комплексов [32]. Таким образом, электрохимическое окисление HCHO на модифицирован-
ном слоем Ni(OH)2 – NiOOH электроде на основе никелевых нанопроволок осуществляется посредством 
гетерогенного окислительно-восстановительного катализа.

Заключение
Никелевые нанопроволоки были успешно синтезированы методом химического восстановления хло-

рида никеля гидразингидратом в среде этиленгликоля как в обычных условиях, так и в присутствии 
внешнего магнитного поля. Полученные образцы никелевых нанопроволок имеют структуру α-Ni, 
а также характеризуются длиной 20,0–50,0 мкм и толщиной 0,15–0,25 мкм. Образцы нанопроволок 
стабильны на воздухе при температуре ниже 300 °С. Приложение внешнего магнитного поля во время 
синтеза существенно влияет на морфологию и структурную однородность нанопроволок, что приводит 
к образованию однородных цепочечных структур с соотношением длины и ширины, превышающим зна-
чение 100. Электрохимическая модификация никелевых нанопроволок в 0,5 моль/л растворе NaОН вы-
зывает формирование активных слоев Ni(OH)2 – NiOOH на их поверхности, которые играют решающую 
роль в электрокаталитическом окислении формальдегида. Методом хроноамперометрии были изучены 
электроаналитические свойства модифицированных никелевых нанопроволок в 0,1 моль/л растворе 
NaOH в отношении формальдегида. Получение нанопроволок во внешнем магнитном поле, в отличие 
от синтеза нанопроволок в геомагнитных условиях, позволяет расширить линейный диапазон опреде-
ления формальдегида.
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