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Кровоток в склеральных сосудах является перспективным неинвазивным биомар-

кером для выявления микроциркуляторных нарушений, связанных с сердечно-сосуди-
стыми и неврологическими заболеваниями. В данном исследовании представлена авто-
матизированная платформа для количественного анализа динамики склеральных сосу-
дов на основе дескриптивно-ассоциативных алгоритмов. Методология включает шесть 
ключевых этапов: получение и предварительную обработку изображения, стабилизацию 
кадра на основе области интереса, сегментацию сосудов с помощью сверточной нейрон-
ной сети U-Net, извлечение признаков, поведенческую классификацию динамики сосу-
дов и моделирование кровотока на основе оптического потока. Для оценки линейных и 
объемных скоростей кровотока использовались алгоритмы Лукаса-Канаде и Фарнебека, 
что позволяет детально охарактеризовать микрососудистые паттерны.  

Таким образом, предлагаемая структура обеспечивает надежный и точный мони-
торинг микроциркуляции глаза, что может быть использовано для ранней диагностики 
системных заболеваний. Дальнейшие исследования будут сосредоточены на расшире-
нии наборов клинических данных, оптимизации эффективности алгоритмов и интегра-
ции системы в практические диагностические процессы. 
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Blood flow in scleral vessels is a promising non-invasive biomarker for detecting 
microcirculatory disorders associated with cardiovascular and neurological diseases. This 
study presents an automated framework for quantitative analysis of scleral vessel dynamics 
based on descriptive-associative algorithms. The methodology integrates six key stages: image 
acquisition and preprocessing, ROI-based frame stabilization, vessel segmentation using  
a U-Net convolutional neural network, feature extraction, behavioral classification of vessel 
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dynamics, and optical flow–based modeling of blood flow. Both Lucas–Kanade and Farnebäck 
algorithms were employed to estimate linear and volumetric flow velocities, enabling detailed 
characterization of microvascular patterns. 

The proposed framework thus enables robust and precise monitoring of ocular 
microcirculation, with potential applications in the early diagnosis of systemic disorders. 
Future work will focus on expanding clinical datasets, optimizing algorithmic efficiency, and 
integrating the system into practical diagnostic workflows. 
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vision; microcirculation; U-Net segmentation; frame stabilization. 

1. Введение 

Динамика кровотока в микроциркуляторном русле глаза даёт крити-

чески важную информацию о состоянии здоровья организма, поскольку 

микроциркуляторная сеть глаза отражает состояние других жизненно 

важных органов. Изменения микроциркуляции склеральных сосудов свя-

заны с патологическими процессами в головном мозге, сердце и почках, 

что подчёркивает диагностическую ценность мониторинга глазного кро-

вотока [1, 2]. Раннее выявление таких изменений крайне важно для свое-

временного вмешательства и предотвращения серьёзных осложнений. 

Современные клинические методы оценки микроциркуляции вклю-

чают допплеровскую ультрасонографию и лазерную допплеровскую фло-

уметрию. Хотя эти методы широко используются, они ограничены анали-

зом прямых участков сосудов и не могут адекватно отразить сложность 

извилистых и разветвлённых сосудистых сетей [3]. Кроме того, такие ме-

тоды часто требуют специализированного оборудования, относительно 

дороги и не обладают пространственным разрешением, необходимым для 

детальной оценки микрососудистого русла. 

Достижения в области автоматизированных методов компьютерного 

зрения открывают много возможности для неинвазивного и экономически 

эффективного мониторинга микроциркуляции глаза [4]. Однако видеоана-

лиз сосудов склеры представляет собой ряд технических сложностей. Не-

стабильность видеопоследовательностей, вызванная непроизвольными 

движениями глаз, изменчивая контрастность изображения из-за изменений 

освещенности и сложность достижения надежной сегментации сосудов 

препятствуют широкому внедрению этих подходов [5]. Решение этих про-

блем требует разработки новых алгоритмов, способных объединить стаби-

лизацию, точную сегментацию и надежное моделирование кровотока. 

С этой целью мы предлагаем автоматизированную систему анализа 

кровотока, основанную на описательно-ассоциативных алгоритмах. Си-

стема объединяет стабилизацию видеопоследовательностей склеральных 

сосудов на основе области интереса, сегментацию на основе сверточных 
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нейронных сетей (CNN), адаптированную для мелких и извилистых сосу-

дов [6], и моделирование оптического потока для оценки скорости с ис-

пользованием методов Лукаса–Канаде [7] и Фарнебека [8]. Эксперимен-

тальная проверка показывает, что данный подход позволяет точно оцени-

вать скорость кровотока и способствует раннему выявлению нарушений 

микроциркуляции. 

Основные результаты данного исследования: 

• каскадный метод стабилизации видеопоследовательностей скле-

ральных сосудов; 

• конвейер сегментации на основе CNN, оптимизированный для мел-

ких и разветвленных сосудов; 

• применение алгоритмов оптического потока Лукаса–Канаде и 

Фарнебека для точной оценки скорости; 

• экспериментальные данные, подтверждающие потенциал предла-

гаемого подхода для ранней диагностики нарушений микроциркуляции.  

В этом исследовании мы используем два проверенных метода опти-

ческого потока для оценки скорости: метод Лукаса-Канаде [7], который 

обеспечивает разреженную, но вычислительно эффективную оценку по-

тока, и метод Фарнебека (БФ) [8], который позволяет производить плот-

ные вычисления оптического потока с более высокой точностью при за-

хвате сложной микрососудистой динамики. 

2. Материалы и методы 

2.1. Сбор данных 

Видеопоследовательности сосудов склеры регистрировались с помощью 

монохромной камеры высокого разрешения с системой фундус-линзы, уста-

новленной на щелевой лампе. Каждая запись представляла собой видео в 

оттенках серого с разрешением 1920×1080 пикселей. В связи с движени-

ями глаз и колебаниями яркости требовалась предварительная обработка 

для стабилизации поля изображения. 

Предлагаемый алгоритм анализа (рис. 1) состоит из шести последова-

тельных этапов, разработанных для обеспечения стабильных, точных и ин-

терпретируемых измерений динамики микрососудистого кровотока глаза. 

Этап 1: захват изображения – необработанные видеопоследователь-

ности склеры получаются и выравниваются по времени в непрерывные 

последовательности. 

Этап 2: сегментация изображения – структуры сосудов извлекаются 

с помощью гауссовых пирамид, создания карты изменений и обнаружения 

областей движения, в результате чего формируется бинарная последова-

тельность карт сосудов. 
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Рис. 1. Предлагаемая структура анализа потока для обнаружения и описания 

динамических микрососудистых объектов 
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Этап 3: расчет характеристик – количественные дескрипторы (век-

торы скорости, изменения диаметра, градиенты интенсивности) рассчиты-

ваются и сохраняются в структурированной таблице данных. 

Этап 4: анализ состояния – извлеченные характеристики оценива-

ются по заранее определенным критериям, создавая таблицу состояний, 

описывающую микрососудистые состояния. 

Этап 5: описание поведения объекта – динамические события, такие 

как сужение, расширение сосудов и застой потока, классифицируются на 

основе эволюции характеристик. 

Этап 6: описание развития и действий – продольные паттерны анали-

зируются путем выделения ветвей объектов, применения временной мар-

кировки и построения диаграмм трендов для отслеживания прогрессиро-

вания или выздоровления заболевания. 

Эта структура обеспечивает надежный мониторинг микроциркуля-

ции, интегрируя как динамику на уровне пикселей, так и временные пат-

терны более высокого порядка. 

Предлагаемая методология состоит из шести последовательных эта-

пов: (1) получение и предварительная обработка изображений, (2) сегмен-

тация сосудистых структур и разделение областей, (3) мониторинг выпол-

нения условий для поведенческой характеристики, (4) классификация тра-

екторий региональных объектов, (5) обнаружение динамических событий 

и (6) описательное моделирование закономерностей развития. 

На этапе анализа оптического потока применяются модели локаль-

ного поля. Эти модели агрегируют векторы, представляющие схожие 

направления движения в локализованных областях пространства, тем са-

мым кодируя обобщенные поля потока. В отличие от узкоспециализиро-

ванных моделей взаимодействия, подход локального поля использует 

внутренние свойства оптического потока для прогнозирования направлен-

ной селективности движения. В частности, каждая локальная ячейка со-

держит обобщенное векторное поле потока, ориентированное вокруг 

наиболее вероятного направления движения. Это делает систему менее 

чувствительной к шуму или небольшим отклонениям от истинной ориен-

тации потока, одновременно оценивая вероятность согласованности 

направлений. 

Быстрым и удобным способом извлечения высокочастотных компо-

нентов является использование фильтров Собеля. Оператор Собеля – это 

дискретный дифференциальный оператор, который вычисляет приблизи-

тельное значение градиента яркости изображения. Существует два типа 

операторов Собеля, соответствующих вертикальному и горизонтальному 

градиентам. Максимальный из них позволяет накапливать результаты по 

всем направлениям. 
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Следующая задача – определить уровень градиента, при котором 
изображение достигает хорошего контраста. Для решения этой задачи в 
общей схеме обработки вводится дополнительный блок для определения 
порогового значения градиента, как показано на рис. 2. 

 

Рис. 2. Процесс определения области интереса для областей с хорошим контрастом 

Процедура определения порога заключается в оценке гистограммы 
яркости. Для каждого компонента градиента берётся максимальное значе-
ние. Информативность рассчитывается как оценка контраста. 
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Здесь maxI  и minI  представляют собой максимальное и минимальное 

значения интенсивности на градиентном изображении соответственно. 
Такая оценка позволяет выявить условия с очень низкой информативно-
стью, когда c < 0,3. В таких случаях необходимо определить бинарный по-
рог сегментации сосудов.  
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Информативность градиентного изображения характеризуется обла-
стями высокой яркости. Однако в классическом представлении часто бывает 
сложно определить точное положение порога яркости на гистограмме. 

Применение стабилизации кадра приводит к уменьшению размера 
изображения, поскольку из каждого кадра видеопоследовательности при-
ходится вырезать общий фрагмент. Обычно за начало координат прини-
мается левый верхний угол первого кадра. Однако изображения сосудов 
подвержены случайным движениям, и положение первого кадра не всегда 
соответствует оптимальному. В предыдущем разделе статьи мы опреде-
лили область интереса (ROI) с хорошим контрастом и определили её ме-
стоположение. Эта информация может быть использована для попытки 
стабилизации видеопоследовательности на основе фрагментов ROI. Для 
этого используется только 50% ROI, центрированное в точно таком же по-
ложении. 

3. Результаты 

Для оценки предлагаемой модели мы провели эксперименты с набо-
ром данных видеопоследовательностей сосудов склеры, полученных с по-
мощью фундус-камеры высокого разрешения. Анализ был сосредоточен 
на трёх основных аспектах: стабилизация кадра, точность сегментации со-
судов и оценка кровотока на основе оптического потока. 

3.1. Стабилизация кадра 

Применение предлагаемого метода стабилизации на основе области 
интереса снизило артефакты межкадрового движения примерно на 42% по 
сравнению с простым кадрированием с использованием начала координат 
первого кадра. Это было количественно оценено путём измерения средне-
квадратичной ошибки (MSE) положения сосудов в последовательных кад-
рах. Данный подход позволил сохранить достаточное поле зрения, сохра-
няя при этом непрерывность сосудов (рис. 3). 

3.2. Точность сегментации сосудов 

Процесс сегментации с помощью сверточной нейронной сети (CNN), 
основанный на архитектуре U-Net, был проверен на основе вручную ан-
нотированных карт сосудов. Метод достиг показателя пересечения над 
объединением (IoU) 0,87 и коэффициента Дайса 0,91, что демонстрирует 
высокую надежность выделения мелких и извилистых сосудов. Для срав-
нения, классическая сегментация на основе порогового значения дала IoU 
= 0,65 и Dice = 0,72, что подтверждает превосходство подхода с использо-
ванием CNN (рис. 4). 
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Рис. 3. Сравнение артефактов движения при наивном кадрировании  

и стабилизации на основе области интереса (измерено с помощью  

нормализованной среднеквадратической ошибки) 

 

Рис. 4. Точность сегментации: сравнение IoU и Dice между пороговой  

оценкой и U-Net 

3.3. Оценка скорости кровотока 

Алгоритмы оптического потока были применены к стабилизирован-

ным последовательностям сосудов (рис. 5). Метод Лукаса–Канаде дал 

стабильные результаты для крупных прямых сегментов сосудов, в то 

время как метод Фарнебека позволил детально описать поток в мелких и 

разветвленных участках. Средняя линейная скорость потока оценивалась 

как 0,85 ± 0,12 мм/с, а расчёты объёмного потока соответствовали физио-

логическим нормам, описанным в [1, 2]. 
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Рис. 5. Оценка скорости кровотока (среднее значение ± СД) для методов  

Лукаса–Канаде, Фарнебека и допплеровского сканирования 

3.4. Сравнительный анализ 

В табл. 1 представлены сравнительные характеристики предлагаемой 

модели с базовыми методами. Результаты показывают, что сочетание сег-

ментации на основе сверточных нейронных сетей с оптическим модели-

рованием потока значительно повышает надежность и точность анализа 

кровотока в склеральных сосудах. 

Таблица 1 

Сравнительная оценка предлагаемого метода с классическими подходами 

Метод 
IoU / Dice  

(Сегментация) 
Точность скорости 

Уменьшение  

артефактов 

Пороговая сегмен-

тация +  

Лукас–Канаде 

0,65 / 0,72 Умеренный Низкий 

CNN (U-net) +  

Лукас–Канаде 
0,87 / 0,91 Высокий Умеренный 

CNN (U-net) + 

Farnebäck 
0,87 / 0,91 Очень высокий Высокий 

Допплерография – Низкий (макро) – 

4. Заключение 

В данной работе предложена автоматизированная структура для ана-

лиза микрососудистого кровотока глаза, основанная на сочетании стаби-

лизации на основе области интереса, сегментации на основе сверточных 
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нейронных сетей (CNN) и моделирования оптического потока. Исследо-

вание показало, что использование определения области интереса обеспе-

чивает более надежную стабилизацию кадра, уменьшение артефактов слу-

чайного движения и улучшение непрерывности структуры сосудов в ви-

деопоследовательностях. 

Применение сверточной нейронной сети на основе U-сети значи-

тельно улучшило качество сегментации сосудов по сравнению с класси-

ческим пороговым методом, достигнув высоких значений IoU и Dice, а 

также обеспечив надежное выделение мелких и извилистых сосудов. Ме-

тоды оптического потока, в частности, метод Фарнебека, обеспечили точ-

ную и детальную оценку скорости кровотока, давая результаты, сопоста-

вимые с допплерографией, и обеспечивая при этом более высокое разре-

шение в микрососудистых сетях. 

В целом, предложенная методология позволяет точно характеризо-

вать динамику кровотока в склеральных сосудах и может служить неин-

вазивным инструментом для раннего выявления нарушений микроцирку-

ляции. Дальнейшие исследования будут сосредоточены на расширении 

набора данных, повышении эффективности алгоритмов и проверке разра-

ботанной модели в клинических условиях. 
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