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В данной статье представлен модульный программный комплекс, разработанный 

в ROS 2, для высоко детальной реконструкции 3D-сцен. Гибридный подход сочетает в 

себе облака точек из нейронной сети VGGT (полученные из 2D-изображений) и аппа-

ратный датчик глубины для обеспечения метрической точности. Система, состоящая из 

трех независимых узлов ROS 2, управляемых через сервисы, обеспечивает гибкий сбор 

данных и эффективное использование ресурсов. Алгоритм Iterative Closest Point (ICP) 

выравнивает облака точек. Этот конвейер позволяет создавать полные текстурирован-

ные 3D-модели, объединяя детали нейронной сети с точностью аппаратных датчиков. 
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This paper introduces a modular software suite, developed in ROS 2, for high-detail 

3D scene reconstruction. The hybrid approach combines point clouds from the VGGT neural 

network (derived from 2D images) and a hardware depth sensor for metric accuracy. The 

system, comprising three independent ROS 2 nodes controlled via services, offers flexible 

data acquisition and efficient resource utilization. The Iterative Closest Point (ICP) algorithm 

aligns the point clouds. This pipeline enables complete, textured 3D models, merging neural 

network detail with hardware sensor accuracy. 
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1. Введение 

Задача трехмерной реконструкции окружающего пространства явля-

ется одной из ключевых в областях робототехники, беспилотного транс-

порта и дополненной реальности. Традиционно для ее решения использу-

ются два основных подхода: активные сенсоры (лидары, структурирован-

ный подсвет, ToF-камеры) и пассивные методы фотограмметрии. Актив-

ные сенсоры обеспечивают высокую метрическую точность, но могут стра-

дать от низкой плотности данных, артефактов на отражающих поверхно-

стях и неспособности реконструировать текстуру. Классическая фотограм-

метрия (SfM, MVS) позволяет получать плотные текстурированные мо-

дели, но требовательна к условиям съемки и вычислительно сложно. 

В последние годы активно развиваются методы 3D-реконструкции на 

основе глубокого обучения, такие как Neural Radiance Fields (NeRF) и 

трансформерные модели Multi-View Stereo (MVS). Модель VGGT (Vision 

Geometry-Grounded Transformer) является одним из передовых решений в 

этой области, способным восстанавливать 3D-геометрию и позы камер из 

неупорядоченного набора изображений. Однако такие модели часто рабо-

тают в собственном, неопределенном масштабе и требуют выравнивания 

с реальными метрическими данными для практического применения. 

Целью данной работы является разработка и апробация гибкого про-

граммного комплекса в стандартной для робототехники среде ROS 2, ко-

торый реализует гибридный подход к 3D-реконструкции, объединяя пре-

имущества нейросетевых методов (высокая детализация) и активных сен-

соров (метрическая точность). 

2. Архитектура и методы 

Разработанный программный комплекс построен на микросервисной 

архитектуре с использованием фреймворка ROS 2 Humble. Пайплайн раз-

делен на три независимых узла, взаимодействие между которыми осу-

ществляется по требованию через вызовы сервисов (рис. 1). 

● Узел захвата изображений (snapshot_node). Отвечает за сбор и ор-

ганизацию исходных данных. При первом вызове сервиса 

/capture_snapshot он создает уникальную директорию сессии с вре-

менной меткой и публикует путь к ней в специальный топик для 

других узлов. При каждом последующем вызове он сохраняет в 

эту директорию синхронизированный набор из трех кадров (сте-

реопара с инфракрасных сенсоров и цветное изображение). 
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● Узел нейросетевой реконструкции (vggt_node). Является вычисли-

тельным ядром системы. По вызову сервиса /reconstruct_vggt он 

загружает модель VGGT в память GPU, обрабатывает все сохра-

ненные в сессии изображения, генерирует облако точек и позы ка-

мер, после чего выгружает модель, освобождая ресурсы. 

● Узел совмещения (aligner_node). Отвечает за финальное слияние 

данных. По вызову сервиса /align_and_merge он получает послед-

нее облако точек от аппаратного сенсора, загружает облако, сгене-

рированное vggt_node, и выполняет их совмещение. 

 

Рис. 1. Архитектурная схема пайплайна 3D-реконструкции 
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3. Методы и алгоритмы 

Синхронизация и сбор данных. Для одновременного захвата кадров с 

ИК-сенсоров (/camera/infra1/image_rect_raw, /camera/infra2/image_rect_raw) и 

цветной камеры (/camera/color/image_raw), которые могут иметь неиде-

ально совпадающие временные метки, используется 

message_filters.ApproximateTimeSynchronizer. Профиль QoS для подпис-

чиков настраивается на BEST_EFFORT для изображений и RELIABLE 

для облака точек, что соответствует стандартным настройкам драйвера 

Intel RealSense в ROS 2. 

Нейросетевая реконструкция (VGGT). Используется модель  

VGGT-1B с 1 миллиардом параметров. Для управления высокими требо-

ваниями к видеопамяти (> 10 ГБ VRAM) реализован механизм за-

грузки/выгрузки модели по требованию. Входные изображения проходят 

предобработку: разрешение уменьшается вдвое для экономии памяти, по-

сле чего размер приводится к значениям, кратным размеру патча модели 

(14 пикселей), чтобы избежать ошибок. После реконструкции из модели 

извлекаются позы камер (матрицы 3x4), которые транслируются в виде 

TF-фреймов и сохраняются в файл. 

Геометрическое выравнивание (ICP). Для совмещения облака точек 

от VGGT (source) и облака от RealSense (target) применяется алгоритм 

Iterative Closest Point (ICP), реализованный в библиотеке Open3D 

(рис. 2, 3). Перед запуском ICP оба облака проходят через процедуру 

Voxel Downsampling для уменьшения плотности, что повышает скорость 

и робастность алгоритма. ICP итеративно находит матрицу трансформа-

ции, минимизирующую расстояние между соответствующими точками 

двух облаков. Найденная трансформация применяется к исходному, пол-

норазмерному облаку VGGT. 

4. Экспериментальный рабочий процесс и результаты 

Рабочий процесс полностью управляется из командной строки, что 

позволяет гибко контролировать каждый этап. После запуска системы ко-

мандой ros2 launch vggt_ros_node pipeline.launch.py оператор выполняет 

последовательность вызовов сервисов: 

1) ros2 service call /capture_snapshot std_srvs/srv/Trigger (может вызы-

ваться многократно); 

2) ros2 service call /reconstruct_vggt std_srvs/srv/Trigger; 

3) ros2 service call /align_and_merge std_srvs/srv/Trigger. 
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Тестирование производительности пайплайна проводилось на наборе 

из 4 цветных изображений, снятых камерой Intel RealSense D415. Измере-

ния проводились на системе с GPU Nvidia RTX 3080 (12 ГБ). В табл. 1–2 

представлены данные о потреблении видеопамяти (VRAM) на этапе ра-

боты узла vggt_node и детальный хронометраж всех этапов выполнения 

пайплайна. 

 

Рис. 2. Сравнение облаков точек: RealSens 

 

Рис. 3. Сравнение облаков точек: VGGT 
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Таблица 1 
Потребление видеопамяти на этапе реконструкции VGGT 

Метрика Значение, МБ 
Загруженная модель 4798,53 
Модель + данные (4 изображения) 4808,62 

Пиковое потребление при инференсе 8397,60 

Примечание. Потребление видеопамяти на этапе реконструкции VGGT 

 
Таблица 2 

Хронометраж выполнения пайплайна (4 изображения) 

Этап Время, с Доля, % 
1.1 Загрузка модели 12,35 64,1 
1.2 Загрузка данных 0,06 0,3 

1.3 Предобработка изображений 0,01 0 
1.4 Инференс 1,29 6,7 

1.5 Постобработка и сохранение 2,12 11 
2.1 Загрузка данных для выравнивания 0,31 1,6 
2.2 Генерация облака из карты глубины 1,02 5,3 

2.3 Выравнивание (PnP) 0,14 0,7 
2.4 Слияние облаков и сохранение 1,67 8,7 

ИТОГО 19,26 100 

Примечание. Хронометраж выполнения пайплайна (4 изображения) 

 
Данные подтверждают, что сама модель VGGT-1B является основным 

потребителем ресурсов (~4,8 ГБ). Важно отметить, что пиковое потребле-
ние памяти во время прямого прохода (инференса) почти вдвое выше, что 
делает невозможным использование модели на GPU с объемом памяти ме-
нее 10–12 ГБ при работе с изображениями высокого разрешения. 

Анализ хронометража показывает, что загрузка модели в память 
(12,35 с) является доминирующей операцией, занимая 64,1% от общего 
времени выполнения. Сами вычисления (инференс 1,29 с, выравнивание 
0,14 с) происходят значительно быстрее. Этот результат полностью оправ-
дывает выбранную архитектуру с динамической загрузкой и выгрузкой 
модели, так как позволяет высвобождать значительные ресурсы GPU в 
промежутках между операциями реконструкции. 
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