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В мире наблюдается тенденция к использованию одностадийных детекторов и их 

облегченных версий, таких как YOLOv8, Faster R-CNN, RT-DETR и их модификации, 
для обнаружения дефектов печатных плат. Нейросетевые детекторы показывают высо-
кую точность результатов даже при наличии бликов, защитного лака и текстовой ин-
формации на плате. В докладе рассмотрены современные нейросетевые детекторы де-
фектов печатных плат, классический алгоритмом сравнения с эталоном и гибридный 
подход на его основе. Предложенная модель YOLOv8n, дообученная на открытых да-
тасетах DeepPCB и PCB Defect Dataset, демонстрирует значения mAP50 0,98 и 0,99, 
что сопоставимо или превосходит лучшие мировые результаты. 
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There is a global trend towards the use of one-stage detectors and their lightweight 
versions, such as YOLOv8, Faster R-CNN, RT-DETR and their modifications, to detect 
printed circuit board (PCB) defects. Neural network detectors show high accuracy of results 
even in the presence of glare, protective varnish and text information on the PCB. This paper 
examines modern neural network detectors of PCB defects, the classic reference-based PCB 
inspection algorithm and the hybrid approach based on it. The proposed YOLOv8n model, 
further trained on open datasets DeepPCB and PCB Defect Dataset, demonstrates the mAP50 
values of 0.98 and 0.99, which is comparable or exceeds the best global results. 
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1. Введение  

Важной проблемой при производстве радиоэлектронного оборудова-
ния является контроль качества печатных плат на различных технологиче-
ских этапах. Объектом для контроля будет являться изображение печатной 
платы или ее фотошаблона. Элементами на изображении печатной платы 
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будут являться контактные площадки, проводники, реперные точки, слу-
жебная информация в виде букв и цифр. Дефектом при осуществлении 
контроля является отклонение элементов топологии на объекте от проект-
ной документации вследствие погрешностей при производстве. Актуаль-
ность задачи поиска дефектов печатных плат обусловлена использованием 
новых элементов, материалов и технологий их производства [1]. 

2. Предлагаемые методы  

Алгоритм сравнения с эталоном 

Данный алгоритм заключается в следующем. Вначале производится 

предварительная обработка изображения, которая состоит из бинариза-

ции, удаления шума, коррекции масштаба и угла поворота для совмещения 

эталона и анализируемого изображения. Далее производится поиск дефек-

тов с помощью операции «Исключающее ИЛИ». Найденные дефекты 

классифицируются по бинарным флагам, определяются их геометриче-

ские параметры. 

Модель YOLOv8 

YOLOv8 – современная модель классификации изображений, сегмен-

тации экземпляров и обнаружения объектов без привязки, разработанная 

Ultralytics. Модели YOLOv8 можно обучать на больших наборах данных и 

запускать на различных аппаратных платформах. Одной из ключевых осо-

бенностей YOLOv8 является расширяемость. Она поддерживает все 

предыдущие версии YOLO, что позволяет легко переключаться между раз-

личными версиями и сравнивать их производительность. 

Развитием идеи обнаружения объектов является введение угла для 

ограничивающих прямоугольников, чтобы учитывать ориентацию иско-

мых объектов на изображении. Такой подход называется ориентирован-

ным обнаружением объектов. Он позволяет точнее находить объекты на 

изображении. Ограничивающие прямоугольники в таком случае также 

называются ориентированными (Oriented Bounding Boxes – OBB). Для мо-

делей YOLOv8 OBB в файлах разметки один ориентированный ограничи-

вающий прямоугольник описывается меткой класса и нормированными 

координатами всех вершин. 

Гибридный подход 

Использование нейронных сетей для поиска и классификации дефек-

тов имеет такие преимущества, как низкая чувствительность к качеству 

изображений, наличие бликов и защитного лака на поверхности печатной 

платы (кроме случаев непрозрачного или черного лака), присутствие тек-

стовой и графической информации на поверхности печатной платы. 
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Между тем следует отметить зависимость результатов от полноты и 

качества обучающей выборки. Все использованные в экспериментах обще-

доступные наборы данных для обучения нейронных сетей имеют ошибки в 

разметке данных. Пары изображений (эталонное и анализируемое) в наборе 

данных Deep PCB не могут быть приемлемо совмещены с помощью аффин-

ных и проекционных преобразований вследствие, предположительно, оши-

бочных параметров бинаризации и не должны использоваться для кон-

троля, а также принципиально не имеют информации о связях между до-

рожками за пределами одного кадра [1]. Все печатные платы, изображения 

которых входят в набор PCB Defects Dataset, покрыты только зеленым за-

щитным лаком. Некоторые изображения имеют белые графические объ-

екты, указывающие на посадочные места электронных компонентов, что 

значительно усложняет, а в некоторых случаях делает невозможным опти-

ческий контроль печатной платы. Дефекты обоих наборов данных выпол-

нены формально с использованием графического редактора. 

Перечисленные недостатки определяют необходимость гибридного 

поиска дефектов печатных плат, основанного на использовании алгоритма 

сравнения с эталоном (вычитании изображений), операций математиче-

ской морфологии и нейронных сетей. 

Гибридный подход заключается в выборе метода поиска дефектов в 

зависимости от оценки качества анализируемых изображений по следую-

щим критериям [1]: 

− отсутствие нелинейных геометрических искажений, обусловлен-

ных непостоянством скорости сканирования печатной платы или неодно-

родностью свойств оптической системы формирования изображения по 

всему полю кадра; 

− наличие бликов и теней из-за использования неудачной системы 

освещения; 

− определение достаточной резкости изображения для обработки; 

− определение общего уровня яркости изображения, количества и раз-

нообразия оттенков. Если уровень яркости слишком высокий или, наоборот, 

низкий, то это приводит к потерям информации на пересвеченных или 

слишком темных участках изображения при выравнивании яркости. 

Для поиска дефектов на изображениях высокого качества при нали-

чии эталона рекомендуется использовать алгоритм сравнения с эталоном, 

который позволяет классифицировать все найденные дефекты на шесть 

непересекающихся классов. Для поиска отклонения от минимальной ши-

рины дорожки и минимального расстояния между дорожками будет ис-
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пользоваться операция математической морфологии – дистанционное пре-

образование, применяемое как к изображению дорожек, так и к фону.  

Возможно одновременное применение алгоритма сравнения и 

нейросетевого подхода с объединением результатов для снижения вероят-

ности пропуска критически важного дефекта и количества ложных дефек-

тов при плохом совмещении эталонного и анализируемого изображений. 

При отсутствии эталона или низком качестве изображения следует приме-

нять предварительно обученные нейронные сети [1]. 

При любом выборе метода поиска необходимо использовать его ре-

зультаты с целью расширения набора данных для обучения и переобуче-

ния нейронных сетей, что позволит улучшить качество детекции и класси-

фикации дефектов. Особое внимание необходимо уделить вопросу орга-

низации грамотного освещения плат и регистрации их изображения. Эти 

факторы непосредственно влияют на качество поиска дефектов. 

3. Обсуждение результатов 

В первой части экспериментов модель YOLOv8 размера nano, предо-

бученная на наборе данных COCO, была дообучена и протестирована на 

наборе изображений DeepPCB. Обучение выполнено в среде Google Colab 

с использованием GPU Tesla T4. Параметры обучения модели YOLOv8n: 

количество эпох – 50, размер пакета – 16, размер изображения – 640 × 640, 

метод оптимизации – AdamW, вес компонента потерь прямоугольника в 

функции потерь – 7,5. Алгоритм сравнения с эталоном использует бина-

ризацию методом Оцу и морфологические операции отмыкания и замыка-

ния с круглым структурирующим элементом размерами 3 × 3 и 5 × 5. Ал-

горитм сравнения с эталоном использует семантический фильтр, отсеива-

ющий дефекты площадью менее 20 пикселов. 

Результаты экспериментов, представленные в табл. 1, показывают, 

что минимальное количество пропущенных дефектов, а именно 16, дости-

гается при использовании гибридного алгоритма. Нейросетевая модель 

демонстрирует высокую точность детекции дефектов печатных плат (мет-

рика mAP50 равна 0,98 на тестовом наборе данных). При этом на тестовом 

наборе для этой модели доля ложноположительных ошибок составляет 

11,9% относительно общего количества дефектов, а доля ложноотрица-

тельных ошибок – 2,8%. Относительно всех дефектов наихудшее значение 

доли ложноположительных ошибок соответствует классу «обрыв» и со-

ставляет 21,9%, а наихудшее значение доли ложноотрицательных ошибок 

соответствует классу «короткое замыкание» и составляет 5,2%. 
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Таблица 1 

Сравнение результатов поиска и классификации дефектов на наборе данных 

DeepPCB 

Метод 
Число 

дефектов 

Метрика оценки 

Precision Recall F1-score Accuracy 

YOLOv8n 11 768 0,768 0,847 0,805 0,847 

Cравнение с 

эталоном 
11 712 0,718 0,755 0,731 0,755 

Гибридный 14 359 0,625 0,767 0,685 0,767 

 

На рис. 1 показан пример обнаружения дефектов печатных плат с 

помощью предлагаемого гибридного подхода на изображениях из набора 

данных DeepPCB. 

 

 

Рис. 1. Обнаружение дефектов печатных плат с помощью гибридного подхода 

на изображениях из набора данных DeepPCB 

 

Полученная точность детекции дефектов печатных плат сравнима с 

лучшими мировыми результатами (табл. 2): 

− SSD – одностадийный метод обнаружения объектов, который вы-

полняет детекцию и классификацию в одном проходе нейросети без гене-

рации предложений регионов [2]. Средняя точность (mAP) – 95,9%; 

− YOLO – одностадийный метод детекции объектов, в котором свер-

точная сеть одновременно предсказывает координаты ограничивающих 

рамок и классы объектов, что позволяет выполнять детекцию за один про-

ход по изображению [3]. Значение mAP – 92,6%; 

− Faster R-CNN – архитектура обнаружения объектов, основанная на 

совместной работе сверточной сети генерации регионов-кандидатов 

(Region Proposal Network, RPN) и детектора извлечения признаков Fast  

R-CNN [4]. Значение mAP – 97,6%; 

− нейросетевая модель с модулем улучшения контекста и семантики 

(Attentive Context and Semantic Enhancement Module, ACASEM) для обна-

ружения дефектов печатных плат с помощью двухступенчатых и много-

ступенчатых детекторов объектов [5]. Значение mAP – 79,5%; 
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− неконтролируемое обнаружение дефектов на изображениях печат-

ных плат с учетом неопределенности и использованием реконструктивных 

и дискриминационных моделей (U2D2PCB) на основе двух сетей U-Net, 

которые служат в качестве реконструктивной и дискриминационной под-

сетей [6]. Значение mAP – 95,78%; 

− модуль поиска дефектов печатных плат на основе группового пирами-

дального объединения (Group Pyramid Pooling, GPP), который извлекает при-

знаки на разных масштабах и объединяет их по группам, что позволяет лока-

лизовать как мелкие, так и крупные дефекты [7]. Значение mAP – 98,6%. 

 
Таблица 2 

Сравнение результатов детекции дефектов для набора DeepPCB 

Метод Оценка результата Метрика оценки 

SSD [2] 95,9 mAP 

YOLO [3] 92,6 mAP 

Faster R-CNN [4] 97,6 mAP 

Faster R-CNN + ACASEM [5] 79,5 mAP50-95 

U2D2PCB [6] 95,78 mAP 

GPP со средним объединеним [7] 97,1 mAP 

GPP с максимальным объединением [7] 98,6 mAP 

YOLOv8n 98,0 mAP 

 

Во второй части экспериментов модель YOLOv8 размера nano, предо-

бученная на наборе данных DOTAv1 [8], была дообучена и протестирована 

на наборе изображений PCB Defect Dataset. Обучение выполнено с исполь-

зованием GPU NVIDIA GeForce RTX 3060. Некоторые параметры обуче-

ния модели YOLOv8n OBB: количество эпох – 200, размер пакета – 16, 

метод оптимизации – Adam, вес компонента потерь прямоугольника в 

функции потерь – 7,5. Алгоритм сравнения с эталоном использует гло-

бальную бинаризацию – диапазону значения RGB от (0, 20, 0) до 

(45, 85, 45) соответствует белый цвет, а остальному диапазону – черный. 

Для совмещения тестируемого изображения и эталона используются мас-

штабно-инвариантная трансформация признаков (Scale Invariant Feature 

Transform, SIFT) [9], сопоставление дескрипторов методом Brute-Force 

[10] и интерполяция методом ближайшего соседа [11]. Морфологические 

операции отмыкания-замыкания с круглым структурирующим элементом 

размером 5 × 5 применяются для сглаживания результатов бинаризации и 

совмещения. 

Сравнение с результатами, доступными в открытой печати, приве-

дено в табл. 3, из которой видно, что обученная модель YOLOv8n OBB 

показывает лучшую точность детекции дефектов печатных плат. 
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Таблица 3 

Стравнение результатов поиска дефектов печатных плат на наборе данных 

PCB Defect Dataset, доступными в открытой печати 

Модель НС и ссылка на источник данных 
Метрика оценки 

mAP50, % Precision, % mAP50, % 

Faster R-CNN [12] 84,5 87,3 92,7 

YOLOv5 [12] 92,5 88,1 93,6 

YOLOv7 [12] 94,7 89,3 94,3 

YOLOv8s [12] 94,5 92,6 95,1 

RT-DETR [12] 95,6 93,5 95,9 

YOLO-BFRV [12] 98,4 96,9 98,2 

YOLOv3 [13] 96,1 97,3 92,7 

YOLOv5 [13] 97,7 98,8 95,5 

YOLOv8 [13] 97,6 98,2 95,4 

GCC-YOLO [13] 98,2 99,0 97,3 

SCF-YOLO [14] 92,9 92,5 90,2 

CDI-YOLO [15] 98,3 97,1 96,4 

YOLOv8 [16] 97,6 98,6 94,7 

YOLOv9 [16] 97,8 98,1 95,4 

YOLOv10 [16] 98,0 98,9 94,4 

YOLOv11 [16] 97,6 98,9 94,6 

YOLO-SSW [16] 98,4 99,2 95,5 

Faster R-CNN + ACASEM [5] 98,6 — — 

YOLOv8n OBB 99 99,5 98,8 

Сравнение с эталоном 85,8 86,8 85,8 

 

В табл. 3 представлены данные для следующих моделей нейрон-

ных сетей. 

− Faster R-CNN [4] и RT-DETR (Real-Time DEtection TRansformer) 

[17] – современные архитектуры для обнаружения объектов в компьютер-

ном зрении. DETR использует архитектуру трансформера, которая моде-

лирует глобальные взаимосвязи между объектами и контекстом изображе-

ния без необходимости в заранее заданных связях. 

− YOLO-BFRV – модифицированная версия алгоритма обнаружения 

объектов YOLO, разработанная для поиска дефектов на печатных платах 

[12]. Главные компоненты архитектуры – двунаправленная пирамидальная 

сеть признаков (Bidirectional Feature Pyramid Network, BiFPN); облегченная 

версия backbone-сети FasterNet; перепараметризованные детекторы 

(RepHead, Re-parameterized Detection Head); функция потерь Varifocal Loss. 

− GCC-YOLO – модель, использующая модули глобального контекста 

(Global Context, GC) и улучшенное слияние признаков через BiFPN, что поз-

воляет сохранить информацию о мелких деталях при углублении сети [13]. 



37 

− SCF-YOLO – упрощенный метод детекции дефектов печатных плат 

с низкой вычислительной сложностью. Основана на более компактной 

MobileNet в качестве сети извлечения признаков для сокращения количе-

ства параметров модели и использовании SCF-блока (Spatial-Channel 

Fusion), объединяющего значимые пространственные признаки и выделя-

ющего наиболее информативные каналы признаков, улучшая представле-

ние и фильтрацию релевантной информации [14]. 

− CDI-YOLO – модель обнаружения дефектов печатных плат, осно-

ванная на облегченной версии YOLOv7-tiny для компактности и высокой 

скорости работы [15]. Основные особенности CDI-YOLO – использование 

механизма координатного внимания (Coordinate Attention, CA). Части 

обычных сверток заменены на свертки, разделимые в глубину (depthwise 

separable convolution, DSConv). Используется модифицированная функция 

потерь Inner-CIoU для прогнозирования координат ограничивающих ра-

мок, что ускоряет и улучшает точность локализации дефектов. 

− YOLO-SSW – модель, основанная на версии YOLOv8 и использую-

щая архитектуру YOLO-SPD-SimAM-WIoU [16]. SPD (Spatial Pyramid 

Decomposition) – модуль, обеспечивающий многоуровневое простран-

ственное разложение признаков для детектирования объектов разных мас-

штабов. SimAM (Simple Attention Module) – механизм внимания, который 

усиливает значимые признаки без значительных вычислительных затрат, 

улучшая выделение релевантной информации на сложных фонах. WIoU 

(Wise Intersection over Union) – улучшенная функция потерь для прогнози-

рования координат ограничивающих рамок, которая учитывает качество 

предсказания и динамически адаптируется, повышая точность локализа-

ции и ускоряя обучение. 

На рис. 2 показан пример обнаружения дефектов печатных плат с по-

мощью предлагаемой модели YOLOv8n OBB на изображениях из набора 

данных PCB Defect Dataset. 

4. Заключение 

В мире наблюдается тенденция к использованию одностадийных де-
текторов (YOLO, SSD) и их облегченных версий (SCF-YOLO, CDI-YOLO, 
YOLO-SSW), которые обеспечивают баланс между точностью и скоро-
стью, что важно для реального производства с контролем продукции на 
конвейере. Такие модели используют компактные backbone-сети 
(MobileNet, FasterNet), облегченные свертки и оптимизированные функ-
ции потерь. Для повышения чувствительности к мелким и сложным де-
фектам активно внедряются модули пространственного и координатного 
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внимания (SimAM, CA), а также пирамидальные структуры для объедине-
ния признаков на разных масштабах (BiFPN, SPD). Это позволяет моделям 
эффективно работать с дефектами различных размеров и на сложном 
фоне. Архитектуры на базе трансформеров (DETR, RT-DETR) начинают 
превосходить классические CNN по точности и скорости в задачах детек-
ции дефектов, особенно при необходимости учитывать сложные взаимо-
связи между объектами на изображении. 

Предложенная модель YOLOv8n, дообученная на специализирован-
ных наборах данных, демонстрирует значения mAP50 0,98 и 0,99 на соот-
ветствующих тестовых наборах, что сопоставимо или превосходит луч-
шие мировые результаты. 
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