
310

УДК 001.817

СТАТИЧЕСКИЕ АНАЛИЗАТОРЫ КОДА И ИХ РОЛЬ В

ОБЕСПЕЧЕНИИ КАЧЕСТВА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

М. А. Устинович, Е. И. Вакарь, Е. И. Баяк

Белорусский государственный университет информатики и радиоэлектроники,

Минск, Беларусь, maksimustsinovich@gmail.com

В статье рассмотрена роль статического анализа кода в обеспечении качества

программного обеспечения. Описаны основные методы статического анализа, их при-

менение для поиска ошибок, повышения безопасности и читаемости. Рассмотрены

подходы к интеграциям анализаторов в процесс разработки ПО. Сравнены эффектив-

ности современных инструментов и будущие направления развития.

Ключевые слова: статический анализ кода; качество программного обеспечения;

анализ ошибок; безопасность кода; инструменты разработки; проверка кода; надёж-

ность программного обеспечения.

STATIC CODE ANALYZERS AND THEIR ROLE IN SOFTWARE

QUALITY ASSURANCE

M. A. Ustsinovich, E. I. Vakar, E. I. Bayak

Belarusian State University of Informatics and Radioelectronics,

Minsk, Belarus, maksimustsinovich@gmail.com

The article considers the role of static code analysis in software quality assurance. The

main methods of static analysis and their application for searching errors, increasing security

and readability are described. Approaches to integrating analyzers into the process of

software development are considered. The efficiency of modern tools and future development

directions are compared.

Keywords: static code analysis; software quality; error analysis; safety-free code;

development tools; code verification; software reliability.

1. Введение

Современное создание программного обеспечения требует всё

больше внимания к надёжности, безопасности и читаемости кода. С уве-

личением сложности программных систем растёт риск ошибок, которые

могут вызывать сбои или уязвимости, которые могут использовать зло-

умышленники. Один из лучших способов обнаружить проблемы заранее

mailto:maksimustsinovich@gmail.com
mailto:maksimustsinovich@gmail.com

311

– использовать статические анализаторы кода, которые помогают находить

ошибки без запуска программы. Эти инструменты полезны на разных эта-

пах: от написания и тестирования кода до поддержки и улучшения боль-

ших проектов.

Статический анализ помогает автоматически проверять, соответ-

ствует ли код стандартам, выявлять логические ошибки, утечки памяти и

потенциальные уязвимости ещё до тестирования. Это может существенно

сократить затраты на исправление и улучшить качество конечного про-

дукта, умело соблюдая правила безопасного программирования. Сегодня

существует множество статических анализаторов с разными методами и

уровнями автоматизации.

Статический анализ – это метод изучения программного кода без его

выполнения. В отличие от динамического анализа, который требует за-

пуска программы, статический анализ может выявить проблемы на ранних

стадиях разработки, когда исправить их проще и дешевле. Это особенно

важно для критически важных систем, где ошибки могут иметь серьёзные

последствия, как в авиации или медицинских устройствах.

Появилось множество инструментов, таких как SonarQube, Pylint,

ESLint и другие. Эти инструменты используются как в маленьких компа-

ниях, так и у крупных игроков в ИТ. Они не только ищут синтаксические

ошибки, но и анализируют управление потоком, потоки данных и обнару-

живают уязвимости. Также многие из них поддерживают правила кодиро-

вания, используемые в промышленности.

Несмотря на очевидные достоинства, статические анализаторы стал-

киваются с некоторыми трудностями, такими как большое количество

ложных срабатываний и сложности интеграции в существующие про-

цессы. Тем не менее, прогресс в разработке алгоритмов и увеличение мощ-

ности компьютеров значительно улучшили точность и полезность этих ин-

струментов.

Целью данной статьи является рассмотрение современных подходов

к статическому анализу кода и оценка их роли в обеспечении качества про-

граммного обеспечения. Для достижения поставленной цели решаются за-

дачи классификации известных методов статического анализа, анализа по-

пулярных инструментов и их возможностей, а также рассмотрения прак-

тик внедрения таких средств в реальные проекты.

2. Методы и подходы в статическом анализе кода

Статический анализ кода – это процесс проверки программного обес-

печения без его непосредственного выполнения. Он позволяет выявлять

ошибки, уязвимости и отклонения от стандартов кодирования на ранних

312

этапах разработки. В зависимости от целей и сложности анализа, приме-

няются различные методы и подходы.
Один из основных подходов – лексический и синтаксический анализ,

при котором изучается структура кода на соответствие грамматическим
правилам языка программирования. Такой анализ позволяет находить
простые ошибки, например, опечатки, неверное использование операто-
ров или несоответствие стандартам оформления кода (code style).

Более глубоким является семантический анализ, который исследует
логику программы. Он направлен на обнаружение потенциальных про-
блем, таких как утечки памяти, деление на ноль, некорректная работа с
указателями, выход за границы массива и другие дефекты. Для реализа-
ции семантического анализа часто используются такие методы, как анализ
потока данных, анализ зависимостей и построение графов вызовов.

Ещё один важный метод – аннотационный подход, при котором в ис-
ходный код добавляются специальные комментарии или аннотации, зада-
ющие правила для статического анализатора. Это помогает более точно
интерпретировать поведение программы и учитывать контекст использо-
вания переменных и функций.

В процессе статического анализа кода важную роль играют абстракт-
ные синтаксические деревья. Это древовидная структура, представляю-
щая синтаксическую структуру исходного кода на более высоком уровне
абстракции, без деталей, связанных с конкретными символами или лексе-
мами – такими как скобки или точка с запятой. Каждый узел дерева соот-
ветствует определённой конструкции языка программирования.

Построение AST обычно происходит на этапе синтаксического ана-
лиза, когда парсер преобразует поток токенов, полученных в результате
лексического анализа, в иерархическую структуру, удобную для дальней-
шей обработки. Именно с помощью AST реализуются многие виды стати-
ческого анализа, включая проверку типов, анализ потока управления и вы-
явление потенциальных ошибок.

Например, при семантическом анализе инструменты статического
анализа обходят узлы AST, чтобы отследить, как значения передаются
между переменными, где происходят вызовы функций, и какие условия
могут привести к неопределённому поведению. Также AST позволяет
применять паттерны поиска потенциально опасных конструкций – напри-
мер, использование непроверенных входных данных в SQL-запросах, что
может указывать на уязвимость типа SQL injection.

Существует два основных типа статического анализа: условный и
формальный. Упрощённый анализ быстро проверяет код на основе эври-
стик и шаблонов, что позволяет находить типовые ошибки. Формальный
анализ использует строгие математические методы для доказательства
корректности программ, но требует больших ресурсов и времени.

313

Выбор конкретного метода зависит от задач проекта, уровня критич-

ности системы, требований к безопасности и качества кода. Комбинация

различных подходов позволяет достичь максимальной эффективности

при использовании статического анализа в реальных условиях разработки

программного обеспечения.

3. Интеграция статического анализа в процесс разработки

программного обеспечения

Эффективное использование статического анализа кода возможно

только при его тесной интеграции в процесс разработки программного

обеспечения. Современные методологии разработки, такие как Agile,

DevOps и CI/CD, подразумевают автоматизацию проверок на ранних эта-

пах жизненного цикла продукта, что делает внедрение статического ана-

лиза особенно важным.

На этапе написания кода статические анализаторы могут быть инте-

грированы в среды разработки (IDE). Это позволяет разработчикам полу-

чать немедленную обратную связь о потенциальных ошибках, проблемах

стиля или уязвимостях прямо в процессе работы с исходным кодом. Такой

подход способствует повышению качества кода ещё до его добавления в

репозиторий проекта.

На этапе проверки кода перед коммитом или при создании pull request,

статический анализ может выполняться автоматически в системах кон-

троля версий. Инструменты анализа запускаются в рамках пред настроен-

ных проверок и не позволяют отправить в репозиторий код, содержащий

критические ошибки или нарушающий принятые стандарты кодирования.

Это помогает сохранять целостность базовой ветки проекта и минимизи-

ровать количество дефектов на более поздних этапах.

В системах CI/CD статический анализ обычно встраивается как от-

дельный этап сборки. Это позволяет регулярно выполнять полные про-

верки всего кода проекта, формировать отчёты по найденным проблемам

и контролировать их устранение.

Для крупных проектов и систем с высокими требованиями к надёж-

ности и безопасности (например, в области финансов, авиации, меди-

цины) статический анализ может использоваться в рамках стандартов

обеспечения качества кода. В этом случае инструменты статического ана-

лиза настраиваются на проверку соответствия конкретным нормам, а ре-

зультаты анализа становятся частью документации для сертификации про-

граммного обеспечения.

314

Кроме того, современные системы статического анализа поддержи-

вают интеграцию с трекерами задач, позволяя автоматически создавать за-

дачи по найденным проблемам и отслеживать их исправление. Также до-

ступны механизмы анализа изменений, которые позволяют фокусиро-

ваться только на тех участках кода, которые были изменены в последнем

коммите, что значительно ускоряет процесс проверки.

Особое внимание стоит уделить тому, как статические анализаторы

взаимодействуют с CI/CD-конвейерами, превращая проверку качества

кода из периодической процедуры в неотъемлемую часть автоматизиро-

ванного процесса доставки программного обеспечения. В рамках систем

непрерывной интеграции и доставки, таких как, статический анализ ста-

новится не просто этапом проверки, а полноценным участником процесса

принятия решений о готовности кода к выпуску. Настройка прохождения

анализа как обязательного шага позволяет блокировать сборку или деплой

при обнаружении критических ошибок, что особенно важно для проектов

с высокими требованиями к надёжности.

Анализаторы умеют не только находить проблемы, но и классифици-

ровать их по уровням критичности, категориям и типам, а также предо-

ставлять рекомендации по исправлению. Интеграция с CI/CD даёт возмож-

ность сохранять историю результатов анализа, отслеживать динамику из-

менений и оценивать эффективность принимаемых мер. Это позволяет ко-

манде не только реагировать на текущие ошибки, но и выявлять системные

слабые места в подходах к разработке, что способствует постепенному по-

вышению общего уровня качества кода.

4. Заключение

Сложившаяся практика использования статического анализа в разра-

ботке программного обеспечения подтверждает его эффективность как

средства повышения качества кода, предотвращения ошибок и обеспече-

ния безопасности на ранних этапах разработки. Определение ключевых

принципов интеграции, выбор рациональных методов анализа и использо-

вание современных технологий позволяют создать устойчивую основу для

непрерывного совершенствования процессов разработки и обеспечения

высокого уровня надёжности программных продуктов.

Однако эффективность статического анализа напрямую зависит от

того, насколько последовательно и комплексно он интегрирован в суще-

ствующие процессы. Его применение не должно ограничиваться единич-

ными проверками или использоваться исключительно по требованию –

только системный подход, охватывающий все этапы жизненного цикла

315

разработки, позволяет достичь максимального эффекта. Начиная с момен-

тального анализа в IDE при написании кода и заканчивая автоматизиро-

ванными проверками в рамках CI/CD-конвейеров, статический анализ ста-

новится неотъемлемой частью культуры качества внутри команды.

Современные системы статического анализа предоставляют широкие

возможности для настройки правил, фильтрации результатов, интеграции

с системами управления задачами и даже обучения под стиль кодирования

проекта. Это позволяет адаптировать их под нужды как небольших стар-

тапов, так и крупных корпоративных решений с высокими требованиями

к надёжности и защищённости.

Библиографические ссылки

1. Рыжков Е. А., Середин О. С. Применение технологии статического анализа

кода при разработке параллельных программ // Известия Тульского государственного

университета. Технические науки. 2008. № 3. С. 191–197. URL:

https://cyberleninka.ru/article/n/primenenie-tehnologii-staticheskogo-analiza-koda-pri-

razrabotke-parallelnyh-programm (дата обращения: 05.06.2025).

2. Применение гибридного анализа для поиска уязвимостей в исходном про-

граммном коде / А. Н. Баранов [и др.] // Известия Тульского государственного универ-

ситета. Технические науки. 2022. № 12. С. 408–413. URL:

https://cyberleninka.ru/article/n/primenenie-gibridnogo-analiza-dlya-poiska-uyazvimostey-

v-ishodnom-programmnom-kode (дата обращения: 05.06.2025).

3. Попов Г. А., Жунёва М. М. Сбор метрик программного кода для анализа его

уязвимостей // NBI-technologies. 2024. Т. 18, № 4. С. 21–24. URL:

https://cyberleninka.ru/article/n/sbor-metrik-programmnogo-koda-dlya-analiza-ego-

uyazvimostey (дата обращения: 05.06.2025).

4. Зубов М. В., Пустыгин А. Н., Старцев Е. В. Применение универсальных про-

межуточных представлений для статического анализа исходного программного кода //

Доклады Томского государственного университета систем управления и радиоэлек-

троники. 2013. № 1. С. 64–68. URL: https://cyberleninka.ru/article/n/primenenie-

universalnyh-promezhutochnyh-predstavleniy-dlya-staticheskogo-analiza-ishodnogo-

programmnogo-koda (дата обращения: 05.06.2025).

5. Моисеев М. Ю. Итеративный алгоритм статического анализа для обнаружения

дефектов в исходном коде программ // Информационно-управляющие системы. 2009.

№ 3. С. 34–39.

https://cyberleninka.ru/article/n/primenenie-tehnologii-staticheskogo-analiza-koda-pri-razrabotke-parallelnyh-programm
https://cyberleninka.ru/article/n/primenenie-tehnologii-staticheskogo-analiza-koda-pri-razrabotke-parallelnyh-programm
https://cyberleninka.ru/article/n/primenenie-gibridnogo-analiza-dlya-poiska-uyazvimostey-v-ishodnom-programmnom-kode
https://cyberleninka.ru/article/n/primenenie-gibridnogo-analiza-dlya-poiska-uyazvimostey-v-ishodnom-programmnom-kode
https://cyberleninka.ru/article/n/sbor-metrik-programmnogo-koda-dlya-analiza-ego-uyazvimostey
https://cyberleninka.ru/article/n/sbor-metrik-programmnogo-koda-dlya-analiza-ego-uyazvimostey
https://cyberleninka.ru/article/n/primenenie-universalnyh-promezhutochnyh-predstavleniy-dlya-staticheskogo-analiza-ishodnogo-programmnogo-koda
https://cyberleninka.ru/article/n/primenenie-universalnyh-promezhutochnyh-predstavleniy-dlya-staticheskogo-analiza-ishodnogo-programmnogo-koda
https://cyberleninka.ru/article/n/primenenie-universalnyh-promezhutochnyh-predstavleniy-dlya-staticheskogo-analiza-ishodnogo-programmnogo-koda

