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Рассматривается задача о наименьшем слабом рёберном покрытии графа, которая 

представляет собой естественное обобщение классической проблемы наименьшего рё-

берного покрытия. В предположении P ≠ NP установлена NP-трудность задачи постро-

ения (k ln n)-приближённого решения для оптимизационной версии рассматриваемой 

задачи, где k > 0 – некоторая фиксированная рациональная константа и n – порядок 

входного графа. Получена характеризация в терминах запрещённых порождённых под-

графов для наследственного класса графов, в которых у каждого порождённого под-

графа без изолированных вершин все минимальные (по включению) слабые рёберные 

покрытия имеют одинаковую мощность. 
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1. Введение 

Данная работа продолжает начатое в [1, 2] исследование ослаблен-

ного варианта классического понятия рёберного покрытия. Стандартные 

понятия теории графов, не определяемые далее, можно найти в [3]. 

Напомним, что подмножество рёбер графа называется рёберным по-

крытием [4], если каждая вершина графа инцидентна по крайней мере од-

ному ребру из этого подмножества. Число рёбер в наименьшем (по мощ-

ности) рёберном покрытии графа G называется числом рёберного покры-

тия этого графа и обозначается через )(ρ G . 

Подмножество рёбер графа называется слабым рёберным покры-

тием, если каждая вершина графа инцидентна некоторому ребру из дан-

ного подмножества или лежит в треугольнике, содержащем такое ребро. 

Слабое рёберное покрытие графа называется минимальным, если оно не 

содержит никакого другого слабого рёберного покрытия этого графа. 

Наименьшая из мощностей (минимальных) слабых рёберных покрытий 

графа G называется числом слабого рёберного покрытия этого графа и 

обозначается через )(ρ G . 

Заметим, что рёберные и слабые рёберные покрытия существуют 

лишь в графах без изолированных вершин. Понятно также, что в графе, не 

содержащем треугольников, понятия рёберного и слабого рёберного по-

крытий совпадают и, следовательно, для любого такого графа G выпол-

нено равенство )(ρ)(ρ GG = . В общем случае каждое рёберное покрытие 

является слабым рёберным покрытием и, значит, для графа G, не содер-

жащего изолированных вершин, верно )(ρ)(ρ GG  . 

Рассмотрим следующую оптимизационную задачу минимизации. 

НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ 

Условие. Дан граф G. 

Задача. Найти такое (минимальное) слабое рёберное покрытие E  

графа G, что | | ( )E G =  . 

Известно [2], что эта задача является NP-трудной даже для некоторых 

специальных классов графов (кубические и расщепляемые графы). 

Сформулированная задача обнаруживает глубокую связь с классиче-

ской задачей о покрытии конечного множества наименьшим набором из 

предоставленных его непустых подмножеств [5]. Эта связь становится яв-

ной, если для данного графа G рассмотреть соответствующий ему гипер-

граф ( ) ( ( ),{ [ ] | ( )})H G V G PN e e E G=  , где [ ] [ ] [ ]PN e N u N v=   – собствен-

ное окружение ребра { , }e u v=  и }{)(][ xxNxN =  – замкнутое окруже-

ние вершины x. Тогда множество ( )E E G   является слабым рёберным 
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покрытием графа G, если и только если соответствующее множество 

{ [ ] | }PN e e E  гиперрёбер гиперграфа H(G) покрывает множество его 

вершин. Кроме этого, наименьшие слабые рёберные покрытия графа G 

находятся во взаимно однозначном соответствии с наименьшими покры-

тиями множества вершин гиперграфа H(G) некоторыми из его гиперрёбер. 

В частности, ( ) ρ( ( ))G H G = , где ρ( ( ))H G  – число рёберного покрытия 

гиперграфа H(G). 

Напомним, что задача )(nf -приближённого решения (или )(nf -ап-

проксимации) некоторой оптимизационной задачи минимизации P заклю-

чается в нахождении по произвольному примеру x размера n задачи P та-

кого её допустимого решения y со значением параметра оптимизации 

),( yxm , что )()(opt/),( nfxyxm  , где )(opt x  – значение оптимального 

решения для x. 

 

2. Сложность аппроксимации 

 

Нетрудно показать, что задача построения (ln | |)O G -приближённого 

решения задачи НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ в любом графе 

G может быть решена за полиномиальное время относительно порядка 

| |G  этого графа с помощью простого «жадного» алгоритма (каждый раз 

выбирающего ребро, покрывающее наибольшее число ещё непокрытых 

вершин). С другой стороны, как следует из теоремы 2 – основного резуль-

тата данного раздела, – в некотором смысле качество приближения, до-

стигаемое этим алгоритмом, не может быть существенно улучшено. 

Далее нам понадобится следующий хорошо известный результат 

(см., например, [6, 7, 8]). 

Теорема 1. В предположении NPP   для оптимизационной задачи 

НАИМЕНЬШЕЕ ДОМИНИРУЮЩЕЕ МНОЖЕСТВО соответствующая задача по-

строения |)|ln( Gc -приближённого решения является NP-трудной, где 

c > 0 – некоторая фиксированная рациональная константа. 

Пусть G – граф. Композицией ][ 2KG  называется граф, множеством 

вершин которого является декартово произведение },{)( baGV  , а смеж-

ность вершин ),( 21 uu  и ),( 21 vv  определяется следующим образом: либо 

11 vu = , либо )(11 GEvu  . Рёбра вида )},(),,{( buau  композиции ][ 2KG  

будем называть главными рёбрами. 

Справедливо следующее утверждение. 

Лемма 1. Пусть G – произвольный граф и ][ 2KGH = . Тогда имеют 

место следующие утверждения: 
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1) любое слабое рёберное покрытие E  графа H можно преобразовать 

за полиномиальное от порядка || H  графа H время в такое слабое рёберное 

покрытие E   этого графа, что | | | |E E   и E   состоит только из главных 

рёбер графа H. 

2) доминирующие множества графа G находятся во взаимно одно-

значном соответствии со слабыми рёберными покрытиями графа H, кото-

рые состоят только из главных рёбер, при этом, если E   – такое слабое 

рёберное покрытие графа H, то соответствующее доминирующее множе-

ство D графа G определяется так: 

 
{ ( ) |{( , ), ( , )} }.D u V G u a u b E=    

 

3) )()(γ HG = , где γ( )G  – число доминирования графа G. 

Теперь перейдём к обоснованию теоремы 2. 

Теорема 2. В предположении NPP   для оптимизационной задачи 

НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ соответствующая задача по-

строения )ln( nk -приближённого решения является NP-трудной, где k > 0 

– некоторая фиксированная рациональная константа и n – порядок вход-

ного графа. 

Доказательство этой теоремы существенно опирается на результат 

теоремы 1 и лемму 1. Действительно, зафиксируем константу k = c / 2, где 

c > 0 – фиксированная рациональная константа из условия теоремы 1. 

Предположим, что для задачи НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ со-

ответствующая задача построения )ln( nk -приближённого решения явля-

ется полиномиально разрешимой, где n – порядок входного графа. 

Рассмотрим произвольный граф G и построим граф ][ 2KGH = . С по-

мощью соответствующего приближённого полиномиального алгоритма 

найдём слабое рёберное покрытие )(HEE  , мощность которого отлича-

ется от мощности оптимального (т. е. наименьшего) слабого рёберного по-

крытия не более чем в ||ln Hk  раз. В силу утверждения 1 леммы 1 слабое 

рёберное покрытие E  можно преобразовать за полиномиальное от порядка 
| |H  графа H время в слабое рёберное покрытие )(HEE  , мощность ко-

торого не превосходит | |E , состоящее только из главных рёбер. 

Зная теперь )(HEE   и используя утверждения 2 и 3 леммы 1, по-

строим доминирующее множество )(GVD   графа G, мощность которого 

равна || E   и отличается от мощности оптимального (т. е. наименьшего) 

доминирующего множества графа G не более чем в |)|2(ln Gk  раз. По-

скольку при 2|| G  и k = c / 2 выполнено 
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|)|(ln|)|(ln2)||(ln|)|2(ln 2 GcGkGkGk == , 

получаем, что для задачи НАИМЕНЬШЕЕ ДОМИНИРУЮЩЕЕ МНОЖЕСТВО соот-

ветствующая задача построения |)|ln( Gc -приближённого решения явля-

ется полиномиально разрешимой. Но это противоречит теореме 1, что и 

завершает схему доказательства теоремы 2. 

Напомним, что граф G называется расщепляемым [9], если множе-

ство его вершин можно разбить на клику и независимое множество. Граф 

G называется (1, 2)-полярным (см., например, [10, 11]), если существует 

такое разбиение ( )A B V G =  множества его вершин, что порождённый 

подграф G(A) является полным, а G(B) – дизъюнктным объединением пол-

ных графов, порядок каждого из которых не превышает 2. 

Известно [12], что утверждение теоремы 1 остаётся верным в следую-

щем усиленном варианте: в предположении NPP   в классе расщепляемых 

графов задача построения |)|ln( Gc -приближённого решения задачи 

НАИМЕНЬШЕЕ ДОМИНИРУЮЩЕЕ МНОЖЕСТВО является NP-трудной, где c > 0 – 

некоторая фиксированная рациональная константа. Поскольку для расщепля-

емого графа G композиция 2[ ]G K  является (1, 2)-полярным графом полу-

чаем, что результат теоремы 2 также верен в классе (1, 2)-полярных графов. 

 

3. Наследственные свойства 

 

Напомним, что граф G называется F-свободным для некоторого 

набора графов F, если G не содержит порождённых подграфов, изоморф-

ных любому из графов этого набора. Класс графов X называется наслед-

ственным, если вместе с каждым графом XG  этому классу принадле-

жит любой порождённый подграф графа G (другими словами, класс X за-

мкнут относительно операции удаления вершины). Любой наследствен-

ный (и только наследственный) класс графов X может быть задан множе-

ством XF  своих запрещённых порождённых подграфов. Это означает, что 

XG  тогда и только тогда, когда G является XF -свободным графом (см., 

например, [13]). Граф H называется минимальным запрещённым порож-

дённым подграфом для класса X, если XH   и каждый порождённый 

подграф графа H, отличный от H, принадлежит классу X. 

В работе [2] введён в рассмотрение наследственный класс хорошо 

слабо-рёберно-покрытых графов – графов, в которых у каждого порож-

дённого подграфа без изолированных вершин все минимальные слабые 

рёберные покрытия имеют одинаковую мощность. 

В классе хорошо слабо-рёберно-покрытых графов задача 

НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ разрешима за полиномиальное 
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время. Решением этой задачи будет являться произвольное минимальное 

слабое рёберное покрытие, которое может быть найдено простым «жад-

ным» алгоритмом. 

В следующей теореме содержится характеризация класса хорошо 

слабо-рёберно-покрытых графов в терминах минимальных запрещённых 

порождённых подграфов, из которой следует полиномиальный алгоритм 

распознавания таких графов. 

Теорема 3. Граф G является хорошо слабо-рёберно-покрытым тогда 

и только тогда, когда G – 4 5 1 2 10{ , , , , , }K e P G G G−  -свободный граф  

(рисунок). 

 

 

Графы 1 2 10, , ,G G G  

 

В работе [14] введён и охарактеризован в терминах запрещённых по-

рождённых подграфов наследственный класс доминантно-паросочета-

тельных графов. Граф G называется доминантно-паросочетательным 

(dominant-matching), если для каждого его порождённого подграфа H без 

изолированных вершин выполнено равенство )()( 1 HH = , где )(1 H  – 

число паросочетания графа H. Имеет место следующий результат. 

Теорема 4 ([14]). Граф G является доминантно-паросочетательным 

тогда и только тогда, когда G – },,,,,,{ 10214431 GGGKeKPK −+ -сво-

бодный граф. 

Как следует из теорем 3 и 4, каждый доминантно-паросочетательный 

граф является хорошо слабо-рёберно-покрытым и, следовательно, класс хо-

рошо слабо-рёберно-покрытых графов является естественным расшире-

нием класса доминантно-паросочетательных графов. 
Характеризация класса хорошо слабо-рёберно-покрытых графов, по-

лученная в теореме 3, также обнаруживает тесную связь с характериза-
цией класса доминантно-покрытых графов. Граф G называется доми-
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нантно-покрытым (dominant-covering), если для каждого его порождён-
ного подграфа H без изолированных вершин выполнено )()( HH = , где 

)(H  – число вершинного покрытия графа H. В [14] установлен следую-

щий результат: граф G является доминантно-покрытым тогда и только то-
гда, когда G – },,,,,,,,,{ 10987642153 GGGGGGGGCK -свободный граф. 

 
5. Заключение 
 
В предположении NPP   установлена NP-трудность задачи постро-

ения )ln( nk -приближённого решения для оптимизационной версии за-

дачи НАИМЕНЬШЕЕ СЛАБОЕ РЁБЕРНОЕ ПОКРЫТИЕ, где k > 0 – некоторая фик-
сированная рациональная константа и n – порядок входного графа. Тем 
самым, в предположении NPP  , для рассматриваемой задачи получен 
отрицательный ответ на вопрос о существовании приближённых полино-
миальных алгоритмов с константными оценками точности. 

Получена характеризация наследственного класса хорошо слабо-рё-
берно-покрытых графов в терминах минимальных запрещённых порож-
дённых подграфов, из которой следует полиномиальный алгоритм распо-
знавания таких графов. Отмечена взаимосвязь данного класса графов с 
другими наследственными классами графов: доминантно-паросочетатель-
ные и доминантно-покрытые графы. 
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