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В работе исследуются криптографические методы защиты данных в 5G-сетях, 

включая алгоритмы шифрования, протоколы аутентификации и механизмы обеспечения 
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1. Введение 

Сети пятого поколения (5G) обеспечивают высокую скорость пере-

дачи данных и низкие задержки, но при этом создают новые вызовы в об-

ласти информационной безопасности. Криптографические методы играют 
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ключевую роль в защите конфиденциальности и целостности данных. 

Цель данной работы — анализ современных криптографических решений 

для 5G, включая их эффективность против актуальных угроз и перспек-

тивы развития. В статье рассматриваются стандарты 3GPP, алгоритмы 

шифрования и методы аутентификации, а также обсуждаются проблемы 

внедрения и пути их решения. 

2. Угрозы безопасности в 5G-сетях  

Архитектура 5G, несмотря на свои преимущества, сталкивается с се-

рьезными вызовами в области безопасности. Высокая степень виртуализа-

ции, использование программно-определяемых технологий (SDN/NFV) и 

массовое подключение IoT-устройств создают новые уязвимости, которые 

требуют инновационных подходов к защите данных. 

На физическом уровне одной из наиболее распространенных угроз 

остается воздействие на беспроводной канал связи. Например, технология 

IMSI-сниффинга, известная еще со времен 4G, эволюционировала благо-

даря применению программно-определяемых радиомодулей (SDR). Зло-

умышленники могут развертывать поддельные вышки сотовой связи (false 

base station), которые имитируют легитимные, что позволяет перехваты-

вать трафик пользователей. По данным исследований 2023 года, такие 

атаки стали на 25% чаще по сравнению с предыдущим годом [1]. 

Виртуализированная инфраструктура 5G, включая сетевые срезы 

(Network Slicing), также уязвима. Атаки на контроллеры OpenFlow могут 

привести к компрометации целых сегментов сети. Например, в 2022 году 

была обнаружена уязвимость CVE-2022-27578, позволяющая злоумыш-

ленникам нарушать изоляцию между срезами. Это особенно критично для 

промышленных IoT-решений, где утечка данных может привести к ката-

строфическим последствиям [2]. 

Edge-вычисления, несмотря на свои преимущества, также подверга-

ются атакам. Периферийные узлы обладают меньшим уровнем защиты, 

чем централизованные системы. Например, в одном из кейсов 2023 года 

хакеры использовали уязвимости в edge-устройствах для доступа к дан-

ным медицинских IoT-датчиков. 

Среди злоумышленников можно выделить три основные группы: ки-

берпреступники, нацеленные на финансовую выгоду; хактивисты, стремя-

щиеся нарушить работу сервисов; и государственные акторы, заинтересо-

ванные в слежке. Каждая из этих групп использует уникальные методы, 

что требует дифференцированного подхода к защите. 
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3. Криптографические методы защиты в 5G 

Безопасность данных в 5G обеспечивается комбинацией проверен-

ных и новых криптографических решений. Основу составляют протоколы 

аутентификации, алгоритмы шифрования и механизмы защиты идентифи-

каторов, адаптированные под высокоскоростные сети. 

Для аутентификации в 5G применяется усовершенствованный прото-

кол 5G AKA, который устраняет многие уязвимости своих предшествен-

ников. В отличие от EPS-AKA, используемого в 4G, новый протокол вклю-

чает схему SUCI, где постоянный идентификатор SUPI шифруется с помо-

щью ECIES на основе эллиптических кривых (чаще всего Curve25519). 

Это снижает риск перехвата IMSI. Для IoT-устройств самым распростра-

ненным является протокол EAP-TLS с сертификатами X.509, работающий 

на основе взаимной аутентификации [3]. 

Шифрование данных в 5G строится на алгоритмах, оптимизирован-

ных для высокой производительности. В пользовательской плоскости 

наиболее распространенным является AES-256 в режиме GCM/GMAC, ко-

торый обеспечивает и конфиденциальность, и целостность данных. Для 

совместимости с устаревшим оборудованием сохраняется поддержка 

SNOW 3G и ZUC. Интересно, что использование аппаратного ускорения 

(AES-NI) позволяет достигать скорости шифрования до 40 Gbps, что кри-

тично для сетей с низкими задержками [4]. 

Стандарты 3GPP предусматривают защиту идентификаторов через 

схему SUPI/SUCI. 

Перспективным направлением является внедрение постквантовой 

криптографии. В настоящее время тестируются алгоритмы, такие как 

Kyber (для ключевого соглашения) и Dilithium (для цифровых подписей).  

4. Реализация и стандартизация криптозащиты в 5G 

Разработка и внедрение криптографических методов в 5G-сетях осу-

ществляется в рамках международных стандартов и отраслевых соглаше-

ний. Основным регулирующим документом выступают спецификации 

3GPP, которые определяют архитектуру безопасности и обязательные к 

применению криптоалгоритмы. В серии релизов 15-17 были закреплены 

ключевые требования к защите пользовательских данных, сигнализации и 

сетевой инфраструктуры. 

Архитектура безопасности 5G построена по принципу сервис-

ориентированной модели (SBA), где каждый функциональный элемент 

отвечает за конкретные аспекты защиты. Центральную роль играют 

следующие компоненты: SEAF (Security Anchor Function) обеспечивает 
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начальную аутентификацию устройств, AUSF (Authentication Server 

Function) управляет процессами верификации, а SIDF (Subscription 

Identifier De-concealing Function) отвечает за обработку защищенных 

идентификаторов. Такое разделение функций позволяет гибко 

масштабировать систему защиты при сохранении единых стандартов 

безопасности. 

Сложность представляет обеспечение совместимости между обору-

дованием разных вендоров. Проблема проявляется при реализации крип-

тографических протоколов, таких как 5G AKA, где даже незначительные 

отклонения в интерпретации стандартов могут привести к нарушениям ра-

боты сети. Для решения этой проблемы GSMA разработала программу 

сертификации безопасности, включающую тестирование межвендорной 

совместимости криптографических реализаций [5]. 

 
Сравнительная характеристика методов 

Метод защиты Алгоритмы Уровень стойкости Применение в 

5G 

Аутентификация 5G AKA, EAP-TLS Высокий Все соединения 

Шифрование  

данных 
AES-256, ZUC Высокий 

Пользователь-

ская плоскость 

Защита  

идентификации 

ECIES 

(Curve25519) 
Высокий 

Начальная  

регистрация 

Постквантовая  

защита 
Kyber, Dilithium 

Эксперименталь-

ный 

Будущие  

реализации 

Примечание. Сравнительная характеристика основных методов защиты. 

5. Проблемы и ограничения современных криптографических 

решений 

Реализация криптографической защиты в 5G-сетях сталкивается с ря-

дом фундаментальных и практических ограничений. Основной парадокс 

современной защиты данных заключается в необходимости балансировать 

между криптостойкостью и производительностью в условиях жестких 

требований к задержкам. 

Производительность криптографических алгоритмов остается клю-

чевым узким местом для высокоскоростных 5G-сетей. Даже при исполь-

зовании аппаратного ускорения (AES-NI, криптографических сопроцессо-

ров) дополнительные задержки от операций шифрования/дешифрования 

могут достигать 10–15% от общего времени обработки пакета. Особенно 

остро эта проблема проявляется в edge-вычислениях, где требования к 

low-latency конфликтуют с необходимостью обеспечения безопасности. 
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Энергопотребление криптографических операций является критиче-

ским фактором для массовых IoT-устройств. Реализация полноценной за-

щиты на датчиках с ограниченным энергобюджетом часто приводит к со-

кращению срока работы батареи на 30–40%.  

Совместимость с устаревшим оборудованием создает дополнитель-

ные риски безопасности. Необходимость поддержки старых алгоритмов 

(SNOW 3G, Kasumi) для обратной совместимости с 4G-устройствами рас-

ширяет поверхность для потенциальных атак. Статистика показывает, что 

около 35% успешных атак на гибридные 4G/5G-сети используют уязвимо-

сти в устаревших криптографических протоколах. 

Реализация постквантовой криптографии сталкивается с техниче-

скими сложностями. Алгоритмы NIST PQC (Kyber, Dilithium) требуют в 

10–100 раз больше вычислительных ресурсов по сравнению с традицион-

ной ECC-криптографией. Размер ключей и подписей увеличивается в 4–5 

раз, что создает проблемы для сигнальных сообщений с жесткими ограни-

чениями на длину пакета. 

Регуляторные требования в разных странах создают дополнительные 

сложности для разработчиков. В Европе основным ориентиром служат ре-

комендации ENISA, в США – стандарты NIST, а в Китае – спецификации 

CCSA. Различия в требованиях к длине ключей, допустимым алгоритмам 

и механизмам восстановления данных вынуждают производителей созда-

вать региональные версии оборудования. Ещё одной проблемой является   

создание «бэкдоров»: в некоторых странах законодательство обязывает 

операторов предоставлять правоохранительным органам доступ к зашиф-

рованным данным. 

Перспективные направления преодоления всех этих ограничений 

включают: 

- развитие квантово-безопасных lightweight-алгоритмов; 

- аппаратные ускорители нового поколения; 

- гибридные криптосистемы с адаптивным уровнем защиты; 

- технологии конфиденциальных вычислений; 

- стандартизированные API для криптографических сервисов. 

6. Заключение 

Исследование подтверждает, что криптографические методы в 5G 

обеспечивают существенное улучшение защиты по сравнению с предыду-

щими поколениями сетей. Однако сохраняются ключевые проблемы: вы-

сокие вычислительные затраты, энергопотребление IoT-устройств и необ-

ходимость обратной совместимости. Переход на постквантовые алго-

ритмы создает новые уязвимости. Решение требует оптимизации 
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существующих методов, разработки гибридных систем и создания специ-

ализированных аппаратных ускорителей. Эти меры позволят обеспечить 

безопасность 5G-сетей при сохранении их производительности. 
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