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В данной работе предложен и апробирован биоинформатический подход, осно-

ванный на метамоделях, комплексно оценивающих весь каскад событий от внутрикле-

точной обработки антигена до его распознавания иммунной системой. Проведённый в 

работе сравнительный анализ продемонстрировал преимущества метамоделей по 

сравнению с существующими аналогами в точности предсказания презентации и им-

муногенности эпитопов. 
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In this paper, we propose and test a bioinformatics approach based on metamodels that 

comprehensively evaluate the entire cascade of events from intracellular processing of an 

antigen to its recognition by the immune system. A comparative analysis conducted in this 

work demonstrated the advantages of metamodels over existing analogues in terms of the 

accuracy of predicting immunogenicity and epitope presentation. 
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1. Введение  

В современной онкологии иммунотерапия признана одним из наибо-

лее перспективных и быстро развивающихся. Иммунотерапия открывает 

перспективы для пациентов с различными формами рака, которые раньше 

считались неизлечимыми. Клинический успех данного подхода во многом 
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обусловлен способностью нашей иммунной системы самостоятельно рас-

познавать и уничтожать опухолевые клетки. Наиболее значимым элемен-

том в этом механизме являются неоантигены, представляющие собой уни-

кальные пептидные фрагменты, возникающие в результате соматических 

мутаций и отсутствующие в нормальных тканях организма. Их специфич-

ность позволяет использовать их в качестве идеальных мишеней при ле-

чении, минимизируя риск побочных эффектов и аутоиммунных реакций 

на здоровые клетки [5]. 

Для распознавания неоантигена иммунными клетками необходим це-

лый ряд сложных и многоступенчатых реакций, называемых процессин-

гом. Инициация процессинга антигена происходит на стадии протеолити-

ческого расщеплением белка-предшественника специализированными 

ферментными комплексами – протеасомами. Образующиеся пептидные 

фрагменты затем транспортируются в эндоплазматический ретикулум при 

участии транспортёра ТАР, ассоциированного с процессингом антигена. В 

эндоплазматическом ретикулуме происходит укорочение пептидов специ-

альными ферментами и их связывание с молекулами главного комплекса 

гистосовместимости (МНC) класса I. Пептид, связанный с MHC, также 

называют эпитопом. Такой комплекс впоследствии выносится на клеточ-

ную поверхность для презентации Т-лимфоцитам. Последние, благодаря 

своему Т-клеточному рецептору, способны распознать комплекс  

MHC-эпитоп и запустить иммунный ответ. Прохождение каждого этапа за-

висит от физико-химических свойств пептидов, поэтому комплексная 

оценка процесса крайне важна для определения способности неоантигена 

вызывать эффективный противоопухолевый иммунитет. 

Несмотря на бурное развитие биоинформатических инструментов 

для прогнозирования потенциальных иммуногенных неоантигенов, их 

точность остаётся недостаточной, что ограничивает их широкое клиниче-

ское применение. Существующие модели зачастую фокусируются лишь 

на одном из этапов обработки антигена. Подобный узкоспециализирован-

ный подход не учитывает всю сложность процесса, что обусловливает по-

явление множества ложных результатов, существенно снижающих пред-

сказательную силу моделей и создавая серьёзное препятствие перед раз-

работкой действительно персонализированных вакцин и иммунотерапии 

онкологических заболеваний. 

В связи с вышеизложенным мы задались целью разработать ком-

плексный биоинформатический подход, учитывающий все этапы процес-

синга неоантигенов и их распознавания иммунной системой. Данный под-

ход, основанный на использовании мета-классификаторов, направлен на 

существенное повышение точности прогнозирования иммуногенности 

эпитопов неоантигенов, что, по нашему мнению, может повысить 
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эффективность и надёжность идентификации молекулярных мишеней для 

персонализированной иммунотерапии рака. 

2. Материалы и методы 

При выполнении данной работы был использован язык программиро-

вания Python 3.8. Для эффективной обработки данных и реализации алго-

ритмов машинного обучения применялись библиотеки NumPy, Pandas и 

Scikit-learn. Вся работа проводилась на компьютере с 16 Гб оперативной 

памяти, 8-ядерным 16-поточным процессором, видеокартой Nvidia 

GeForce GTX 1650 4 Гб и SSD. 

Основные данные были получены из открытых баз IEDB и CEDAR. 

Данные содержали информация о пептидах, их связывании с молекулами 

MHC класса I и иммуногенности. Дополнительные данные были взяты из 

публикаций, где описывались программные пакеты ConvNeXt, 

TranspMHC, ImmuneApp, PRIME, BigMHC, ICERFIRE и IEPAPI. Собран-

ные данные прошли оценку качества и фильтрацию, после чего они были 

сгруппированы в два класса – данные об иммуногенности и данные о пре-

зентации. Данные об иммуногенности мы разделили на два набора: 

1) набор Neo, куда попали только данные о неоантигенах, и 2) набор IE, 

который включил пептиды инфекционной природы. 

Для прогнозирования процессинга эпитопа использовались модели 

предсказания протеасомного расщепления (pepsickle), транспорта пепти-

дов через TAP (DeepTAP), N-концевого тримминга ферментом ERAP1 

(ERAMER) и связывания эпитопа с молекулой MHC (TranspMHC). Для 

оценки иммуногенности применялись модели, оценивающие секрецию 

интерлейкинов: IL2 (IL2pred), IL4 (IL4pred), IL6 (IL6pred), IL10 (IL10pred), 

IL13 (IL13pred), интерферон гамма (IFNepitope 2) и фактор некроза опухо-

лей (TNFepitope). 

В качестве физико-химических свойств были выбраны гидрофоб-

ность, алифатический индекс, индекс Бомана, изоэлектрическая точка и 

длина пептида, которые вычислялись при помощи библиотеки peptides [7]. 

Также проводилась оценка чужеродности пептида по отношению к чело-

веческому протеому при помощи программы antigen.garnish [10]. 

Для создания метамоделей использовались алгоритмы случайного 

леса, реализованные при помощи библиотеки Scikit-learn. Оценка моделей 

осуществлялась с использованием стандартных метрик AUC-ROC и 

AUPRC. Для интерпретации результатов и анализа важности признаков 

применялся метод SHAP (SHapley Additive exPlanations) из библиотеки 

shap, позволяющий оценить вклад отдельных признаков в конечный ре-

зультат прогнозов модели. 
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3. Результаты 

3.1. Метамодель предсказания презентации эпитопа 

Точная оценка презентации эпитопа является необходимым предва-

рительным условием для последующего анализа иммуногенности, по-

скольку пептид может быть распознан иммунной системой только в случае 

его успешной презентации в комплексе с MHC на поверхности клетки. 

Процесс презентации антигена включает несколько последовательных 

внутриклеточных этапов процессинга и для его предсказания была разра-

ботана метамодель, объединяющая результаты работы нескольких моде-

лей, каждая из которых предсказывает свой этап процессинга. Краеуголь-

ным камнем этой системы является модель глубокого обучения 

TranspMHC [2], которая оценивает финальный этап процессинга – аффин-

ное связывание пептида с молекулой MHC. Данная модель, обученная на 

наборе данных из 191975 связанных и 191621 несвязанных пар эпитоп-

MHC, продемонстрировала исключительно высокую производительность 

на тестовой выборке (ROC AUC 99,06%). 

Для агрегации результатов моделей, предсказывающих этапы процес-

синга, и построения итоговой метамодели был выбран алгоритм случай-

ного леса (Random Forest). Его выбор обусловлен лучшими показателями 

производительности на тестовом наборе данных (AUC 98,66% и 

F1 96,02%) в сравнении с такими альтернативными подходами, как гради-

ентный бустинг (98,59% и 94,16%) и XGBoost (98,62% и 94,34%). 

Разработанная метамодель прошла проверку путём сравнения с ши-

роко используемыми и авторитетными программами NetMHCpan [8], 

MHCflurry [9] и DeepMHCI [4]. Результаты сравнительного анализа, пред-

ставленные на рис. 1, демонстрируют превосходство подхода на основе 

метамодели. Следует отметить, что размер тестового набора (N на гра-

фике) варьировал для каждой программы, так как из него были исключены 

все данные, пересекающиеся с их обучающими наборами. 

Для сравнительной оценки вклада каждого компонента в итоговый 

результат был применён метод SHAP, результаты которого представлены 

на рис. 2. Анализ показал, что модель TranspMHC вносит наибольший 

вклад в предсказание. Вместе с тем, модели, описывающие другие этапы 

процессинга, также являются значимыми, повышая общую прогностиче-

скую способность. Таким образом, интеграция моделей всех этапов про-

цессинга антигена позволяет получить более полную и надёжную оценку 

потенциала пептида к презентации, что является критически важным для 

дальнейшего прогнозирования его иммуногенности. 
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3.2. Комплексная метамодель предсказания иммуногенности 

Точная оценка презентации эпитопа является необходимым, но недо-

статочным условием для определения его иммуногенности. Далеко не 

каждый пептид, представленный на поверхности клетки, способен вы-

звать иммунный ответ. Поэтому следующим шагом стала разработка от-

дельной метамодедели, нацеленной на предсказание иммуногенности. 

Учитывая, что модель TranspMHC показала себя как ключевой ком-

понент в прогнозировании презентации, было принято решение проверить 

её потенциал и для оценки иммуногенности. Для этого TranspMHC была 

дополнительно обучена на двух наборах данных: Neo и IE, структура ко-

торых представлена на рис. 3. Обе полученные модели продемонстриро-

вали высокую и сопоставимую производительность, с показателем AUC 

 

Рис. 1. ROC (А) и PR (Б) кривые сравнения производительности разработанной  

модели презентации на основе случайного леса с NetMHCpan, mhcflurry и DeepMHCI 

 

Рис. 2. SHAP-анализ для входных признаков метамодели презентации 
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94,59% на наборе Neo и 94,11% на IE. Однако модель, обученная на дан-

ных IE, показала вдвое большую чувствительность (83,43%) по сравнению 

с Neo (44,67%), что отражает различия в этих наборах данных. 

Затем для создания итоговой комплексной метамодели, названной 

IMM (ImmunoMetaModel), был применён подход, аналогичный построе-

нию метамодели презентации. В качестве входных признаков были объ-

единены: предсказание метамодели презентации, предсказания обеих вер-

сий TranspMHC (Neo и IE), предсказания моделей, оценивающих секре-

цию цитокинов, и физико-химические свойства пептидов. 

Для определения наиболее значимых признаков был проведён анализ 

с использованием метода SHAP, результаты которого представлены на 

рис. 4. Исходя из полученных результатов, наибольший вклад в прогнози-

рование вносят предсказание метамодели презентации, предсказания обеих 

моделей TranspMHC, индекс чужеродности пептида, а также прогнозы ин-

дукции секреции интерферона-гамма и фактора некроза опухолей альфа. 

На основе вклада отобранных признаков было создано три варианта 

итоговой IMM для определения оптимального соотношения производи-

тельности и количества признаков: imm_plus – использует все 16 призна-

ков, imm – использует топ-6 признаков, imm_mini – использует топ-5 при-

знаков без индекса чужеродности. По результатам даже самая компактная 

модель IMM продемонстрировала высокую производительность – AUC 

92,7%, что всего на 2,5% меньше, чем у самой полной версии модели. 

Для подтверждения эффективности разработанного подхода все три 

варианта IMM прошли сравнительный анализ с существующими 

 

Рис. 3. Структура наборов для предсказания иммуногенности моделью TranspMHC 
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программными решениями DeepHLApan [1], DeepImmuno [3] и IEPAPI [6]. 

Результаты, представленные на рис. 5, демонстрируют значительное пре-

восходство разработанных IMM. Разница в производительности между 

imm_plus и моделью IEPAPI составила 21,1% по метрике AUC и 56,1% по 

AUCPR. Высокий показатель AUCPR особенно важен, так как он свиде-

тельствует о способности метамодели эффективно идентифицировать им-

муногенные пептиды даже в условиях сильного дисбаланса классов, что 

является критически важным для решения задач, связанных с поиском 

неоантигенов в персонализированной иммунотерапии. 

4. Заключение 

В ходе работы были созданы две метамодели: для предсказания пре-

зентации эпитопа на клеточной поверхности и для определения его имму-

ногенности. Полученные метамодели были сравнены с известными 

 

Рис. 4. SHAP-анализ для входных признаков метамодели иммуногенности 
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аналогами. По результатам сравнения на независимых наборах данных обе 

метамодели продемонстрировали наилучшую производительность в 

своих категориях, превзойдя ближайших конкурентов в оценке иммуно-

генности более чем на 21% по метрике AUC и на 56% по AUCPR. 

Таким образом, результаты данной работы демонстрируют, что пре-

одоление существующих ограничений в прогнозировании иммуногенно-

сти неоантигенов требует перехода от узкоспециализированных моделей к 

комплексному и многоуровневому анализу. Разработанный подход доказы-

вает, что объединение признаков, связанных с презентацией и узнаванием 

иммунной системой неоантигена, при помощи метамоделей является 

оправданным и позволяет достигать высокой предсказательной точности. 

Дальнейшее развитие этого подхода может основываться на включе-

нии дополнительных факторов, таких как особенности опухолевого мик-

роокружения, что будет способствовать открытию прямых перспектив для 

ускорения перехода персонализированной иммунотерапии из области 

научных изысканий в стандартную клиническую практику. 
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