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Разработана генеративная состязательная нейронная сеть с частичным привлече-

нием учителя, обученная на графовых эмбеддингах и использованная для генерации 

потенциальных ингибиторов фермента KasA микобактерии туберкулеза. Проведена 

оценка потенциала ингибиторной активности новых сгенерированных нейронной се-

тью соединений против белка KasA методами молекулярного моделирования. На ос-

нове анализа полученных данных были идентифицированы шесть соединений, пер-

спективных для создания новых эффективных препаратов для терапии лекарственно-

устойчивых форм туберкулеза. 
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A semi-supervised generative adversarial network was developed, trained on graph 

embeddings, and applied to the generation of potential inhibitors of the KasA enzyme of 

Mycobacterium tuberculosis. The inhibitory potential of the newly generated compounds 

against the KasA protein was evaluated using molecular modeling methods. Based on the 

analysis of the obtained data, six compounds were identified as promising candidates for the 

development of new effective drugs for the treatment of drug-resistant forms of tuberculosis. 
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1. Введение  

Туберкулез (ТБ) по-прежнему входит в число ведущих причин смерт-

ности во всем мире и представляет особую угрозу для пациентов с ВИЧ и 

сахарным диабетом [1]. Рост лекарственной устойчивости существенно 

осложняет терапию и делает актуальными исследования по созданию но-

вых противотуберкулезных препаратов. На ранних стадиях разработки ле-

карств все более востребованы технологии виртуального скрининга и ме-

тоды машинного обучения, позволяющие ускорить поиск активных соеди-

нений, сократить время и затраты, необходимые для их создания. 

Среди потенциальных мишеней особое значение имеет фермент 

KasA, играющий ключевую роль в синтезе жирных кислот клеточной 

стенки микобактерии туберкулеза (МБТ). Известно, что потеря активности 

белка KasA приводит к лизису клеток бактерии, свидетельствуя о том, что 

этот фермент имеет ключевое значение для жизненного цикла МБТ и, сле-

довательно, является важной терапевтической мишенью для разработки 

новых эффективных ингибиторов лекарственно-устойчивого ТБ [2]. 

Цель настоящего исследования заключалась в создании генеративной 

модели нейронной сети для de novo дизайна малых молекул, потенциально 

активных против фермента KasA МБТ. Для достижения этой цели были 

проведены исследования, которые включали: 

- разработку архитектуры нейронной сети для генерации низкомоле-

кулярных химических соединений, обладающих высоким сродством к 

белку KasA;  

- формирование обучающей библиотеки малых молекул, содержащих 

элементы структуры, способные к селективным взаимодействиям с актив-

ным центром фермента; 

- обучение модели и ее тестирование на наборе соединений из создан-

ной молекулярной библиотеки; 

- генерацию новых молекул, потенциально активных против белка KasA; 

- молекулярный докинг сгенерированных молекул с целевым белком; 

- молекулярную динамику перспективных соединений; 

- оценку физико-химических свойств лучших соединений и отбор по-

тенциальных ингибиторов МБТ. 

2. Материалы и методы  

Для решения поставленных задач нами была разработана модель ге-

неративной состязательной нейронной сети с частичным привлечением 

учителя (SGAN, Semi-Supervised Generative Adversarial Network) (рис. 1), 

которая использует графовые эмбеддинги, полученные из латентного 
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пространства вариационного автоэнкодера JTVAE (Junction Tree 

Variational Autoencoder) [3]. Обучение SGAN проводили на наборе моле-

кул из обучающей выборки с использованием в неявном виде значений 

энергии связывания с белком KasA. Молекулы в обучающем наборе дан-

ных разделяли на две группы, включавшие соответственно соединения с 

низкими (ниже –8,2 ккал/моль) и высокими значениями энергии связыва-

ния с целевым белком, рассчитанными с помощью методов молекулярного 

докинга. Это позволило SGAN генерировать новые молекулы, похожие на 

соединения с высоким сродством к мишени. 

 

 
Рис. 1. Архитектура SGAN: 

а – генератор; б – дискриминатор 

 

Формирование обучающего набора данных 

Для формирования обучающего набора данных был проведен вирту-

альный скрининг библиотек Zinc15, ChemSpace и ChemDiv на веб-сервере 

Pharmit с использованием трех фармакофорных моделей, построенных на 

основе комплексов белка C171Q KasA с ингибиторами TLM и TLM5 (PDB 

ID: 4C6X и 4C72 соответственно). С использованием Python 3 и программ-

ного пакета RDKit (https://www.rdkit.org) из отобранных молекул были 

удалены дубликаты, и для каждого соединения получены канонические 

представления SMILES. В результате размер обучающей молекулярной 

библиотеки, сформированной с помощью фармакофорного анализа баз 

данных веб-сервера Pharmit, составил 58 815. 

Для генерации графовых эмбеддингов, необходимых для обучения 

SGAN, из формата SMILES, полученного на этапе фармакофорного по-

иска, использовали предобученную модель нейронной сети JTVAE, 

https://www.rdkit.org/
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которую разработчики обучали на выборке из 250 000 соединений, ото-

бранных случайным образом в библиотеке Zinc15. 

Для расчета значений свободной энергии связывания молекул из обу-

чающего набора данных с целевым белком с помощью программы 

QuickVina2 был проведен молекулярный докинг этих лигандов с фермен-

том C171Q KasA в свободном состоянии. Структура белка извлекалась из 

комплекса C171Q KasA в кристалле с ингибитором TLM5 (ID PDB: 4C72). 

Структуры белка и лигандов были подготовлены к расчетам с помощью 

программного пакета MGLTools (https://ccsb.scripps.edu/mgltools/). Ячейка 

для докинга включала малонил-связывающий сайт KasA и имела следую-

щие размеры: ΔX = 20,67 Å, ΔY = 24,8 Å, ΔZ = 16,46 Å с центром X =  

= – 7,24 Å, Y = –19,9 Å, Z = 6,75 Å. Значение параметра охвата конформа-

ционного пространства, определяющего широту поиска, было установ-

лено равным 100. 

 

Обучение SGAN 

Для 58815 малых молекул из сформированного обучающего набора 

данных с помощью сети JTVAE были получены графовые эмбеддинги, а 

затем эта виртуальная библиотека была разделена на две выборки – тре-

нировочную и тестовую, состоящие из 47052 и 11763 векторов соответ-

ственно. Путем многочисленных экспериментов параметр, задающий ко-

личество эпох обучения, был выбран равным 150. Отношение частоты 

обучения генератора к дискриминатору было выбрано равными 0,3 к 0,7. 

Функции потерь дискриминатора и генератора представлены в фор-

мулах (1) и (2): 

 

 ( )( ) ( )1 2( ) ,0 ( _ ), _ ,loss out outD BCE D G noise BCE D real data energy class= +  (1) 

 ( )( )1 ( ) ,1 ,loss outG BCE D G noise=  (2) 

 

где BCE – функция потерь бинарная кросс-энтропия; D – дискриминатор; 

𝐷𝑜𝑢𝑡1 – выход дискриминатора, отвечающий за предсказание реальности 

молекулы; 𝐷𝑜𝑢𝑡2 – выход дискриминатора, отвечающий за предсказание 

класса энергии молекулы; G – генератор; noise – вектор гауссовского 

шума размерности 256; real_data – вектор, соответствующий молекуле из 

тренировочной выборки; energy_class – 1 или 0 в зависимости от того, при-

надлежит ли молекула классу с низкой энергией связывания или нет. 

Графики функций потерь генератора и дискриминатора SGAN пред-

ставлены на рис. 2. Сплошная синяя линия соответствует потерям генера-

тора, а красная пунктирная линия – потерям дискриминатора. Анализ 

https://ccsb.scripps.edu/mgltools/
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графиков функций потерь дает основания полагать, что модель была обу-

чена корректно, так как функции потерь сходятся, но не пересекаются. 

На основе случайных векторов длины 256, имеющих гауссовское рас-

пределение, с помощью генератора SGAN было сгенерировано 200 000 

векторов длиной 56 и получены соответствующие предсказания дискри-

минатора. Для оценки генеративных возможностей SGAN были выбраны 

два региона векторов. Первый (перспективный) регион включал вектора с 

вероятностью реальности выше 50% и вероятностью низкого энергетиче-

ского класса выше 50%, а второй регион представлял область с вероятно-

стью реальности молекул выше 50% и вероятностью низкого энергетиче-

ского класса ниже 50%. Всего было получено 2565 и 2745 графовых эм-

беддингов для первого и второго регионов соответственно, которые после 

декодирования в JTVAE, удаления дубликатов и проверки корректности 

дали 1755 и 1882 уникальные молекулы. 

Для выбора наиболее перспективных лигандов среди всех сгенериро-

ванных SGAN соединений (из обеих областей), значения свободной энер-

гии связывания были переоценены с использованием оценочных функций 

RFScore-4 и NNScore 2.0. На основе предсказанных с помощью оценоч-

ных функций AutoDock Vina, RFScore-4, NNScore 2.0 значений энергии 

связывания для каждого соединения был рассчитан экспоненциальный 

консенсусный ранг (ECR) [4] и отобраны 20 лучших соединений для мо-

лекулярно-динамических расчетов. 
Молекулярно-динамическое (МД) моделирование комплексов ли-

ганд/белок проводили в воде с использованием Amber18 [5] и силовых 

 

Рис. 2. Функции потерь генератора (синяя линия)  

и дискриминатора (красная линия) SGAN 
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полей Amber ff14SB (белок) и GAFF (лиганды). После минимизации, по-
степенного нагрева до 300 K, уравновешивания давления и достижения 
равновесия система моделировалась в ансамбле NPT при 300 K и 1 атм в 
течение 200 нс. В качестве контрольного соединения использовали инги-
битор KasA TLM5 (Kd = 25,6 мкM). 

Свободную энергию связывания рассчитывали методом MM/GBSA 
для 40 комплексов, извлечённых из последних 80 нс траекторий (шаг 
2 нс). Энтропийный вклад определяли с помощью Nmode из 
AmberTools19, а анализ траекторий проводили модулем CPPTRAJ. 

3. Результаты и обсуждение 

Результаты молекулярного докинга для новых сгенерированных 
соединений 

Для оценки потенциала разработанной модели нейронной сети были 
получены прогнозные показатели дискриминатора для 11 763 векторов из 
тестового набора данных, из которых в перспективную и вторую области 
вошли соответственно 3438 и 4448 молекулярных эмбеддингов. Для сге-
нерированных молекул и соединений из тестового набора был проведен 
молекулярный докинг с белком KasA с использованием того же вычисли-
тельного протокола, что и для соединений из обучающего набора данных. 
Результаты молекулярного докинга представлены в табл. 1. 

 
Таблица 1  

Результаты молекулярного докинга для сгенерированных соединений  
и соединений из тестовой выборки 

1 – перспективная  
область 

2 – вторая область 

Количество 
соединений 

Процент соединений с 
низкой энергией  

связывания 
(< –8,2 ккал/моль) 

Средняя энергия 
связывания, 
(ккал/моль) 

Сгенерированные 
соединения 

1 1755 67 –8,5 
2 1882 40 –8,0 

Соединения из те-
стовой выборки 

1 3438 76 –8,7 

2 4448 21 –7,6 

 
Данные табл. 1 указывают на то, что дискриминатор SGAN может с 

высокой точностью предсказывать класс энергии на реальных (не сгене-
рированных) данных, что подтверждает корректность обучения модели. 
Полученные результаты свидетельствуют о способности сети SGAN гене-
рировать различные химические соединения с высоким сродством к белку 
KasA, особенно в перспективном регионе. Эти данные также указывают 
на то, что разделение молекул на классы на основе энергии связывания 
при обучении модели является эффективной стратегией для создания со-
единений с высоким сродством к целевому белку. 
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Анализ полученных траекторий молекулярной динамики позволил 

идентифицировать 12 соединений, у которых значения свободной энергии 

связывания (ΔG) оказались ниже, чем у контрольного соединения TLM5, 

рассчитанного по тому же вычислительному протоколу. Ниже представ-

лены значения свободной энергии связывания и их стандартные отклоне-

ния по результатам молекулярной динамики для шести наиболее перспек-

тивных соединений (рис. 3), физико-химические параметры которых пред-

ставлены в табл. 2. Учитывая стандартную ошибку метода MM/GBSA, со-

ставляющую около 2,9 ккал/моль, полученные данные указывают на то, что 

сродство этих соединений к KasA значительно выше по сравнению с инги-

битором KasA TLM5. Также из табл. 2 видно, что отобранные соединения 

полностью соответствуют требованиям, предъявляемым к потенциальному 

лекарству согласно «правилу пяти» Липинского [6]. 

 

 

Рис. 3. Средние значения ΔG, рассчитанные для динамических моделей  

комплексов лиганд/KasA 

 
Таблица 2 

Физико-химические параметры идентифицированных соединений, связанные  

с «правилом пяти» Липинского [2; 4], и их синтетическая доступность 

Ли-

ганд 

Химическая 

формула 

Молекуляр-

ная 

масса, 

Да 

LogPo/w 

Синтетиче-

ская 

доступность 

Число  

доноров  

водородной 

связи 

Число  

акцепторов 

водородной 

связи 

I C23H29N3O4S 443,56 3,14 5,15 1 5 

II C23H30N6O3 438,52 2,58 4,22 0 6 

IV C18H22N6O2S 386,47 1,78 4,06 1 5 

V C19H14FN5O2S 395,41 2,81 3,47 1 6 

III C23H26N3O3+ 392,47 2,69 3,8 2 5 

VI C23H35N5O2 413,56 3,22 4,95 1 5 

Примечание. Приведенные данные получены с помощью веб-сервера открытого до-

ступа SwissADME (http://www.swissadme.ch); LogPo/w – липофильность соединения. 

http://www.swissadme.ch/
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4. Заключение 

В ходе проведенного исследования была разработана генеративная 
состязательная нейронная сеть (SGAN) с частичным привлечением учи-
теля, адаптированная для поиска потенциальных ингибиторов фермента 
KasA, являющегося ключевым элементом биосинтеза клеточной стенки 
микобактерии туберкулеза. 

Для реализации проекта была сформирована молекулярная библио-
тека соединений, содержащая низкомолекулярные аналоги известных ин-
гибиторов KasA. В процессе исследования проведена оценка генератив-
ных возможностей модели, выполнен молекулярный докинг сгенериро-
ванных соединений, а также оценка их сродства к мишени с использова-
нием оценочных функций AutoDock Vina, RFScore-4 и NNScore 2.0. Про-
веденные МД расчеты подтвердили стабильность взаимодействия пер-
спективных соединений с ферментом KasA, что делает их перспектив-
ными кандидатами на дальнейшие экспериментальные исследования. 

Результаты работы позволили выделить шесть соединений, обладаю-
щих наилучшими характеристиками по сродству к KasA и удовлетворяю-
щих требованиям фармакокинетики. Эти соединения могут стать основой 
для дальнейших экспериментальных исследований, направленных на раз-
работку новых эффективных препаратов для терапии лекарственно-устой-
чивых форм туберкулеза. 

Работа выполнена при поддержке Консорциума и Программы по раз-
работке портала по лекарственно устойчивому туберкулезу 
(https://tbportals.niaid.nih.gov) и поддержана Белорусским республикан-
ским фондом фундаментальных исследований (проекты Ф23-007, 
Ф24КИТГ-016). 
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