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1. Введение 

XS-схемы, введенные в работе [1], описывают тактовые преобразова-

ния широкого класса блочных шифров. Схема размерности n задается 

тройкой (a, B, c), в которой a — вектор-столбец размерности n, B — квад-

ратная матрица порядка n, c — вектор-строка размерности n. Координаты 

векторов и элементы матрицы лежат в поле 2.  Схема (a, B, c) уточняется 

дополнительными параметрами: полем  — некоторым расширением 2  
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и S-блоком S — подстановкой на . Уточненная схема задает следующее 

преобразование вектор-строк :nx  

 
( , , )[ ]( ) = ( ) .a B c S x xB S xa c+  

 

Будем рассматривать обратимые схемы — те, для которых данное 

преобразование обратимо при любом выборе   и S. Условия обратимости 

даны в работе [1]. Обратные преобразования обратимой схемы (a, B, c) 

также описываются XS-схемой. Будем обозначать ее (a, B, c)–1. В блочном 

шифре преобразования схемы (a, B, c) с разными (вообще говоря) ключе-

зависимыми S-блоками объединяются в композиционные каскады, назы-

ваясь при этом тактовыми преобразованиями или просто тактами. На вход 

каскада в качестве x подается открытый текст, с выхода снимается  

шифртекст. Преобразования t-тактового каскада с S-блоками S1, S2, …, St 

обозначаются через 1 2( , , ) [ , , , ]t
ta B c S S S . 

Для обеспечения базовых гарантий криптографической стойкости схема 

(a, B, c) должна быть регулярной: во-первых, обратимой и, во-вторых, давать 

обратимые матрицы ( )1= nA a Ba B a−  и ( )1= ( ) ( ) .
T

n T T TC cB cB c−   

Расширенные гарантии связаны с защитой от тех или иных крипто-

аналитических атак. Так для защиты от атаки по невозможным дифферен-

циалам (Impossible Differential Attack, IDA, см. [3]) схема должна быть  

2-транзитивной, причем индекс 2-транзитивности должен быть по воз-

можности невелик (определения будут даны позже). 

Исследование 2-транзитивности было начато нами в работе [1]: было 

найдено необходимое условие 2-транзитивности (сильная регулярность) и 

получены оценки сверху для индекса 2-транзитивности при выполнении 

данного условия. 

В настоящей работе мы усиливаем результаты [1]. Во-первых, предла-

гаем более слабое необходимое условие 2-транзитивности: плотность про-

филя схемы. Во-вторых, показываем, что для регулярной схемы при необре-

менительных ограничениях на ее размерности плотность профиля является 

также достаточным условием 2-транзитивности. В-третьих, усиливаем 

оценки сверху для индекса 2-транзитивности, задействуя новую характери-

стику схем: порог полного ранга. 

Будем использовать канонические формы регулярных схем (a, B, c). У 

первой формы = (0, ,0,1),c   у второй = (1,0, ,0) .Ta   У обеих форм одна 

и та же матрица B, она представляет собой клетку Фробениуса. 
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Для натурального M через M[n] будем обозначать n-ую факториальную 

степень 
[ ] = ( 1 ( 1): )nM M M M M n− − + . 

2. Результаты 

Определение 1. Профиль схемы (a, B, c) –– это двоичная последова-

тельность = ( ),t   в которой 

 
1= ,t

t cB a−  =1,2, .t   
 

Профиль является линейной рекуррентной последовательностью 

(л.р.п.), порядок которой совпадает с размерностью (a, B, c), a характери-

стический многочлен — с характеристическим многочленом B. Пусть 

схема имеет размерность n, B — клетка Фробениуса и b = (b1, b2, …, bn)
T 

— последний столбец B. Тогда  

 

1

=1

= ,
n

t n i t i

i

b + − −   = 1, 2,t n n+ +   

 

при начальных условиях 
1

1( , , ) = ( , , , ) = .n
n ca cBa cB a cA−   

Начальные условия не могут быть нулевыми, если (a, B, c) — регу-

лярная схема, т. е. A и С обратимы. Действительно, в силу обратимости A 

противное означает, что c = 0. Но тогда C = 0, противоречие. 

Особенно просто начальные условия выглядят, когда (a, B, c) запи-

сана во второй канонической форме, т.е. a = (1, 0, …, 0)T. В этом случае A 

— единичная матрица и cA = c. 

Важно, что профиль не меняется при переходе от (a, B, c) к подобной 

схеме 
1 1( , , )P a P BP cP− −

, где P — обратимая матрица порядка n. 

Более того, регулярная схема (a, B, c) размерности n восстанавлива-

ется с точностью до подобия по начальному 2n-отрезку своего профиля . 

Определение 2. Для последовательности = ( )t   обозначим 

( ) = { : 0}supp rr     и пусть ( )supp    — множество, составленное из 

всевозможных сумм элементов ( ).supp   Последовательность  называ-

ется плотной (dense), если найдется неотрицательное целое t0 такое, что 

всякое 0t t  лежит в ( )supp   . 

Лемма. Последовательность  плотна тогда и только тогда, когда 

найдутся 1 2, , , ( )suppkr r r    такие, что 1 2gcd( , , , ) = 1kr r r . 
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Доказательство. Если подходящий набор 1 2( , , , )kr r r  существует, то 

найдется конечное 0 0 1 2= ( , , , )kt t r r r  такое, что любое 0t t  можно пред-

ставить в виде суммы элементов набора. Данный факт доказан в рамках 

решения задачи Фробениуса (см. напр. [2]). Факт означает, что  является 

плотной. 

Наоборот, если подходящий набор не существует, то ненулевые эле-

менты  либо расположены в позициях, кратных некоторому d > 1, либо 

вообще отсутствуют. В обоих случаях  не является плотной. Действи-

тельно, в первом случае представление t в виде суммы нельзя реализовать 

для t не кратных d, а во втором — ни для одного t. □ 

Лемма означает, что если ненулевая последовательность  не явля-

ется плотной, то она разрежена с шагом d > 1: ненулевые элементы отстоят 

друг от друга на величины, кратные d. Термин «плотная» выбран нами как 

альтернатива «разреженная». 

Тот факт, что профиль представляет собой линейную рекуррентную 

последовательность, упрощает проверку плотности. 

Теорема 1. Пусть (a, B, c) — регулярная схема размерности n, в ко-

торой B — клетка Фробениуса, и (b1, b2, …, bn)
T — ее последний столбец. 

Пусть r1, r2, …, rk — номера единиц в векторах cA и (bn, bn–1, …, b1) при 

нумерации координат слева направо от 1. Профиль  схемы (a, B, c) пло-

тен тогда и только тогда, когда gcd(r1, r2, …, rk) = 1. 

Если с = (0, …, 0, 1), т.е. (a, B, c) записана в первой канонической 

форме, и a = (a1, a2, …, an)
T, то вектор cA может быть заменен на (an,  

an–1, …, a1). 

Теорема 2. Профиль регулярной схемы (a, B, c) плотен тогда и 

только тогда, когда плотен профиль обратной схемы (a, B, c)–1. 

Для натуральных t и 1 2, , , k t     введем в рассмотрение матрицу 

 

1

2

1 2( ; , , , ) = .

t

t

k

t
k

cB

cB
C t

cB

−

−

−

 
 
 

    
 
  
 


  

 

Определение 3. Пусть (a, B, c) — регулярная схема размерности n,  

— ее профиль. Порог полного ранга схемы — это минимальное t, для ко-

торого найдутся натуральные t1, t2, …, tn ≤ t такие, что ( )suppit     и мат-

рица C(t; t1, t2, …, tn) обратима. 
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Порог обозначается через frt(a, B, c), от англ. “full-rank threshold”. По-

рог полагается равным  , если подходящий набор t1, t2, …, tn не суще-

ствует ни для одного конечного t. 

Обратим внимание, что порог не меняется при переходе от (a, B, c) к 

подобной схеме 
1 1( , , )P a P BP cP− −

. Кроме этого, в определении порога мак-

симальное из чисел t1, t2, …, tn обязательно совпадает с t. 

Теорема 3. Пусть (a, B, c) — регулярная схема и  — ее профиль. По-

рог frt(a, B, c) конечен тогда и только тогда, когда профиль  плотен. 

Определение 4. Схема (a, B, c) размерности n над полем 
2

= m  

называется 2-транзитивной, если найдется натуральное t такое, что для 

любых двух пар ( , )x x  и ( , )y y  различных векторов n  выполняется  

 

1= ( , , ) [ , , ]( ),t
ty a B c S S x

 

1= ( , , ) [ , , ]( )t
ty a B c S S x 

 

 

при подходящем выборе 1, , ( )tS S S  . 

Минимальное t, при котором выполняется данное условие, называ-

ется индексом 2-транзитивности. 

Теорема 4. Если схема (a, B, c) 2-транзитивна, то ее профиль плотен. 

Теорема допускает частичное обращение. 

Теорема 5. Пусть (a, B, c) — регулярная схема размерности n. Если 

профиль (a, B, c) плотен и 
[ ](2 1) 2 / 2m n mn−  , то (a, B, c) 2-транзитивна 

с индексом, не превосходящем 
12 frt( , , ) frt( , , ) .n a B c a B c −+ +  

Пример. В [4] предложена схема FourCell, которая задается следу-

ющей матрицей: 

0 0 0 0 1

1 0 0 1 0

0 1 0 1 0
0 = .

0 0 1 1 0

0 0 0 1 0

B a

c

 
 
  
  
  
  

   
 
   

Профиль схемы плотен, frt(a, B, c) = 12, frt(a, B, c)–1 = 3 и, следова-

тельно, схема 2-транзитивна с индексом 2 4 12 3 = 23  + + . 



13 

При этом схема не является сильно регулярной и обосновать ее  

2-транзитивность на основании результатов работы [1] не удается. 
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