
Используя лемму 2 и выражение для а, условие (7) запишем в виде
I г-н

max \g 'e (T  — h) +  f g'S  (T — h, t) ui:(t) d t ~ Y &  — c X 
l|g||=i l о

X
т—ft.
j  g ' S ( T ~ h ,  t ) W ( t ) g
о

(18)

Теорема 2. Существует минимальное e=e°>0, удовлетворяющее 
неравенству (7) (или, все равно, (18)), и оно единственно. Если век­
тор go'Доставляет'максимум в левой части (18) при е =  е°, то оптималь­
ное управление а0 (£), удовлетворяет условию

§ ’0S t—k и0 (•) mm
и(-)еО(-/(«)<й

g'oSt- I i и  ( • )

и определяется равенством

ы° (i) =  щ (t) +  -gxr- W (t) g0,

где
i T —h  I  1

S qS (T — h, t) W (t) g9dt 2
о _____ 1: ________ _2 ^ 8 "  — c

a iixit) и W {t) удовлетворяют уравнениям (13) и (14) соответственно.
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УДК 517.5
' А. С. ГАХОВИЧ

ОБ ЕДИНСТВЕННОСТИ ИЗОБРАЖЕНИЯ ЛАПЛАСА — ЭЙЛЕРА 
БЫСТРОРАСТУЩИХ ФУНКЦИЙ *

Определение 1. Обозначим символом W*) класс функций, суммируе­
мых на любом конечном интервале (О, Т), равных нулю при t<gO и удов­
летворяющих условию !

f (t) — О (e Ni ) при i ■> | - оо, > . ,
' где, ам — некоторое неотрицательное действительное число.

Для f  (t)c~L{N) рассматриваем функцию двух комплексных переменных
оо

. ■ F {z, S) = [  e-zif {t) e~s(N dt, '
. о

которая в общем случае аналитична по совокупности переменных при 
любом z из конечной комплексной плоскости й s из полуплоскости 
Res>ctjv. Пусть F(z, s ) , определяемая из последнего соотношения, 
допускает аналитическое продолжение по переменной s до односвязной

* Продолжение. См. «Вести. Белорусского ун-та. Сер. 1, мат., физ., мех.», 1978, 
№ 3, 46. ■
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с жордановой границей области Д , включающей достаточно большие 
по модулю s и точку s?=0. Если же точка s =  0 принадлежит границе ана­
литичности, то аналитическое продолжение непрерывно вплоть до гра­
ницы в ее окрестности. Изображением Лапласа — Эйлера функции f ( t ) 
назовем функцию F(z) = \imF(z, s).

s->-0; s s B j
В работе 1[1] доказано, что для любой функции f(t)<=UN1 можно по­

строить единственное изображение Лапласа — Эйлера путем выбора 
определенных областей Ds. Возникает вопрос, сколько вообще можно 
построить изображений Лапласа— Эйлера для данной функции f(t) за 
счет выбора различных областей Д ?  Если изображение неоднозначно, то 
необходимо дать конструктивное правило выбора единственного изобра­
жения.

Начнем с изучения поставленного вопроса для функций класса AW 
[1], так как именно они служат основой общих построений.

Пусть /Д е А < Д  т. е. f(t) допускает аналитическое продолжение до 
функции /(g), аналитичной и непрерывной вплоть до границы области 
D (argg =  0, argg= y) (см. рисунок) и удовлетворяющей оценке /(g) =
0{e°hг,£) ) при' g -> оо по Д  Кроме того, существует луч, принадлежа­
щий Д  на котором /(gJeEZ-P).
. Из результатов, полученных в. работе |[1], следует, что выбор опреде­

ленной области Д  задает луч ограниченной степени роста функции /(g), 
по которому берется преобразование Лапласа. Следовательно, наша 
задача свелась к следующей: сколько может быть лучей ограниченной 
степени роста, определяющих различные преобразования Лапласа — 
Эйлера для данной функции /(£ )е Л ^ ?  воспользуемся следующей тео­
ремой. ■ , ■.

Теорема 1. Лучи ограниченной степени роста функции /(g), отстоя­
щие друг от друй на угол,; не ■превосходящий величины , где е —
сколь угодно малое положительное число, определяют одно и то же пре­
образование Лапласа-—Эйлера.

Опираясь на известное свойство преобразования Лапласа [2], дока­
зательство теоремы 1 можно свести к доказательству следующего экви­
валентного утверждения: для функции /Д ^А Р О  лучи ограниченной* сте­
пени роста, отстоящие друг от друга на угол, не превосходящий вели-
чины -утр--, образуют область Д  на каждом внутреннем луче которой
/ (g) является функцией ограниченной степени роста.
; Для доказательства воспользуемся частным случаем известного из. 
теории функций комплексного переменного так называемого принципа 
Фрагмент — Линделефа {3, ,4],. являющегося обобщением принципа мак-' 
симума для аналитических функций на неограниченной области.

Для простоты доказательства ограничимся случаем cplt ср2 Д  -у . Для
общего случая необходимо сделать поворот области на определенный угол. 
Итак, пусть /'(0 е  Aw ш лучи ограниченной степени роста для Hee arg |=(p1
й arg g =  ср2 отстоят на угол, меньший у _j- e~ -. Рассмотрим функцию
g (g) =  е~сЦ (g), где с —. произвольный неотрицательный действительный 
параметр, конкретное значение которого выберем из условий, изложенных 
ниже. Оценим значение функции g(g) на луче arg g =  qg.

' |g  (g) | =  g-clll соэф, Q (ec*JSI) =  О (еНН созф1-с1))>
Следовательно, | g(g) |  при c > ■———• на луче arg g =  срх будет огра-

COS (p j

ничей определенной константой Mv  Аналогично на луче arg g =  <р2
| g  (£) | =  О (e—IS I cosip2— .
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т. е. при |g(£) |  с > — CjL— будет ограничен константой М2. Таким обра-
зом, при выборе с, удовлетворяющего одновременно обоим неравенствам, 
функция g (£) будет ограничена по модулю некоторой константой М на
сторонах угла раствора <^-дг~руг- Далее, так как f (g) =  О (eCN̂ N) рав­

номерно по arg |  внутри угла, то, очевидно, и g (re* 1 2 * * *'») =  О (e°NrN) равно­
мерно по ср, Из последней оценки сразу следует, что

1п |^(ге^) | — o(rN+&) 
равномерно по ср внутри угла.

Следовательно, функция g(b) удовлетворяет требованиям принципа 
Фрагмена— Линделефа. Значит, она по модулю' ограничена констан­
той М внутри и на границе рассматриваемого угла. Возвращаясь к функ­
ции f(£), имеем | f (£) М, |f  (I) I ^  ес1?|Л4'= О (е°Щ при £ -> оо
по D, что и требовалось доказать.

Из доказанной теоремы и проиЗ-
®  вольности е следует, что. для любой 

функции класса An д л я  числа /С воз- 
. можных изображений справедлива 

оценка K ^ 2 N .  NД л я  функций класса. LW иссле­
дуемый вопрос решается просто, так ' 
как, согласно процедуре, предлагае­
мой в 0 ], любая функция f (t) дан­
ного класса может быть е помощью 

■ операции интегрирования представ­
лена в виде разности двух функций, 
каждая из которых при £->оо ведет

j, себя аналогично функции е^ . Поэто- 
t му ' число возможных изображений,

■ ■ Лапласа — Эйлера для любой функ­
ции из LW заведомо конечно.

I Рассмотрим возможные применения предлагаемого нами преобразо­
вания. Ввиду многозначности в общем случае преобразования Лапла­
с а -Э й л е р а  возникает необходимость предложить какие-то правила 
выбора единственного изображения. Выбор конкретного изображения. 
Лапласа — Эйлера из конечного набора возможных будет определяться 
классом оригиналов, подвергаемых преобразованию, конкретизируем 
последнее. • . ^

1. Предположим, что мы имеем дело с классом целых функций экспо­
ненциального роста. Тогда при любом выборе области Ds изображение 
Лапласа — Эйлера будет определяться однозначно,, причем оно эквива­
лентно изображению: Лапласа по любому лучу. Поэтому в данном слу­
чае-преобразование Лапласа — Эйлера можно интерпретировать как 
преобразование Бореля для целых функций {4], для которого операцион­
ные правила и теоремы обращения хорошо известны. Изображение Лап­
ласа Эйлера будет представлять собой функцию комплексного пере­
менного F(z), аналитическую, по крайней мере, вне круга'радиуса, рав­
ного типу целой функции экспоненциального роста.

2. Рассматриваемый класс функций представдяет собой функции, 
принадлежащие, пространству оригиналов, преобразуемых по Лапласу.
В качестве области Ds выбираем область, где определен исходный эле­
мент функции F(z, s). В этом случае преобразование Лапласа —■ Эйлера 
совпадаете обычным преобразованием Лапласа [5]. Следовательно, опе­
рационные правила й процедура обращения в данном классе полностью
определены. Изображение Лапласа'— Эйлера представляет собой функ-
5 Зак. 12да 57



цию комплексного переменного F(z),  аналитическую в полуплоскости 
Re где а — степень роста функции f ( t ) .

3. Данный класс функций представляет собой А{̂ \  Тогда в качестве 
области Ds следует выбрать область, соответствующую лучу интегриро­
вания arg g =  ф. Операционные правила и теоремы обращения будут являть 
собой видоизменения соответствующих процедур для операционного исчис­
ления, базирующегося на преобразовании Лапласа. Подобный подход к 
операционному исчислению, правда, с несколько иных позиций, изложен 
в работе [2]. Изображение Лапласа — Эйлера для данного случая пред­
ставляет собой функцию комплексного переменного F (г), аналитическую 
в области Re гё® >  а, где а — степень роста функции f (g) на луче arg g =  q>.

4. Изучаемый класс представляет собой функции из LW. Как уже 
отмечалось выше, в этом случае любая функция из LW представима 
в виде разности двух функций, каждая из которых является производной 
от функции класса AW, причем первая аналитична в верхней полупло­
скости, вторая— в нижней. Вполне естественно выбрать в качестве 
областей Ds для каждой из указанных функций области, соответствую­
щие любым лучам из ближайших к действительной положительной 
полуоси секторов ограниченной степени роста каждой из них. Этими
секторами будут ~  <  arg g <  ~  и — <  arg g < ----1 -  При таком
определении преобразования Лапласа — Эйлера изображение представляет 
собой функцию комплексного переменного F (г), аналитическую в области
Re z >  Q, | arg z | <  -^r(l  — Вывод операционных правил и теорем обра­
щения для данного случая будет составлять содержание последующих работ.
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. УДК 517.925.6
Л. С. ЛАВРИНОВИЧ 

ОБ ОДНОМ КЛАССЕ
ОДНОРОДНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 
БЕЗ ПОДВИЖНЫХ КРИТИЧЕСКИХ ОСОБЫХ ТОЧЕК

Рассмотрим дифференциальные уравнения вида
P(z ,w ,w ' ,w")= Q ,  ( 1)

где Р — однородный многочлен -третьей степени относительно' искомой 
функции и ее производных с- аналитическими по г коэффициентами. 
Уравнения вида ( 1) -встречаются в математической статистике и теории 
вероятностей. Для уравнений (1) будем решать задачу: указать доста­
точные условия отсутствия -подвижных критических особых точек у ее 
любого решения. По предположению, w(z) не должно иметь подвижных 
критических особых точек; кроме того, w(z) — функция аналитическая,; 
очевидно, этим свойством будут обладать w'(z) и w"(z),  поэтому можно 
использовать метод, предложенный в работе [1].
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