
ранга на первых гг.элементах: Qoi(T, k ), . . .  , Q n- i , i { x ,  k ) .  Отсюда непо? 
средственно вытекает, что выполнение (14) влечет за собой справедли­
вость критерия (18). ' 1

Пример. Рассмотрим системы уравнений (11), (12) со следующими 
параметрами: п  — т  =  2, r=  1, (/о, й)'=(0„ 1), [Я Г]=[1, 2],

Л  (О

Л  (/) =

1 " 2 ’
..о.*». , Вц (0 — . 0 _ 0
Я 3 (Г 

/2 . я и (0 =
0/

А > В22 (/) =
' (Г
. 2 _

Как показывают непосредственные вычисления, каждая из систем (11);
(12) в отдельности не является полностью управляемой на отрезке вре­
мени [0, 2], однако, объект (11), (12) полностью управляем на отрезке 
№, 2].
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УДК 517.941
. Р. А К Б А Р О В ,  Э. И. 3 Б Е Р О В И Ч

ЗАДАЧА РИМАНА ДЛЯ КУСОЧНО-МЕРОМОРФНЫХ ФУНКЦИй!
С ЗАДАННЫМИ ГЛАВНЫМИ ЧАСТЯМИ |

НА РИМАНОВЫХ ПОВЕРХНОСТЯХ I/ ' , . |
1. Постановка задачи. Пусть R — замкнутая ориентируемая римано-5 

ва поверхность рода h ^O ,  а { р и р 2, . . .  , p s} — конечное множество раз-) 
личных точек, лежащих на R .  Обозначим R ' = R \ { p i ,  p 2 , ■ ■ ■ /Д}•
■ Пусть L  — сложный кусочно-гладкий контур, лежащий в компактной! 
части поверхности R ' \  А — множество особенностей контура L  (концы,] 
кратные точки, точки нарушения гладкости и другие). Будем считать,) 
что Л удовлетворяет следующему условию: множество Х \ Л  распадается, 
на конечное число'связных компонент, L j(/=  1, 2, . . .  , Я), каждая из? 
которых есть простая гладкая ориентированная дуга, гомеоморфная] 
интервалу (0, 1). Пусть на каждой кривой Lj заданы //-непрерывные: 
функции Gj ( t )  ф 0 ‘ и ' g j ( t ) , Я-непрерывно продолжимые на начальную] 
и концевую точки кривой Lj, причем предельные значения функции £?,•(/) • 
Отличны от нуля. Тем самым всюду на Ь \ А  задаются функции, которые) 
обозначим соответственно через G( t )  и g ( t ) .  Рассмотрим сначала крае-) 
вую.задачу Римана в следующей постановке. *

Найти все функции Ф (р), мероморфные всюду вне jL и заданных ма­
лых окрестностей U { p h) точек p h, кратные там наперед заданному Диви-] 
вору D ', Я-непрерывно продолжимые слева и справа на L \ A ,  где] 
должно выполняться краевое условие: __ ]

Ф + ( /)= е ( /)ф - ( /)+ ^ ( /) ,  /-ф -1 |(Ф ), / е я .  (1):
В окрестности точек множества А  поведение искомых функций опре-; 

деляется требованием псевдократности [1] заданному дивизору J ~ l .
В случае, когда точек ри нет вовсе, задача (1) -полностью исследована- 

в [1]. Если же { р ь  р 2, .. . , p s} ^ = 0 ,  то (1) представляет собой задачу) 
Римана на открытой римановой поверхности, поэтому для большей опре­
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деленности постановки, необходимо задать дополнительные условия 
в окрестностях U(ph) точек pk. С этой целью предположим, что в проко­
лотых окрестностях U(pk) заданы //-непрерывные функции Ри(р), и за­
дадим дополнительные условия следующим образом.

Среди всех решений задачи (1) найти те, которые //-непрерывно про- 
должимы на дЩрк), причем разности

® ( p ) - F h(p), (6= 1, 2, . .. , s) . (2)
должны быть, аналитическими в соответствующих окрестностях U (рк) ■

Функции Fh(p) можно интерпретировать как главные части решений 
задачи (1) в окрестностях й(рк),. а разности (2), следовательно, можно- 
рассматривать как соответствующие регулярные части. Поэтому постав­
ленная задача называется задачей Римана с заданными главными час­
тями. Основным вопросом теории этой задачи является вывод формул,, 
описывающих влияние заданных главных частей на картину разреши­
мости и на общее решение краевой задачи. Различным частным случаям 
задачи (1), (2) посвящено много работ, например, [2].

2. Решение задачи. Уточним вначале предположение о малости 
окрестностей U(ph). Именно: будем считать, что они целиком лежат 
в R \ L ,  попарно не пересекаются и не содержат точек дивизора D. 
Кроме того, границу dU (рк) каждой окрестности U (рк) будем считать 
простой, гладкой и ориентированной стандартным образом. Введем,но­
вую неизвестную фуйкцию

Q (р) =
S

Ф(р), если p i  U V  (рк);
k—i (3)

I Ф(л) -F k (p), если p(-U{pk).
Функция Й(р) является' кусочно-мероморфной на R С| линией разрыва 
Г — L U dU (pi) (J .... U дU (ps) и легко выписать краевое условие, которому 
она удовлетворяет:

Q+ (0 =  Gi (О О" (/) +  gi (0. J- 'D - 11 (Ф), fcT , (4)
где :

. G(0 , f e L \ A
. l 1, t£EdU(pk),

Задача (4) равносильна исходной задаче Римана с заданными главными 
частями. Так как (4) — обычная задача Римана (т. е. без заданных 
главных частей), то к ней можно применить известные результаты [1], 
затем, переходя е помощью (5) и равенств (3) к функции Ф(р), полу­
чить искомые формулы, описывающие влияние главных частей. Одно­
родная задача (4) совпадает с однородной задачей (1) без учета глав­
ных частей, т. е. постоянных, содержащихся в общем решении задачи (4) 
столько же, сколько у задачи (1). Для того, чтобы сформулировать ре­
зультат, дадим некоторые известные факты из теории задачи Римана [1] 
без учета заданных главных частей'. Обозначим через

f i e  л- Фо (?) =  Ф (?) exp j In G (т) dco№ (т) —
•

It ‘Ч д  - |

“ 2  \  da>qqa(T:)— 2nimjwj (q)\ (6)
1 ч ‘

общее решение однородной (g (/) =  0) задачи (1). Здесь ф (q)—-произволь­
ная мероморфная всюду на R функция, кратная дивизору J~1D~lE~1F~1',
d&qqa (т) — выделенная ветвь комплексно-нормированного абелева диффе-

8i(t)
g{t), / e L \ A ;  
- F k (t), t£EdU(Pk). (5)
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t ч
■ренциала третьего рода; j" dwk (t) =  wk (q), точки qY, q%, . . .  , qk и целые

, я
числа tnk ( k ~ l ,  2, , h) — неопределенные числа, нахождение кото­
рых связано с проблемой обращения Якоби ([3], стр. 314). Штрих 
перед интегралом означает, что путь интегрирования не пересекает кано­
нических сечений. Пусть Х0 (q) — функция, в которую переходит правая 
часть (6) при ф(р) =  1. Определим задачу, союзную к ' задаче ( 1), 
равенством

dW-(t )=G‘(t)dW+(t),'JD\j(dW), t ^ L .  (?)
Пусть задача (7): а) имеет нетривиальное решение d4rb(p). Тогда 

■ч.астное решение Задачи (1) можно построить по формуле
h 1 ' Л

• 2  CkdWk ^  ~  1 п Г  J  d(0xvM £ W (т)
Ф ( Р ) = -  ' dWa(p) : ’

где dWk{p) — комплексно-нормированный базис абелевых дифференциа­
лов первого рода, сд.— постоянные;

б) не имеет нетривиальных решений.
'Тогда частное решение задачи (1) дается формулой ■ -

ф *<«>= «>*• ' (9)

где Ai(x, q)'dx ■— мероморфный аналог ядра Коши, построенный с харак­
теристическим дивизором, кратным JDEF. ‘ ■ . ; - '

Теорема. Для разрешимости неоднородной задачи (1) с заданными 
главными частями необходимо и достаточно выполнение равенства

j g ( T ^ + ( T ) = 2 ' у  - Р ь ю т х ) ,
I. к-Л П1Дрк)

( 10)

.для всех решений dW(p) однородной задачи (7). Если равенства (10) 
выполнены,’то общее решение задачи (1) в случае а) можно построить 
по формулам: ' ' '

фп+ ф  +  _ J __ 1V  f ' d a XQo (p) F k (x)  d W f  (t), z £ (J U  {pk)\
Uoi 1 2ш « , «  У *=i*• Т ЭЩрк) ■

'(/>)=<
5 о ■ I ■ (1* • i ■ Fk -| • 1к я- '2nic№ ~ I  с̂ „ (р )Т /г(т)сг¥+(т), z e U { p k), (И)

0 ои^к)
{k =  1, 2, . . . .  , s),

а  в случае б)' задача разрешима безусловно, а решение дается формулами
\ • • • ■ ‘ . '' S ' . -

Фо + ^  2  j Ш -А1 Ф  d r ,  z  $ _U. V  Ш ,

■Ф(р) =
Фо +  Ф* +  Д

k = \  dU(pk )

х« (р):
Х.(Т) к± 1

к дЩр  ̂ Хо (т)J q ) d x ,  Z £ E U ( p k) , ° 2)
(k =  1, 2, . . .  , s)

где функции Ф0, Ф и Ф* определяются формулами (6), (8) и (9) соот­
ветственно. ,

3̂  Случаи аналитической продолжимости главных частей. В пункте 
1 не делалось никаких предположений о характере аналитичности задан­
ных главных частей Fh(p). Особый интерес представляют те случаи за­
4 8  • - ' • -



дачи (1), когда заданные главные части Fn{p) подчинены дополнитель­
ным ограничениям аналитической продолжимости с контуров dU(pk) 
в некоторые области. Предполагая, например, что функции К (р ) анали- 
тичны в проколотых окрестностях и(рк), сразу можно несколько упро­
стить условия разрешимости ( 10) и выражения (11) и (12) для общего 
решения. В этом случае, каждый интеграл в правой части равенства (10) 
не зависит от пути dU(pu), окружающего точку р!и поэтому равен вычету 
подынтегрального дифференциала в точке р/;. Таким образом, в этом 
случае) условия разрешимости (10) можно привести к виду:

S

- щ -  J 8  (т) № +  (т) =  2  res (?) ^  (?)}• ■ (Ю')L , k=l 4=Pk
По тем же соображениям контуры dU{ph) можно считать сколь угодно 
малыми, и на этом основании при q-фрк вторую строку в правых час­
тях (11) и (12)~ можно вообще отбросить. Тем самым общее решение за­
дачи (1) в случае а) можно построить по формуле

S .

Ф (/0 =  Фо +  Ф ---- 2  res (Р) Fk (?) (q)}, (11')
11

q ^ P k  (k 1. 2, . . .  , s),• ' )
а в случае б) задача разрешима безусловно, а решение дается формулами

ф (Р) =  Фо +  Ф* - Хо (р) 2 res { l !>{l!)XK\n) Q)dP)>
* = 1  4=Pk  1 0 w  ■ )

q¥=pk (k =  1, 2, . . . ,  s).

( 12' )

Сформулируем полученный результат:.
Следствие. Если при каждом k = \, 2, . . .  , s заданная главная часть 

F]l (p) аналитична в проколотой окрестности U(p/t) — U(pk)\{ph}  точ­
ки piг, то условия разрешимости краевой задачи (1) йриводятся к ви­
ду (КТ) и при их выполнении общее решение задачи (1) в случае а) 
можно построить.по формуле (И '), а в случае б) решение дается фор­
мулой ( 12'). . /
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УДК 532.516
В. Л. САВЧУК\ 1

ОБТЕКАНИЕ ВЯЗКОЙ ЖИДКОСТЬЮ ПЛАСТИНЫ, 
ПОМЕЩЕННОЙ В ПЛОСКИЙ КАНАЛ

Пусть в плоский канал Qs^y^.2h,  —оо<с.х<.оо -помещена полубеско- 
нечная пластина y = h, х > 0 . Канал заполнен вязкой несжимаемой жид­
костью, скорость которой на бесконечном удалении от сечения х = 0 в сто- , 
рону отрицательной полуоси х параллельна стенкам канала и равнао и
—  - ф  (2hy — y2), где н0 — средняя скорость по сечению канала. Считая
течение жидкости стационарным, запишем уравнения движения и гранич­
ные условия в таком виде:
4 Зак. 1267 49


