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УПРАВЛЯЕМОСТЬ ЛИНЕЙНЫХ НЕСТАЦИОНАРНЫХ СИСТЕМ

1. Пусть задана линейная система управления
x(t) =А (t)x(t)-[-B(t)u(t), x(t0) =х0,- (1)

где x(t) ■— /г-вектор состояния системы; u(t) —r -мерное кусочно-непре­
рывное управление; A(t)., B(t) —-кусочно-постоянные матрицы соответ­
ствующих размерностей: В (t) =В{, t<=[U-u U), г= 1, m; tm=T\ A (/)=A i, 
te=(to, tj), A (t) —A2, t<Ea[th TJ, 0< /< m .

Определение 1. Система (1) называется полностью управляемой [1] 
на отрезке [t0, Т], если для любых я-векторов х0, Xi можно указать управ­
ление u ( t ) , t e [ t 0, TJ, такое, что траектория x(t) системы (1), порожден­
ная этим управлением, удовлетворяет условию х(Т) = хх.

Пусть Bi=[Bi, . . .  , Bj], Bz=iBj+i, . , .  , В m] -у- матрицы, соответственно, 
размерностей (nX/V), ( n X ( m ~ j ) r ) , ,

Согласно (1], для того чтобы система (1) была полностью управляе­
мой на отрезке -ро, Т], необходимо и достаточно, чтобы для любого п-век- 
•гора g, Пя!1 =/=0: . ' '

g'F(T, s)B(s) ^ 0, s6=(fo, П  (2)
где F(T, s) (п Х п )-мерная непрерывная матричная функция, удовлет­
воряющая уравнению ' '

- ■dF£ ’-s)-  = ~ F  (Т, s) A (s), F (Т, T — 0) = e ; F  (Т, s) =  0, s >  Т, (3)

Поскольку матрица F(T, s) — аналитическая на каждом из интерва­
лов!^, tj), [tj, Т], то условие (2) эквивалентно следующему: для любого 
я-вектора g, 11й‘[| /  0. • .

g' F (Т , s) B (s) ф  0, s<EV0, Г ] ; В (s) =  { Q  ' (4)

Теорема 1. Для того, чтобы система (1) была полностью управляемой 
на ;[̂ о, Т], необходимо и достаточно, чтобы

rank [51( AtBv . . . , A t~lBx, Вг, Ай В2, . . .  , A f ^ ^ J  — п. (5)
Д о к а з а т е л ь с т в о .  Достаточность. Пусть выполняется условие 

(5),. однако (4) не имеет места, т. е. существует ■ вектор g0, j| g01| Ф  0,
ЧТО ■ ;

g'0F(T, s) В (,s) -.0, «г !/„, Т\. (6)
Используя (3), продифференцируем тождество (6) в точках s =  t} -±l 0. 
Получим /

' g \ A ? % = b  g i  = g lF (T ,  2; m = 0, 1, . . .  : (7)
Так как матрица F(T, tj)невырожденная, то ||gi||^=0., Равенства (7) про­
тиворечат выполнению условия (5).

Необходимость. Пусть система (1) полностью управляема на 
[to, TJ, но условие (5) не выполняется. В этом случае можно указать век­
тор gi, IIg'i 11=^0, Для которого ,

Я,'АГД = 0, г =  1, 2; т = 0 ~ ^ 1 .  (8)
Поскольку матрица F (Т, t}) невырождена, то существует в екто р у , 
||go]|^=0, такой, что g ' =  g[F (Т, tj). Равенства (8) принимают следую­
щий вид ~

g ’0F(T, t j )A fB l =  0, I =  1, 2; m =  0,. п -  1. , (9)
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■■ ' "  - ■ ■! 
Повторяя стандартные рассуждения [1], заключаем, что при выпол­

нении (9) g'n F (Т , s) В (s) =  0. Последнее тождество несовместимо 
с условием (4). '

. П р и т  =  2из (5) следует явный критерий управляемости системы (1), 
полученный в работе‘[2]. -

2. Рассмотрим полную управляемость системы (1) на отрезке 
[to, 7], у которой матрица A{t), 7],— аналитическая, a B(t) =Bi( t ),j
t<=[U-u ti), i= I, m; tm—T, где Bi(t) — аналитические матрицы, имеющие 
аналитические продолжения на интервал (а, р) cz[to, Т].

Неявный критерий управляемости системы (1) в данном., случае имеет; 
прежний вид (2). _ '

Пусть'■ g-(s) ={Bi(s), . . .  ; Em(s)], s e ( a ,  P),— (ft Xftzr)-матрица;; 
Bi(s), i= l,  m — аналитические продолжения матриц Bi(s) на интервала 
(а, р). Учитывая, что матрица F (Г, s ) ,s e [ i0, 7],— аналитическая, нетруд-' 
но показать, что (2); эквивалентно условию 1 , I

’ '  ' g'F{T, s ) B ( s ) # 0, s e ( a ,  р), ( 10>
где g, (Igll^O,— произвольный ft-векторл [

Соотношение (10) имеет такой'-же вид, как и критерий управляв-) 
мости, содержащийся в [4]. Повторяя рассуждения, приведенные в [4], 
приходим к следующей теореме. - ' 1

Теорема 2. Система (1) с кусочно-аналитической матрицей В (̂ )ч 
полностью управляема на отрезке [4  Т] тогда и только тогда, когда для* 
некоторого т е  (зд, Р) "• |

./. гапк[<2о(т), Qii(t), .... , Qn—i (t) ]= h,

- 3. Рассмотрим следующую задачу управляемости линейных неста­
ционарных систем, которая является естественным развитием постано-S 
вок задач, приведенных в пунктах 1, 2. |

Пусть на отрезке времени [Y0j Т] объект управления описывается двумя’’ 
системами уравнении: 1 . - . I

Xi(t)=Ai(t)Xi(t)-\-Bi(t)u(t)., Ч (11)-:
X2{t)—Az{t),X2,{t)-\'Bz{t)u{t), ( 12)1

где Xi(t )— ft-векторы; u ( t ) — r-мерное кусочно-непрерывное 'управле--1 
ние; Ai{t) — (nX ft)-матрицы, элементы которых —'аналитические функ-| 
ции переменной t\ З Д ) = .8^ (() , te [4 - i ,  4 ), k = \ , m; tn =T, B ih{t) ~ 4  
аналитические матрицы размерностей-(n'Xr), определенные на интерва-' 
лах [4 - 1, 4) и аналитически продолжаемые на весь отрезок ро, 7]; г== 1, 2.

Движение объекта, описываемого системами (11), (12), происходит! 
следующим образом. Объект начинает движение в момент времени 
из состояния Xt(to)=Хо И' описывается вначале ,системой (11). Затем { 
в некоторый момент времени'Т> 4  происходит переключение с системы]
(11) на систему (12) и дальнейшее движение объекта описывается урав-4 
нением ( 12). 1 . ж J

Определение 2. Объект (11), (12) назовем полностью управляемым! 
на отрезке времени [4, 7], если для любых ft-векторов х0, хх можно ука-| 
зать момент переключения %Фth, k = 0, m, с системы (11) на систему (12) |  
и кусочно-непрерывное управление u(t), t ^ t 0, 7] такое, что в момент 7 | 
выполняется условие: Ха(7) =Xi. |

Следуя [1], можно показать, что для тогд, ‘чтобы объект (11), (12) |  
был полностью управляем на отрезке (/о, 7], необходимо и достаточно,! 
чтобы для некоторого т=Л=4 , k = Q, m, выполнялось условие (2), где! 
B(s) =Bi(s),.s<=lt0t т]; B(s) = S 2(s), хе;[т, 7], а матрица F(T,s)  удовлет-f  
воряет уравнению (3), в котором Л ^ ^ Л Д а ) ,  se [4 , т]; Л (s) =Лз(5) , |  
«€=[т, 7]. , I



Положим для определенности, что момент переключения т принадле­
ж и т  интервалу (4_и 4 ), k= \yin. Введем следующие обозначения:

Bf{s, к ) = { B n (s ) ,  . .  • , S ifc(s)], B2(s, k) =[B2k{s), . . .  , Bzmis)], 
где Bik{s) — аналитические продолжения матриц B,ih(s) на весь отре­
зок [t0, Т].

Используя те же рассуждения, что и в предыдущих пунктах, можно 
показать, что неявный критерий (2) управляемости объекта (11), (12) 
эквивалентен следующему условию. Для некоторого т :е (4 - 1, 4 ). k = \ ,  m 
и любого n-вектора g, IlglMO

g>F (Т, S) В (S, k) 0, S£E[4i ^ li (S> -Щ “

Лемма. Для того чтобы объект (11), (12) был полностью управляе­
мым на отрезке (4 , Л, необходимо и достаточно, чтобы для некоторых
т, k, т<=(4-1, tn), k = l ,  m

rank[Qoi(T,-fe), k), . . .  , Qni(x, k), . . . . ;  t === 1, 2] =  n, (14)
ГДе Qmi(st = 4 j ( s ) Q m - l , i ( s ,  k) dldsQm—{ti(s, Й), Qoi{S, k) —Bi(s, k) .

Д о к а з а т е л ь с т в о .  Необходимость. Пусть объект (11), (12) пол­
ностью управляем, на отрезке [4, Т], однако (14) не имеет места. Тогда 
для каждого момента переключения т е (4 ~i, 4 ) можно указать вектор. 
.Ы Н . ИДо(т) 1!г/ - 0, такой, что •

g'oWQmtb’ k)=-0, i =  1, 2; m =  О, 1, . . .  (15)
Матрица F (Т, s) не вырождена для любого s e [4 . -Т], поэтому сущест­
вует вектор gi (т), || gx (г) |] Ф  0, что

. g { b ) F ( T ,  т) дх;(т). . (16)
Производные по s функции g[{ t )F (T ,  s,) В (s, k) в точках s= t ± ;0  
тс-т(4-ь 1к), в силу (15), (16) равны: ' ■

( - l ) « g ; . ( T ) F ( r ,  т) Qrop(t, k} = 0, i = l ,  2; m =  0, 1. . . .  (17),
Итак, аналитическая на каждом из интервалов [t0> т), [т, Т] функ­

ция g ' (т) F (Т, s) В (s, /е) имеет равные нулю производные всех порядков 
аз точках s =  TotO. Это возможно лишь тогда, когда для s s ( 4  Т\, 
g'{ (x)F(T, s)B(s,  к). ;0, а это противоречит (13).

Достаточность. Пусть для некоторого т е ( 4 - ь  tk) , ' k — l, m, выпол­
няется условие (14), но соотношение (13) нарушается, т: е, для каждого 
т е ( 4 - ь  4 ) можно указать вектор ^ ( т ) , . Цй'Д т) | | ^ 0, такой, что 
g'l {x)F ,{T , s) B (s, k) =  0, s e [4, Т-1- Дифференцируя это тождество 

.в точках s =  T T tO ,\T e(4-b '4 )>  ’получим равенства (17), которые про- 
‘ тиворечат (14).

Теорема 3. Для полной'управляемости объекта (11), (12) на отрезке 
времени [4, Т] необходимо и достаточно, чтобы Для некоторого т е ( 4 - ь

' 4 ) , /г-- 1, ' . ' .
rank![Qoi(t, к), Qu(x,k),  . . .  , Qn-i, k)\ i= 1, 2]=«.. (18)

Д о к а з а т е  л ьс  т в о. • Теорему будет доказана, если будет установ­
лена эквивалентность (14) и (18). Очевидно, что из (18) следует (14). 
Покажем, что выполнение (14) влечет за собой (18).

Пусть для некоторого т е (4-i, 4 ), &=1, m  выполняется (14). Так как 
Qmi(т, k), £= 1, 2; /n^sO — матрицы, аналитические на интервале (4-i, 
4 ) , то (14) будет выполняться для всех т е ( 4 - ц  4 ), исключая, быть 
может, изолированные точки. Из леммы Чанга [4] следует, что на всем 
отрезке (4 _1, 4 ) > за исключением, возможно, отдельных точек, матрицы 
1<2ог(т, к), . . .  , Qni( т, к), .. .], t = l ,  2, достигают своего максимального
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ранга на первых гг.элементах: Qoi(T, k ), . . .  , Q n- i , i { x ,  k ) .  Отсюда непо? 
средственно вытекает, что выполнение (14) влечет за собой справедли­
вость критерия (18). ' 1

Пример. Рассмотрим системы уравнений (11), (12) со следующими 
параметрами: п  — т  =  2, r=  1, (/о, й)'=(0„ 1), [Я Г]=[1, 2],

Л  (О

Л  (/) =

1 " 2 ’
..о.*». , Вц (0 — . 0 _ 0
Я 3 (Г 

/2 . я и (0 =
0/

А > В22 (/) =
' (Г
. 2 _

Как показывают непосредственные вычисления, каждая из систем (11);
(12) в отдельности не является полностью управляемой на отрезке вре­
мени [0, 2], однако, объект (11), (12) полностью управляем на отрезке 
№, 2].
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УДК 517.941
. Р. А К Б А Р О В ,  Э. И. 3 Б Е Р О В И Ч

ЗАДАЧА РИМАНА ДЛЯ КУСОЧНО-МЕРОМОРФНЫХ ФУНКЦИй!
С ЗАДАННЫМИ ГЛАВНЫМИ ЧАСТЯМИ |

НА РИМАНОВЫХ ПОВЕРХНОСТЯХ I/ ' , . |
1. Постановка задачи. Пусть R — замкнутая ориентируемая римано-5 

ва поверхность рода h ^O ,  а { р и р 2, . . .  , p s} — конечное множество раз-) 
личных точек, лежащих на R .  Обозначим R ' = R \ { p i ,  p 2 , ■ ■ ■ /Д}•
■ Пусть L  — сложный кусочно-гладкий контур, лежащий в компактной! 
части поверхности R ' \  А — множество особенностей контура L  (концы,] 
кратные точки, точки нарушения гладкости и другие). Будем считать,) 
что Л удовлетворяет следующему условию: множество Х \ Л  распадается, 
на конечное число'связных компонент, L j(/=  1, 2, . . .  , Я), каждая из? 
которых есть простая гладкая ориентированная дуга, гомеоморфная] 
интервалу (0, 1). Пусть на каждой кривой Lj заданы //-непрерывные: 
функции Gj ( t )  ф 0 ‘ и ' g j ( t ) , Я-непрерывно продолжимые на начальную] 
и концевую точки кривой Lj, причем предельные значения функции £?,•(/) • 
Отличны от нуля. Тем самым всюду на Ь \ А  задаются функции, которые) 
обозначим соответственно через G( t )  и g ( t ) .  Рассмотрим сначала крае-) 
вую.задачу Римана в следующей постановке. *

Найти все функции Ф (р), мероморфные всюду вне jL и заданных ма­
лых окрестностей U { p h) точек p h, кратные там наперед заданному Диви-] 
вору D ', Я-непрерывно продолжимые слева и справа на L \ A ,  где] 
должно выполняться краевое условие: __ ]

Ф + ( /)= е ( /)ф - ( /)+ ^ ( /) ,  /-ф -1 |(Ф ), / е я .  (1):
В окрестности точек множества А  поведение искомых функций опре-; 

деляется требованием псевдократности [1] заданному дивизору J ~ l .
В случае, когда точек ри нет вовсе, задача (1) -полностью исследована- 

в [1]. Если же { р ь  р 2, .. . , p s} ^ = 0 ,  то (1) представляет собой задачу) 
Римана на открытой римановой поверхности, поэтому для большей опре­
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