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SCHRÖDINGER OPERATOR OF THE FORM −∆u+aδu+b ∂δ
∂x1

u

Abstract. The paper is devoted to the study of the formal differential expression of the form

Lu=−∆u+aδu+b
∂δ
∂x1

u

with generalized coefficients. Approximations of the singular part by means of a family of
finite range operators are constructed and resolvent convergence of the approximations is
investigated.

1. Introduction

The stationary Schrödinger operator with singular potential, symbolically written as

(1) −∆u+aδu,

whereδ is the Diracδ-function, anda is the so-called coupling constant, models scat-
tering on a particle located at the origin of coordinates.

The mathematical difficulties that appear during the investigation of expression
(1) are related to the fact that the productδ · u in (1) is not defined in the classical
theory of distributions. Therefore, giving sense to the expression (1) as a self-adjoint
operator in the spaceL2(R3) (which is usually necessary in quantum theory) requires
overcoming some obstacles.

A mathematical interpretation of the expression (1) was given by F. Berezin and
L. Faddeev in [4]. It looks as follows. Let̊L be the restriction of the Laplace operator
−∆ on the domain

D(L̊) = {u∈ H2(R3), u(0) = 0},

whereH2(R3) is the Sobolev space. ThenL̊ is a symmetric, but non-self-adjoint op-
erator onL2(R3). All self-adjoint extensionsL(α) of the operator̊L can be consid-
ered as possible perturbations of the Laplace operator by potentials, supported at zero.
These self-adjoint extensionsL(α) are naturally parameterized by a single real parame-
ter α ∈ (−∞,+∞], the valueα =+∞ corresponds to the Laplace operator, i.e.α =+∞
if the perturbation does not influence the operator.

The expression (1) by itself does not contain the information as to what self-
adjoint extensionL(α) corresponds to the concrete situation. In application, theexpres-
sion (1) arises as a formal limit (asε → 0) of some family of operatorsLε. For example
let

(2) Lεu=−∆u+qε(x)u,

319



320 A. Antonevich and T. Romanchuk

where the potentialqε(x) is supported atε-neighborhood of zero. Under the conditions

a(ε) =
∫

qε(x)dx 6= 0,

∫
|qε(x)|dx≤Ca(ε)

we have
1

a(ε)
qε(x)→ δ

and the family of potentialsqε can be symbolically written asa(ε)δ. Therefore the
family (2) can be considered as an approximation of the formal expression (1).

The problem is to bring to light what self-adjoint extensioncorresponds to given
approximationLε. As a rule, in usual sense the limit ofLε does not exist and the resol-
vent convergence is considered here. Recall that one says that Lε → L(α) in resolvent
sense, if

(3) lim
ε→0

(Lε −λI)−1 = (L(α)−λI)−1.

Different approximations of (1) were investigated in many papers (see [1, 2, 6] and
references in [1]).

The main result looks as follows: ifa(ε) = a0+a1ε+a2ε2+ · · · , the limit (3)
exists and defines an operatorL(α); this limit is a non-trivial extension (α 6= ∞) only in
the so-calledresonance cases, whena(ε) = a1ε+a2ε2+ · · · and the numbera1 belong
to a discrete setΛ fromR, whereΛ depends on the given approximation.

In more general cases the family of potentialsqε can be symbolically written as

(4) qε = a(ε)δ+∑
k

bk(ε)
∂δ
∂xk

,

and then the familyLε is an approximation of the formal expression

(5) Lu=−∆u+aδu+∑
k

bk
∂δ
∂xk

u

Expressions of the form (5) were investigated early in the one-dimensional case
[5, 8, 7].

In the present paper we consider some approximations of (5) in L2(R
3) and

calculate the limits (3). A new effect is discovered:strong resonance casesarise, when
the limit (3) does not exist and the familyLε cannot be interpreted as an operator in
L2(R

3).
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2. Approximation using a family of finite rank operators

Let us consider the most simple approximation of the formal expression

(6) Lu=−∆u+aδu+b
∂δ
∂x1

u.

Let ϕ1,ϕ2 ∈ D(R3) such thatϕ1(x),ϕ2(x) ∈ R and
∫

ϕi(x)dx= 1, i = 1,2. The family
of smooth functions

ϕi,ε(x) =
1
ε3 ϕi

(x
ε

)

gives an approximation ofδ as an element from the space of distributionsD′(R3). The
family of linear functionals

Φk,ε(u) =
∫

ϕk,ε(y)u(y)dy

gives an approximation ofδ as a linear functional, since for smoothu

Φ1,ε(u)ϕ1,ε → u(0)δ = δu,

the family of rank one operators
Φ1,ε(u)ϕ1,ε

is an approximation of the operator of multiplication byδ. Let

ψε(x) =
∂ϕ2,ε(x)

∂x1
=

1
ε4

∂ϕ2

∂x1

(x
ε

)
.

In order to have below a uniform expression, we will use the notation

ϕ3 =
∂ϕ2(x)

∂x1
, ϕ3,ε =

1
ε3 ϕ3(

x
ε
).

Then

ψε =
1
ε

ϕ3,ε.

The family of smooth functionsψε gives an approximation of∂δ/∂x1 as an element
from the space of distributionsD′(R3), the family of linear functionals

Ψε(u) =
∫

ψε(y)u(y)dy

gives an approximation of∂δ/∂x1 as a linear functional.

For a smooth functionu, by definition

∂δ
∂x1

u=− ∂u
∂x1

(0)δ+u(0)
∂δ
∂x1

= 〈δ′;u〉δ+ 〈δ;u〉δ′
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and the family of rank two operatorsΨε(u)ϕ2,ε(x)+Φ2,ε(u)ψε(x) is an approximation
of the operator of multiplication by∂δ/∂x1.

Therefore the family of operators

(7) Lε(u) =−∆u+Tεu,

where

(8)

Tεu= a(ε)ϕ1,ε(x)
∫

u(y)ϕ1,ε(y)dy

+b(ε)
[

ϕ2,ε(x)
∫

u(y)ψε(y)dy+ψε(x)
∫

u(y)ϕ2,ε(y)dy

]
,

is an approximation of the formal expression (6).

The problem is to find the limit of these approximations in thesense of resolvent
convergence.

For fixedε> 0 the resolventR(λ,ε) = (Lε −λI)−1 can be constructed in explicit
form by using results from [3].

Let

A(ε) =




a(ε) 0 0
0 0 b(ε)
0 b(ε) 0




be a matrix, generated by the coefficientsa(ε) andb(ε). The inverse matrix is

A−1(ε) =




1
a(ε) 0 0

0 0 1
b(ε)

0 1
b(ε) 0


 .

Let us introduce the fundamental solution

Eλ(x) =
1

4π‖x‖e−µ‖x‖,

whereµ2 =−λ, Reµ> 0 and a vector function

Ē(ε) = (E1(ε);E2(ε);E3(ε)) , Ek(ε) ∈ L2(R
3),

where
E1(ε) = Eλ ∗ϕ1,ε, E2(ε) = Eλ ∗ϕ2,ε, E3(ε) = Eλ ∗ψε.

Denote
〈u,v〉=

∫
u(x)v(x)dx,

F̄(ε) = ( f1(ε); f2(ε); f3(ε)) , fk(ε) ∈C,

where

f1(ε) = 〈ϕ1,ε,Eλ ∗ f 〉 , f2(ε) = 〈ϕ2,ε,Eλ ∗ f 〉 , f3(ε) = 〈ψε,Eλ ∗ f 〉 .
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THEOREM1. Letε> 0 and suppose that a(ε)∈R, a(ε) 6= 0, b(ε)∈R, b(ε) 6= 0.
The resolvent R(λ,ε) is determined forReλ 6= 0 and can be given by the expression

(9) R(λ,ε) f = f ∗Eλ −
〈[

A−1(ε)+B(ε,λ)
]−1

F̄(ε), Ē(ε)
〉
,

where

B(ε,λ) =




〈ϕ1,ε;E1(ε)〉 〈ϕ1,ε;E2(ε)〉 〈ϕ1,ε;E3(ε)〉
〈ϕ2,ε;E1(ε)〉 〈ϕ2,ε;E2(ε)〉 〈ϕ2,ε;E3(ε)〉
〈ψε;E1(ε)〉 〈ψε;E2(ε)〉 〈ψε;E3(ε)〉


 .

If a(ε)≡ 0, b(ε) ∈R, b(ε) 6= 0, then

(10) R(λ,ε) f = f ∗Eλ −
〈[

A−1(ε)+B(ε,λ)
]−1

F̄(ε), Ē(ε)
〉
,

where

A(ε) =
(

0 b(ε)
b(ε) 0

)
, B(ε,λ) =

(
〈ϕ2,ε;E2(ε)〉 〈ϕ2,ε;E3(ε)〉
〈ψε;E2(ε)〉 〈ψε;E3(ε)〉

)
,

F̄(ε) = ( f2(ε); f3(ε)) , Ē(ε) = (E2(ε);E3(ε)) .

3. Resolvent convergence of approximations

According to (9), the behavior of the resolventR(λ,ε) depends on the behavior of the
matricesA−1, B(ε,λ), and on the behavior of the vectors̄E(ε) andF̄(ε).

Let us denote
D(ε,λ) = A−1(ε)+B(ε,λ)

and let
D−1(ε,λ) = (di j ).

Then 〈[
A−1(ε)+B(ε,λ)

]−1
F̄(ε), Ē(ε)

〉
=
〈
D−1(ε,λ)F̄(ε), Ē(ε)

〉

= [d11(ε) f1(ε)+d12(ε) f2(ε)+d13(ε) f3(ε)]E1(ε)

+[d21(ε) f1(ε)+d22(ε) f2(ε)+d23(ε) f3(ε)]E2(ε)

+[d31(ε) f1(ε)+d32(ε) f2(ε)+d33(ε) f3(ε)]E3(ε).

Let us consider the behavior of the vectorsĒ(ε) andF̄(ε) asε → 0.

It follows from the properties of functionsϕi,ε that the limits

lim
ε→0

E1(ε) = lim
ε→0

E2(ε) = Eλ

exist in the spaceL2(R
3), and for anyf ∈ L2(R

3) there exist the limits

lim
ε→0

f1(ε) = lim
ε→0

f2(ε) = ( f ∗Eλ)(0).
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In the distribution spaceD′(R3) we have

ψε →
∂δ
∂x1

, E3(ε) = Eλ ∗ψε →
∂Eλ
∂x1

.

But in the spaceL2(R
3)

‖ψε‖=

√∫ (
1
ε2 ψ

(x
ε

))2

dx=

(∫
|ψ(t)|2 dt

) 1
2 1

ε
√

ε

the norm‖E3(ε)‖ is increasing as 1/ε
√

ε andE3(ε) do not have a limit in the space
L2(R

3).

Similarly, it can be that forf ∈ L2(R
3) the valuef3(ε) increases and does not

have a limit, but alwaysf3(ε) = o(1/ε
√

ε).
Therefore the finite limit of the resolvent (9) exists only ifthe elementsd13(ε),

d23(ε), d33(ε), as well as(d31(ε) f1(ε)+d32(ε) f2(ε)+d33(ε) f3(ε)) are small, namely

(11) d13(ε) ∼ o
(
ε

3
2
)
; d31(ε) f1(ε)+d32(ε) f2(ε)+d33(ε) f3(ε) ∼ o

(
ε

3
2
)
.

It follows that it is not enough to find the limit of the family of inverse matrices
D−1(ε,λ), but it is also necessary to check subsequent terms (not onlythe main term)
of the expansion of the matrixD−1(ε,λ), on which the behavior of expressions (11)
depends.

Let us consider the behavior ofdi j asε → 0.

LEMMA 1. The functions

bl j (ε,λ) =
〈
ϕl ,ε,Eλ ∗ϕ j ,ε

〉

are analytic functions of two variablesε, µ (λ ∈ C \R+
0 , λ = −µ2, whereReµ > 0,

µ= (−λ)
1
2 , a continuous branch of the function(−λ)

1
2 ), and admit an expansion

bl j (ε,λ)≡ bl j (ε,−µ2) =
1
ε

∞

∑
k=0

(−1)k(εµ)kM(k−1)
l j =

∞

∑
k=−1

εk(−µ)k+1M(k)
l j ,

where

M(k)
l j =

1
4π(k+1)!

∫
(ϕl ∗ϕ j)|x|k dx.

In particular, according to the properties of functionsϕi(x),

M(0)
11 = M(0)

12 = M(0)
21 = M(0)

22 =
1
4π

,

M(0)
13 = M(0)

23 = M(0)
33 = M(0)

31 = M(0)
32 = 0.
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THEOREM 2. Let

a(ε) = εa1+ ε2a2+ ε3a3+ . . . , b(ε) = εpbp+ εp+1bp+1+ · · · ,

where a1 6= 0, bp 6= 0.

I. If a1 6= −1/M(−1)
11 , then the resolvents (9) converge to the resolvent of the Laplace

operator.

II. Suppose that the resonance condition a1 =−1/M(−1)
11 holds.

• If p ≥ 4, the resolvents (9) converge to the resolvent of the operatorAα, where

α =−a2
(
M(−1)

11

)2
.

• If p = 3 the resolvents (9) converge to the resolvent of the operatorAα

Rα(µ) f = f ∗Eλ −
4π

4πα−µ
[( f ∗Eλ(0))]Eλ

whereα =−a2
(
M(−1)

11

)2−b3
(
M(−1)

12 M(−2)
32 +M(−1)

21 M(−2)
13

)
.

• If p ≤ 2 the limit of the family of resolvents (9) does not exist.

Proof. The matrixD(ε,λ) can be written in the form



1
a(ε) +

1
ε M(−1)

11 − µ
4π + . . . 1

ε M(−1)
12 − µ

4π + . . . 1
ε2 M(−1)

13 + . . .

1
ε M(−1)

21 − µ
4π + . . . 1

ε M(−1)
22 − µ

4π + . . . 1
b(ε) +

1
ε2 M(−1)

23 + . . .

1
ε2 M(−1)

31 + . . . 1
b(ε) +

1
ε2 M(−1)

32 + . . . 1
ε3 M(−1)

33 + . . .


 .

Let us consider the most interesting casep= 3, when

1
b(ε)

=
1
ε3 b−3+

1
ε2 b−2+ . . . ,

1
a(ε)

=
1
ε

a−1+ ã0+ . . . ,

whereb−3 =
1
b3
, a−1 =

1
a1
. In this case the expansion of the matrixD(ε,λ) is




1
ε(M

(−1)
11 +a−1)− µ

4π+... 1
ε M(−1)

12 − µ
4π+... 1

ε2 M(−1)
13 +...

1
ε M(−1)

21 − µ
4π+... 1

ε M(−1)
22 − µ

4π+... 1
ε3 b−3+

1
ε2 (M

(−1)
23 +b−2)+...

1
ε2 M(−1)

31 +... 1
ε3 b−3+

1
ε2 (M

(−1)
32 +b−2)+... 1

ε3 M(−1)
33 +...


.

For the inverse matrix, we have expression

D−1(ε,λ) =
1

detD(ε,λ)
D#(ε,λ),
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where

detD(ε,λ) = − 1
ε7 (b−3)

2(M(−1)
11 +a−1)

1
ε6

[(
M(−1)

12 M(−1)
31 +M(−1)

21 M(−1)
13 − (M(−1)

11 +a−1)(M
(−1)
23 +b−2)

)
b−3

−
(
− µ

4π
+ ã0

)
(b−3)

2− (M(−1)
11 +a−1)(M

(−1)
23 +b−2)b−3

]
+ . . . ,

D#(ε,λ) =




d#
11 d#

12 d#
13

d#
21 d#

22 d#
23

d#
31 d#

32 d#
33


 ,

d#
11 =− 1

ε6 (b−3)
2+ . . . ,

d#
12 =− 1

ε5 b−3M(−1)
13 + . . . ,

d#
13=

1
ε4 M(−1)

12 b−3+ . . . ,

d#
21 =− 1

ε5 b−3M(−1)
31 + . . . ,

d#
22=

1
ε4

(
M(−1)

33 (M(−1)
11 +a−1)−M(−1)

31 M(−1)
13

)
+ . . .

d#
23 =− 1

ε4 b−3(M
(−1)
11 +a−1)+ . . .

d#
31=

1
ε4 M(−1)

21 b−3+ . . .

d#
32 =− 1

ε4b−3(M
(−1)
11 +a−1)+ . . . ,

d#
33 =

1
ε2

(
M(−1)

22 (M(−1)
11 +a−1)−M(−1)

12 M(−1)
21

)
+ . . . .

If

(M(−1)
11 +a−1)(b−3)

2 6= 0,

then

D−1(ε,λ)→ 0, d13 = O(ε3), d33 = O(ε5),

and the condition (11) fulfilled. It follows that the resolvents (9) converge to the resol-
vent of the Laplace operator.
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The limit of the matrixD−1(ε,λ) can be non-zero, ifthe resonance condition

(12) (M(−1)
11 +a−1)(b−3)

2 = 0,

is fulfilled. This condition is equivalent to

a1 =−1/M(−1)
11

and the resonance is possible only if the coefficienta(ε) admits an expansion

a(ε) = εa1+ ε2a2+o(ε2),

wherea1 =−1/M(−1)
11 .

Under this condition

detD(ε,λ) =
1
ε6

[(
M(−1)

12 M(−1)
31 +M(−1)

21 M(−1)
13

)
b−3−

(
− µ

4π
+ ã0

)
(b−3)

2
]
+ . . .

andD−1(ε,λ) is a matrix of the form

(13)




−(b−3)
2

(
M

(−1)
12 M

(−1)
31 +M

(−1)
21 M

(−1)
13

)
b−3−(− µ

4π+ã0)(b−3)2
+ ε(· · · ) ε(· · · ) ε2(· · · )

ε(· · · ) ε2(· · · ) ε2(· · · )
ε2(· · · ) ε2(· · · ) ε4(· · · )


 .

So

lim
ε→0

D−1(ε,λ) =




4π
4πα−µ 0 0

0 0 0
0 0 0


 ,

where

α =−a2

(
M(−1)

11

)2
−b3

(
M(−1)

12 M(−1)
32 +M(−1)

21 M(−1)
13

)
.

It follows from (13) that the condition (11) are fulfilled andthe limit of the family of
resolvents (9) is the resolvent of the operatorAα:

Rα(µ) f = f ∗Eλ −
4π

4πα−µ
[( f ∗Eλ(0))]Eλ.

If p 6= 3 the calculations are similar.

We emphasize that a new effect arises here: it can be that the finite limit of
the resolvents (9) does not exist. Let us demonstrate this effect in detail for the case
a(ε) = 0.
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THEOREM 3. Let a(ε) = 0 and b(ε) = εpbp+ εp+1bp+1+ · · · , where bp 6= 0.

• If p≥ 3, then the limit of the family (4) in resolvent sense is the Laplace operator.

• If p = 2 and

M(−3)
33 M(−1)

22 −
(

M(−2)
23 +R2

)(
M(−2)

32 +R2

)
6= 0,

then the limit of the family (4) in resolvent sense is the Laplace operator.

• If p = 2 and resonance condition

M(−3)
33 M(−1)

22 −
(

M(−2)
23 +R2

)(
M(−2)

32 +R2

)
= 0

is fulfilled, then limit of the family of resolvents (6) does not exist.

Proof. If a(ε) = 0, then the matrixD(ε,λ) is

D(ε,λ) =




1
ε M(−1)

22 − µ
4π + . . . 1

b(ε) +
1
ε2 M(−1)

23 + . . .

1
b(ε) +

1
ε2 M(−1)

32 + . . . 1
ε3 M(−1)

33 + . . .


 .

Remark that
1

b(ε)
=

1
εp Rp+

1
εp−1Rp−1+ . . . ,

whereRp = 1/bp.

If p> 3, then the main term in the expansion of the matrixD(ε,λ) is the invert-
ible matrix

1
εp

(
0 Rp

Rp 0

)

andD−1(ε,λ)→ 0 asεp.

If p = 3, then the expansion of the matrixD(ε,λ) begins from the invertible
matrix

1
ε3

(
0 Rp

Rp M(−1)
33

)

and thusD−1(ε,λ)→ 0 asε3 whenε → 0.

This means that ifp≥ 3, then the conditions (11) are fulfilled and the limit of
the family (7) in the resolvent sense is the Laplace operator.

If p= 2, then the matrixD(ε,λ) can be written in the form




1
ε M(−1)

22 − µ
4π + . . . 1

ε2

(
M(−1)

23 +R2

)
+ 1

ε

(
M(−1)

23 +R1

)
+ . . .

1
ε2

(
M(−1)

32 +R2

)
+ 1

ε R1+ . . . 1
ε3 M(−1)

33 + . . .


 .
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If
M(−1)

33 M(−1)
22 −

(
M(−1)

23 +R2

)(
M(−1)

32 +R2

)
6= 0,

thenD−1(ε,λ)→ 0 whenε → 0 asε3 and the limit of the family (4) in resolvent sense
is the Laplace operator.

Set

d3 = M(−1)
22 M(−1)

33 − µ
4π

M(−1)
33 −

(
M(−1)

23 +R2

)(
M(−1)

32 +R1

)

−
(

M(−1)
23 +R1

)(
M(−1)

32 +R2

)
.

If the resonance condition

M(−3)
33 M(−1)

22 −
(

M(−2)
23 +R2

)(
M(−2)

32 +R2

)
= 0

is fulfilled andd3 6= 0, the matrixD−1(ε,λ) can be written in the form

1
d3


 M(−1)

33 + . . . −ε
(

M(−1)
32 +R2

)
− ε2R1+ . . .

−ε
(

M(−1)
23 +R2

)
− ε2R1+ . . . ε2M(−1)

22 − ε3 µ
4π + . . .




and

D−1(ε,λ)→
(

M
(−1)
33
d3

0
0 0

)
.

But in this case conditions, similar to the conditions (11),are not fulfilled. In particular
the expression from (11) includes the term of the form

Cε2 f3(ε)E3(ε),

which for somef ∈ L2(R
3) can satisfy

∥∥ε2 f3(ε)E3(ε)
∥∥

L2
→+∞.

So the finite limit of the family of resolvents (6) does not exist.
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