

A. Antonevich and T. Romanchuk

SCHRÖDINGER OPERATOR OF THE FORM $-\Delta u + a\delta u + b\frac{\partial\delta}{\partial x_1}u$

Abstract. The paper is devoted to the study of the formal differential expression of the form

$$Lu = -\Delta u + a\delta u + b\frac{\partial\delta}{\partial x_1}u$$

with generalized coefficients. Approximations of the singular part by means of a family of finite range operators are constructed and resolvent convergence of the approximations is investigated.

1. Introduction

The stationary Schrödinger operator with singular potential, symbolically written as

$$(1) \quad -\Delta u + a\delta u,$$

where δ is the Dirac δ -function, and a is the so-called coupling constant, models scattering on a particle located at the origin of coordinates.

The mathematical difficulties that appear during the investigation of expression (1) are related to the fact that the product $\delta \cdot u$ in (1) is not defined in the classical theory of distributions. Therefore, giving sense to the expression (1) as a self-adjoint operator in the space $L^2(\mathbb{R}^3)$ (which is usually necessary in quantum theory) requires overcoming some obstacles.

A mathematical interpretation of the expression (1) was given by F. Berezin and L. Faddeev in [4]. It looks as follows. Let \mathring{L} be the restriction of the Laplace operator $-\Delta$ on the domain

$$D(\mathring{L}) = \{u \in H^2(\mathbb{R}^3), \quad u(0) = 0\},$$

where $H^2(\mathbb{R}^3)$ is the Sobolev space. Then \mathring{L} is a symmetric, but non-self-adjoint operator on $L^2(\mathbb{R}^3)$. All self-adjoint extensions $L^{(\alpha)}$ of the operator \mathring{L} can be considered as possible perturbations of the Laplace operator by potentials, supported at zero. These self-adjoint extensions $L^{(\alpha)}$ are naturally parameterized by a single real parameter $\alpha \in (-\infty, +\infty]$, the value $\alpha = +\infty$ corresponds to the Laplace operator, i.e. $\alpha = +\infty$ if the perturbation does not influence the operator.

The expression (1) by itself does not contain the information as to what self-adjoint extension $L^{(\alpha)}$ corresponds to the concrete situation. In application, the expression (1) arises as a formal limit (as $\varepsilon \rightarrow 0$) of some family of operators L_ε . For example let

$$(2) \quad L_\varepsilon u = -\Delta u + q_\varepsilon(x)u,$$

where the potential $q_\varepsilon(x)$ is supported at ε -neighborhood of zero. Under the conditions

$$a(\varepsilon) = \int q_\varepsilon(x) dx \neq 0,$$

$$\int |q_\varepsilon(x)| dx \leq C a(\varepsilon)$$

we have

$$\frac{1}{a(\varepsilon)} q_\varepsilon(x) \rightarrow \delta$$

and the family of potentials q_ε can be symbolically written as $a(\varepsilon)\delta$. Therefore the family (2) can be considered as an approximation of the formal expression (1).

The problem is to bring to light what self-adjoint extension corresponds to given approximation L_ε . As a rule, in usual sense the limit of L_ε does not exist and the resolvent convergence is considered here. Recall that one says that $L_\varepsilon \rightarrow L^{(\alpha)}$ in *resolvent sense*, if

$$(3) \quad \lim_{\varepsilon \rightarrow 0} (L_\varepsilon - \lambda I)^{-1} = (L^{(\alpha)} - \lambda I)^{-1}.$$

Different approximations of (1) were investigated in many papers (see [1, 2, 6] and references in [1]).

The main result looks as follows: if $a(\varepsilon) = a_0 + a_1\varepsilon + a_2\varepsilon^2 + \dots$, the limit (3) exists and defines an operator $L^{(\alpha)}$; this limit is a non-trivial extension ($\alpha \neq \infty$) only in the so-called *resonance cases*, when $a(\varepsilon) = a_1\varepsilon + a_2\varepsilon^2 + \dots$ and the number a_1 belong to a discrete set Λ from \mathbb{R} , where Λ depends on the given approximation.

In more general cases the family of potentials q_ε can be symbolically written as

$$(4) \quad q_\varepsilon = a(\varepsilon)\delta + \sum_k b_k(\varepsilon) \frac{\partial \delta}{\partial x_k},$$

and then the family L_ε is an approximation of the formal expression

$$(5) \quad Lu = -\Delta u + a\delta u + \sum_k b_k \frac{\partial \delta}{\partial x_k} u$$

Expressions of the form (5) were investigated early in the one-dimensional case [5, 8, 7].

In the present paper we consider some approximations of (5) in $L_2(\mathbb{R}^3)$ and calculate the limits (3). A new effect is discovered: *strong resonance cases* arise, when the limit (3) does not exist and the family L_ε cannot be interpreted as an operator in $L_2(\mathbb{R}^3)$.

2. Approximation using a family of finite rank operators

Let us consider the most simple approximation of the formal expression

$$(6) \quad Lu = -\Delta u + a\delta u + b\frac{\partial\delta}{\partial x_1}u.$$

Let $\varphi_1, \varphi_2 \in D(\mathbb{R}^3)$ such that $\varphi_1(x), \varphi_2(x) \in \mathbb{R}$ and $\int \varphi_i(x) dx = 1, i = 1, 2$. The family of smooth functions

$$\varphi_{i,\varepsilon}(x) = \frac{1}{\varepsilon^3} \varphi_i\left(\frac{x}{\varepsilon}\right)$$

gives an approximation of δ as an element from the space of distributions $D'(\mathbb{R}^3)$. The family of linear functionals

$$\Phi_{k,\varepsilon}(u) = \int \varphi_{k,\varepsilon}(y) u(y) dy$$

gives an approximation of δ as a linear functional, since for smooth u

$$\Phi_{1,\varepsilon}(u) \varphi_{1,\varepsilon} \rightarrow u(0) \delta = \delta u,$$

the family of rank one operators

$$\Phi_{1,\varepsilon}(u) \varphi_{1,\varepsilon}$$

is an approximation of the operator of multiplication by δ . Let

$$\psi_\varepsilon(x) = \frac{\partial \varphi_{2,\varepsilon}(x)}{\partial x_1} = \frac{1}{\varepsilon^4} \frac{\partial \varphi_2}{\partial x_1}\left(\frac{x}{\varepsilon}\right).$$

In order to have below a uniform expression, we will use the notation

$$\varphi_3 = \frac{\partial \varphi_2(x)}{\partial x_1}, \quad \varphi_{3,\varepsilon} = \frac{1}{\varepsilon^3} \varphi_3\left(\frac{x}{\varepsilon}\right).$$

Then

$$\psi_\varepsilon = \frac{1}{\varepsilon} \varphi_{3,\varepsilon}.$$

The family of smooth functions ψ_ε gives an approximation of $\partial\delta/\partial x_1$ as an element from the space of distributions $D'(\mathbb{R}^3)$, the family of linear functionals

$$\Psi_\varepsilon(u) = \int \psi_\varepsilon(y) u(y) dy$$

gives an approximation of $\partial\delta/\partial x_1$ as a linear functional.

For a smooth function u , by definition

$$\frac{\partial\delta}{\partial x_1} u = -\frac{\partial u}{\partial x_1}(0) \delta + u(0) \frac{\partial\delta}{\partial x_1} = \langle \delta'; u \rangle \delta + \langle \delta; u \rangle \delta'$$

and the family of rank two operators $\Psi_\varepsilon(u)\varphi_{2,\varepsilon}(x) + \Phi_{2,\varepsilon}(u)\psi_\varepsilon(x)$ is an approximation of the operator of multiplication by $\partial\delta/\partial x_1$.

Therefore the family of operators

$$(7) \quad L_\varepsilon(u) = -\Delta u + T_\varepsilon u,$$

where

$$(8) \quad \begin{aligned} T_\varepsilon u &= a(\varepsilon)\varphi_{1,\varepsilon}(x) \int u(y)\varphi_{1,\varepsilon}(y) dy \\ &+ b(\varepsilon) \left[\varphi_{2,\varepsilon}(x) \int u(y)\psi_\varepsilon(y) dy + \psi_\varepsilon(x) \int u(y)\varphi_{2,\varepsilon}(y) dy \right], \end{aligned}$$

is an approximation of the formal expression (6).

The problem is to find the limit of these approximations in the sense of resolvent convergence.

For fixed $\varepsilon > 0$ the resolvent $R(\lambda, \varepsilon) = (L_\varepsilon - \lambda I)^{-1}$ can be constructed in explicit form by using results from [3].

Let

$$A(\varepsilon) = \begin{pmatrix} a(\varepsilon) & 0 & 0 \\ 0 & 0 & b(\varepsilon) \\ 0 & b(\varepsilon) & 0 \end{pmatrix}$$

be a matrix, generated by the coefficients $a(\varepsilon)$ and $b(\varepsilon)$. The inverse matrix is

$$A^{-1}(\varepsilon) = \begin{pmatrix} \frac{1}{a(\varepsilon)} & 0 & 0 \\ 0 & 0 & \frac{1}{b(\varepsilon)} \\ 0 & \frac{1}{b(\varepsilon)} & 0 \end{pmatrix}.$$

Let us introduce the fundamental solution

$$E_\lambda(x) = \frac{1}{4\pi\|x\|} e^{-\mu\|x\|},$$

where $\mu^2 = -\lambda$, $\operatorname{Re}\mu > 0$ and a vector function

$$\bar{E}(\varepsilon) = (E_1(\varepsilon); E_2(\varepsilon); E_3(\varepsilon)), \quad E_k(\varepsilon) \in L_2(\mathbb{R}^3),$$

where

$$E_1(\varepsilon) = E_\lambda * \varphi_{1,\varepsilon}, \quad E_2(\varepsilon) = E_\lambda * \varphi_{2,\varepsilon}, \quad E_3(\varepsilon) = E_\lambda * \psi_\varepsilon.$$

Denote

$$\langle u, v \rangle = \int u(x)v(x)dx,$$

$$\bar{F}(\varepsilon) = (f_1(\varepsilon); f_2(\varepsilon); f_3(\varepsilon)), \quad f_k(\varepsilon) \in \mathbb{C},$$

where

$$f_1(\varepsilon) = \langle \varphi_{1,\varepsilon}, E_\lambda * f \rangle, \quad f_2(\varepsilon) = \langle \varphi_{2,\varepsilon}, E_\lambda * f \rangle, \quad f_3(\varepsilon) = \langle \psi_\varepsilon, E_\lambda * f \rangle.$$

THEOREM 1. *Let $\varepsilon > 0$ and suppose that $a(\varepsilon) \in \mathbb{R}$, $a(\varepsilon) \neq 0$, $b(\varepsilon) \in \mathbb{R}$, $b(\varepsilon) \neq 0$. The resolvent $R(\lambda, \varepsilon)$ is determined for $\operatorname{Re} \lambda \neq 0$ and can be given by the expression*

$$(9) \quad R(\lambda, \varepsilon)f = f * E_\lambda - \left\langle [A^{-1}(\varepsilon) + B(\varepsilon, \lambda)]^{-1} \bar{F}(\varepsilon), \bar{E}(\varepsilon) \right\rangle,$$

where

$$B(\varepsilon, \lambda) = \begin{pmatrix} \langle \varphi_{1,\varepsilon}; E_1(\varepsilon) \rangle & \langle \varphi_{1,\varepsilon}; E_2(\varepsilon) \rangle & \langle \varphi_{1,\varepsilon}; E_3(\varepsilon) \rangle \\ \langle \varphi_{2,\varepsilon}; E_1(\varepsilon) \rangle & \langle \varphi_{2,\varepsilon}; E_2(\varepsilon) \rangle & \langle \varphi_{2,\varepsilon}; E_3(\varepsilon) \rangle \\ \langle \psi_\varepsilon; E_1(\varepsilon) \rangle & \langle \psi_\varepsilon; E_2(\varepsilon) \rangle & \langle \psi_\varepsilon; E_3(\varepsilon) \rangle \end{pmatrix}.$$

If $a(\varepsilon) \equiv 0$, $b(\varepsilon) \in \mathbb{R}$, $b(\varepsilon) \neq 0$, then

$$(10) \quad R(\lambda, \varepsilon)f = f * E_\lambda - \left\langle [A^{-1}(\varepsilon) + B(\varepsilon, \lambda)]^{-1} \bar{F}(\varepsilon), \bar{E}(\varepsilon) \right\rangle,$$

where

$$A(\varepsilon) = \begin{pmatrix} 0 & b(\varepsilon) \\ b(\varepsilon) & 0 \end{pmatrix}, \quad B(\varepsilon, \lambda) = \begin{pmatrix} \langle \varphi_{2,\varepsilon}; E_2(\varepsilon) \rangle & \langle \varphi_{2,\varepsilon}; E_3(\varepsilon) \rangle \\ \langle \psi_\varepsilon; E_2(\varepsilon) \rangle & \langle \psi_\varepsilon; E_3(\varepsilon) \rangle \end{pmatrix},$$

$$\bar{F}(\varepsilon) = (f_2(\varepsilon); f_3(\varepsilon)), \quad \bar{E}(\varepsilon) = (E_2(\varepsilon); E_3(\varepsilon)).$$

3. Resolvent convergence of approximations

According to (9), the behavior of the resolvent $R(\lambda, \varepsilon)$ depends on the behavior of the matrices A^{-1} , $B(\varepsilon, \lambda)$, and on the behavior of the vectors $\bar{E}(\varepsilon)$ and $\bar{F}(\varepsilon)$.

Let us denote

$$D(\varepsilon, \lambda) = A^{-1}(\varepsilon) + B(\varepsilon, \lambda)$$

and let

$$D^{-1}(\varepsilon, \lambda) = (d_{ij}).$$

Then

$$\begin{aligned} \left\langle [A^{-1}(\varepsilon) + B(\varepsilon, \lambda)]^{-1} \bar{F}(\varepsilon), \bar{E}(\varepsilon) \right\rangle &= \langle D^{-1}(\varepsilon, \lambda) \bar{F}(\varepsilon), \bar{E}(\varepsilon) \rangle \\ &= [d_{11}(\varepsilon)f_1(\varepsilon) + d_{12}(\varepsilon)f_2(\varepsilon) + d_{13}(\varepsilon)f_3(\varepsilon)]E_1(\varepsilon) \\ &\quad + [d_{21}(\varepsilon)f_1(\varepsilon) + d_{22}(\varepsilon)f_2(\varepsilon) + d_{23}(\varepsilon)f_3(\varepsilon)]E_2(\varepsilon) \\ &\quad + [d_{31}(\varepsilon)f_1(\varepsilon) + d_{32}(\varepsilon)f_2(\varepsilon) + d_{33}(\varepsilon)f_3(\varepsilon)]E_3(\varepsilon). \end{aligned}$$

Let us consider the behavior of the vectors $\bar{E}(\varepsilon)$ and $\bar{F}(\varepsilon)$ as $\varepsilon \rightarrow 0$.

It follows from the properties of functions $\varphi_{i,\varepsilon}$ that the limits

$$\lim_{\varepsilon \rightarrow 0} E_1(\varepsilon) = \lim_{\varepsilon \rightarrow 0} E_2(\varepsilon) = E_\lambda$$

exist in the space $L_2(\mathbb{R}^3)$, and for any $f \in L_2(\mathbb{R}^3)$ there exist the limits

$$\lim_{\varepsilon \rightarrow 0} f_1(\varepsilon) = \lim_{\varepsilon \rightarrow 0} f_2(\varepsilon) = (f * E_\lambda)(0).$$

In the distribution space $D'(\mathbb{R}^3)$ we have

$$\Psi_\varepsilon \rightarrow \frac{\partial \delta}{\partial x_1}, \quad E_3(\varepsilon) = E_\lambda * \Psi_\varepsilon \rightarrow \frac{\partial E_\lambda}{\partial x_1}.$$

But in the space $L_2(\mathbb{R}^3)$

$$\|\Psi_\varepsilon\| = \sqrt{\int \left(\frac{1}{\varepsilon^2} \Psi\left(\frac{x}{\varepsilon}\right)\right)^2 dx} = \left(\int |\Psi(t)|^2 dt\right)^{\frac{1}{2}} \frac{1}{\varepsilon\sqrt{\varepsilon}}$$

the norm $\|E_3(\varepsilon)\|$ is increasing as $1/\varepsilon\sqrt{\varepsilon}$ and $E_3(\varepsilon)$ do not have a limit in the space $L_2(\mathbb{R}^3)$.

Similarly, it can be that for $f \in L_2(\mathbb{R}^3)$ the value $f_3(\varepsilon)$ increases and does not have a limit, but always $f_3(\varepsilon) = o(1/\varepsilon\sqrt{\varepsilon})$.

Therefore the finite limit of the resolvent (9) exists only if the elements $d_{13}(\varepsilon)$, $d_{23}(\varepsilon)$, $d_{33}(\varepsilon)$, as well as $(d_{31}(\varepsilon)f_1(\varepsilon) + d_{32}(\varepsilon)f_2(\varepsilon) + d_{33}(\varepsilon)f_3(\varepsilon))$ are small, namely

$$(11) \quad d_{13}(\varepsilon) \sim o(\varepsilon^{\frac{3}{2}}); \quad d_{31}(\varepsilon)f_1(\varepsilon) + d_{32}(\varepsilon)f_2(\varepsilon) + d_{33}(\varepsilon)f_3(\varepsilon) \sim o(\varepsilon^{\frac{3}{2}}).$$

It follows that it is not enough to find the limit of the family of inverse matrices $D^{-1}(\varepsilon, \lambda)$, but it is also necessary to check subsequent terms (not only the main term) of the expansion of the matrix $D^{-1}(\varepsilon, \lambda)$, on which the behavior of expressions (11) depends.

Let us consider the behavior of d_{ij} as $\varepsilon \rightarrow 0$.

LEMMA 1. *The functions*

$$b_{lj}(\varepsilon, \lambda) = \langle \varphi_{l,\varepsilon}, E_\lambda * \varphi_{j,\varepsilon} \rangle$$

are analytic functions of two variables ε, μ ($\lambda \in \mathbb{C} \setminus \mathbb{R}_0^+$, $\lambda = -\mu^2$, where $\operatorname{Re} \mu > 0$, $\mu = (-\lambda)^{\frac{1}{2}}$, a continuous branch of the function $(-\lambda)^{\frac{1}{2}}$), and admit an expansion

$$b_{lj}(\varepsilon, \lambda) \equiv b_{lj}(\varepsilon, -\mu^2) = \frac{1}{\varepsilon} \sum_{k=0}^{\infty} (-1)^k (\varepsilon \mu)^k M_{lj}^{(k-1)} = \sum_{k=-1}^{\infty} \varepsilon^k (-\mu)^{k+1} M_{lj}^{(k)},$$

where

$$M_{lj}^{(k)} = \frac{1}{4\pi(k+1)!} \int (\varphi_l * \varphi_j) |x|^k dx.$$

In particular, according to the properties of functions $\varphi_i(x)$,

$$M_{11}^{(0)} = M_{12}^{(0)} = M_{21}^{(0)} = M_{22}^{(0)} = \frac{1}{4\pi},$$

$$M_{13}^{(0)} = M_{23}^{(0)} = M_{33}^{(0)} = M_{31}^{(0)} = M_{32}^{(0)} = 0.$$

THEOREM 2. *Let*

$$a(\varepsilon) = \varepsilon a_1 + \varepsilon^2 a_2 + \varepsilon^3 a_3 + \dots, \quad b(\varepsilon) = \varepsilon^p b_p + \varepsilon^{p+1} b_{p+1} + \dots,$$

where $a_1 \neq 0$, $b_p \neq 0$.

I. If $a_1 \neq -1/M_{11}^{(-1)}$, then the resolvents (9) converge to the resolvent of the Laplace operator.

II. Suppose that the resonance condition $a_1 = -1/M_{11}^{(-1)}$ holds.

- If $p \geq 4$, the resolvents (9) converge to the resolvent of the operator A^α , where $\alpha = -a_2(M_{11}^{(-1)})^2$.
- If $p = 3$ the resolvents (9) converge to the resolvent of the operator A^α

$$R_\alpha(\mu)f = f * E_\lambda - \frac{4\pi}{4\pi\alpha - \mu} [(f * E_\lambda(0))] E_\lambda$$

$$\text{where } \alpha = -a_2(M_{11}^{(-1)})^2 - b_3(M_{12}^{(-1)}M_{32}^{(-2)} + M_{21}^{(-1)}M_{13}^{(-2)}).$$

- If $p \leq 2$ the limit of the family of resolvents (9) does not exist.

Proof. The matrix $D(\varepsilon, \lambda)$ can be written in the form

$$\begin{pmatrix} \frac{1}{a(\varepsilon)} + \frac{1}{\varepsilon}M_{11}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon}M_{12}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon^2}M_{13}^{(-1)} + \dots \\ \frac{1}{\varepsilon}M_{21}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon}M_{22}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{b(\varepsilon)} + \frac{1}{\varepsilon^2}M_{23}^{(-1)} + \dots \\ \frac{1}{\varepsilon^2}M_{31}^{(-1)} + \dots & \frac{1}{b(\varepsilon)} + \frac{1}{\varepsilon^2}M_{32}^{(-1)} + \dots & \frac{1}{\varepsilon^3}M_{33}^{(-1)} + \dots \end{pmatrix}.$$

Let us consider the most interesting case $p = 3$, when

$$\frac{1}{b(\varepsilon)} = \frac{1}{\varepsilon^3}b_{-3} + \frac{1}{\varepsilon^2}b_{-2} + \dots,$$

$$\frac{1}{a(\varepsilon)} = \frac{1}{\varepsilon}a_{-1} + \tilde{a}_0 + \dots,$$

where $b_{-3} = \frac{1}{b_3}$, $a_{-1} = \frac{1}{a_1}$. In this case the expansion of the matrix $D(\varepsilon, \lambda)$ is

$$\begin{pmatrix} \frac{1}{\varepsilon}(M_{11}^{(-1)} + a_{-1}) - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon}M_{12}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon^2}M_{13}^{(-1)} + \dots \\ \frac{1}{\varepsilon}M_{21}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon}M_{22}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon^3}b_{-3} + \frac{1}{\varepsilon^2}(M_{23}^{(-1)} + b_{-2}) + \dots \\ \frac{1}{\varepsilon^2}M_{31}^{(-1)} + \dots & \frac{1}{\varepsilon^3}b_{-3} + \frac{1}{\varepsilon^2}(M_{32}^{(-1)} + b_{-2}) + \dots & \frac{1}{\varepsilon^3}M_{33}^{(-1)} + \dots \end{pmatrix}.$$

For the inverse matrix, we have expression

$$D^{-1}(\varepsilon, \lambda) = \frac{1}{\det D(\varepsilon, \lambda)} D^\#(\varepsilon, \lambda),$$

where

$$\begin{aligned} \det D(\varepsilon, \lambda) = & -\frac{1}{\varepsilon^7} (b_{-3})^2 (M_{11}^{(-1)} + a_{-1}) \\ & \frac{1}{\varepsilon^6} \left[\left(M_{12}^{(-1)} M_{31}^{(-1)} + M_{21}^{(-1)} M_{13}^{(-1)} - (M_{11}^{(-1)} + a_{-1})(M_{23}^{(-1)} + b_{-2}) \right) b_{-3} \right. \\ & \left. - \left(-\frac{\mu}{4\pi} + \tilde{a}_0 \right) (b_{-3})^2 - (M_{11}^{(-1)} + a_{-1})(M_{23}^{(-1)} + b_{-2}) b_{-3} \right] + \dots, \end{aligned}$$

$$D^\#(\varepsilon, \lambda) = \begin{pmatrix} d_{11}^\# & d_{12}^\# & d_{13}^\# \\ d_{21}^\# & d_{22}^\# & d_{23}^\# \\ d_{31}^\# & d_{32}^\# & d_{33}^\# \end{pmatrix},$$

$$d_{11}^\# = -\frac{1}{\varepsilon^6} (b_{-3})^2 + \dots,$$

$$d_{12}^\# = -\frac{1}{\varepsilon^5} b_{-3} M_{13}^{(-1)} + \dots,$$

$$d_{13}^\# = \frac{1}{\varepsilon^4} M_{12}^{(-1)} b_{-3} + \dots,$$

$$d_{21}^\# = -\frac{1}{\varepsilon^5} b_{-3} M_{31}^{(-1)} + \dots,$$

$$d_{22}^\# = \frac{1}{\varepsilon^4} \left(M_{33}^{(-1)} (M_{11}^{(-1)} + a_{-1}) - M_{31}^{(-1)} M_{13}^{(-1)} \right) + \dots$$

$$d_{23}^\# = -\frac{1}{\varepsilon^4} b_{-3} (M_{11}^{(-1)} + a_{-1}) + \dots$$

$$d_{31}^\# = \frac{1}{\varepsilon^4} M_{21}^{(-1)} b_{-3} + \dots$$

$$d_{32}^\# = -\frac{1}{\varepsilon^4} b_{-3} (M_{11}^{(-1)} + a_{-1}) + \dots,$$

$$d_{33}^\# = \frac{1}{\varepsilon^2} \left(M_{22}^{(-1)} (M_{11}^{(-1)} + a_{-1}) - M_{12}^{(-1)} M_{21}^{(-1)} \right) + \dots.$$

If

$$(M_{11}^{(-1)} + a_{-1})(b_{-3})^2 \neq 0,$$

then

$$D^{-1}(\varepsilon, \lambda) \rightarrow 0, \quad d_{13} = O(\varepsilon^3), \quad d_{33} = O(\varepsilon^5),$$

and the condition (11) fulfilled. It follows that the resolvents (9) converge to the resolvent of the Laplace operator.

The limit of the matrix $D^{-1}(\varepsilon, \lambda)$ can be non-zero, if *the resonance condition*

$$(12) \quad (M_{11}^{(-1)} + a_{-1})(b_{-3})^2 = 0,$$

is fulfilled. This condition is equivalent to

$$a_1 = -1/M_{11}^{(-1)}$$

and the resonance is possible only if the coefficient $a(\varepsilon)$ admits an expansion

$$a(\varepsilon) = \varepsilon a_1 + \varepsilon^2 a_2 + o(\varepsilon^2),$$

where $a_1 = -1/M_{11}^{(-1)}$.

Under this condition

$$\det D(\varepsilon, \lambda) = \frac{1}{\varepsilon^6} \left[\left(M_{12}^{(-1)} M_{31}^{(-1)} + M_{21}^{(-1)} M_{13}^{(-1)} \right) b_{-3} - \left(-\frac{\mu}{4\pi} + \tilde{a}_0 \right) (b_{-3})^2 \right] + \dots$$

and $D^{-1}(\varepsilon, \lambda)$ is a matrix of the form

$$(13) \quad \begin{pmatrix} \frac{-(b_{-3})^2}{(M_{12}^{(-1)} M_{31}^{(-1)} + M_{21}^{(-1)} M_{13}^{(-1)}) b_{-3} - \left(-\frac{\mu}{4\pi} + \tilde{a}_0 \right) (b_{-3})^2} + \varepsilon(\dots) & \varepsilon(\dots) & \varepsilon^2(\dots) \\ \varepsilon(\dots) & \varepsilon^2(\dots) & \varepsilon^2(\dots) \\ \varepsilon^2(\dots) & \varepsilon^2(\dots) & \varepsilon^4(\dots) \end{pmatrix}.$$

So

$$\lim_{\varepsilon \rightarrow 0} D^{-1}(\varepsilon, \lambda) = \begin{pmatrix} \frac{4\pi}{4\pi\alpha - \mu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

where

$$\alpha = -a_2 \left(M_{11}^{(-1)} \right)^2 - b_3 \left(M_{12}^{(-1)} M_{32}^{(-1)} + M_{21}^{(-1)} M_{13}^{(-1)} \right).$$

It follows from (13) that the condition (11) are fulfilled and the limit of the family of resolvents (9) is the resolvent of the operator A^α :

$$R_\alpha(\mu)f = f * E_\lambda - \frac{4\pi}{4\pi\alpha - \mu} [(f * E_\lambda(0))] E_\lambda.$$

If $p \neq 3$ the calculations are similar. \square

We emphasize that a new effect arises here: it can be that the finite limit of the resolvents (9) does not exist. Let us demonstrate this effect in detail for the case $a(\varepsilon) = 0$.

THEOREM 3. *Let $a(\varepsilon) = 0$ and $b(\varepsilon) = \varepsilon^p b_p + \varepsilon^{p+1} b_{p+1} + \dots$, where $b_p \neq 0$.*

- *If $p \geq 3$, then the limit of the family (4) in resolvent sense is the Laplace operator.*
- *If $p = 2$ and*

$$M_{33}^{(-3)} M_{22}^{(-1)} - (M_{23}^{(-2)} + R_2) (M_{32}^{(-2)} + R_2) \neq 0,$$

then the limit of the family (4) in resolvent sense is the Laplace operator.

- *If $p = 2$ and resonance condition*

$$M_{33}^{(-3)} M_{22}^{(-1)} - (M_{23}^{(-2)} + R_2) (M_{32}^{(-2)} + R_2) = 0$$

is fulfilled, then limit of the family of resolvents (6) does not exist.

Proof. If $a(\varepsilon) = 0$, then the matrix $D(\varepsilon, \lambda)$ is

$$D(\varepsilon, \lambda) = \begin{pmatrix} \frac{1}{\varepsilon} M_{22}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{b(\varepsilon)} + \frac{1}{\varepsilon^2} M_{23}^{(-1)} + \dots \\ \frac{1}{b(\varepsilon)} + \frac{1}{\varepsilon^2} M_{32}^{(-1)} + \dots & \frac{1}{\varepsilon^3} M_{33}^{(-1)} + \dots \end{pmatrix}.$$

Remark that

$$\frac{1}{b(\varepsilon)} = \frac{1}{\varepsilon^p} R_p + \frac{1}{\varepsilon^{p-1}} R_{p-1} + \dots,$$

where $R_p = 1/b_p$.

If $p > 3$, then the main term in the expansion of the matrix $D(\varepsilon, \lambda)$ is the invertible matrix

$$\frac{1}{\varepsilon^p} \begin{pmatrix} 0 & R_p \\ R_p & 0 \end{pmatrix}$$

and $D^{-1}(\varepsilon, \lambda) \rightarrow 0$ as ε^p .

If $p = 3$, then the expansion of the matrix $D(\varepsilon, \lambda)$ begins from the invertible matrix

$$\frac{1}{\varepsilon^3} \begin{pmatrix} 0 & R_p \\ R_p & M_{33}^{(-1)} \end{pmatrix}$$

and thus $D^{-1}(\varepsilon, \lambda) \rightarrow 0$ as ε^3 when $\varepsilon \rightarrow 0$.

This means that if $p \geq 3$, then the conditions (11) are fulfilled and the limit of the family (7) in the resolvent sense is the Laplace operator.

If $p = 2$, then the matrix $D(\varepsilon, \lambda)$ can be written in the form

$$\begin{pmatrix} \frac{1}{\varepsilon} M_{22}^{(-1)} - \frac{\mu}{4\pi} + \dots & \frac{1}{\varepsilon^2} (M_{23}^{(-1)} + R_2) + \frac{1}{\varepsilon} (M_{23}^{(-1)} + R_1) + \dots \\ \frac{1}{\varepsilon^2} (M_{32}^{(-1)} + R_2) + \frac{1}{\varepsilon} R_1 + \dots & \frac{1}{\varepsilon^3} M_{33}^{(-1)} + \dots \end{pmatrix}.$$

If

$$M_{33}^{(-1)}M_{22}^{(-1)} - (M_{23}^{(-1)} + R_2)(M_{32}^{(-1)} + R_2) \neq 0,$$

then $D^{-1}(\varepsilon, \lambda) \rightarrow 0$ when $\varepsilon \rightarrow 0$ as ε^3 and the limit of the family (4) in resolvent sense is the Laplace operator.

Set

$$\begin{aligned} d_3 = M_{22}^{(-1)}M_{33}^{(-1)} - \frac{\mu}{4\pi}M_{33}^{(-1)} - (M_{23}^{(-1)} + R_2)(M_{32}^{(-1)} + R_1) \\ - (M_{23}^{(-1)} + R_1)(M_{32}^{(-1)} + R_2). \end{aligned}$$

If the *resonance condition*

$$M_{33}^{(-3)}M_{22}^{(-1)} - (M_{23}^{(-2)} + R_2)(M_{32}^{(-2)} + R_2) = 0$$

is fulfilled and $d_3 \neq 0$, the matrix $D^{-1}(\varepsilon, \lambda)$ can be written in the form

$$\frac{1}{d_3} \begin{pmatrix} M_{33}^{(-1)} + \dots & -\varepsilon(M_{32}^{(-1)} + R_2) - \varepsilon^2 R_1 + \dots \\ -\varepsilon(M_{23}^{(-1)} + R_2) - \varepsilon^2 R_1 + \dots & \varepsilon^2 M_{22}^{(-1)} - \varepsilon^3 \frac{\mu}{4\pi} + \dots \end{pmatrix}$$

and

$$D^{-1}(\varepsilon, \lambda) \rightarrow \begin{pmatrix} \frac{M_{33}^{(-1)}}{d_3} & 0 \\ 0 & 0 \end{pmatrix}.$$

But in this case conditions, similar to the conditions (11), are not fulfilled. In particular the expression from (11) includes the term of the form

$$C\varepsilon^2 f_3(\varepsilon) E_3(\varepsilon),$$

which for some $f \in L_2(\mathbb{R}^3)$ can satisfy

$$\|\varepsilon^2 f_3(\varepsilon) E_3(\varepsilon)\|_{L_2} \rightarrow +\infty.$$

So the finite limit of the family of resolvents (6) does not exist. \square

Acknowledgments. The authors thank the reviewer for several helpful remarks. The work of the first author was partially supported by the Grant of the National Science Center (Poland) No. DEC-2011/01/B/ST1/03838.

References

- [1] ALBEVERIO, S., GESZTESY, F., HOEGH-KROHN, R., AND HOLDEN, H. *Solvable Models in Quantum Mechanics*. Springer-Verlag, New York, 1988.
- [2] ANTONEVICH, A. B. The Schrödinger operator with δ -potential: finite-dimensional perturbations approach. *Nonlinear Phenomena in Complex Systems* 2, 4 (1999), 61–71.

- [3] ANTONEVICH, A. B., AND ROMANCHUK, T. A. *Approximation of Operators with Delta-Shaped Coefficients*. Actual Problems of Mathematics. Grodno, 2008.
- [4] BEREZIN, F. A., AND FADDEEV, L. D. A remark on Schrödinger equation with a singular potential. *Soviet Math. Dokl.* 2 (1961), 372–375.
- [5] GOLOVATYI, J. D., AND MAN'KO, S. S. Exact models for Schrödinger operator with δ' -shaped potentials. *Ukrainski matematicheski vestnik* 6, 2 (2009), 179–212.
- [6] ILIN, D. V. *On Stationary Schrödinger Operator with δ -Potential: Finite-dimensional Perturbations Approach*. Minsk, Belarussian University, 2000. Dissertation.
- [7] NIJNIK, L. P. The Schrödinger operator with δ' -interaction. *Function. analysis and appl.* 37, 1 (2003), 85–88.
- [8] NIJNIK, L. P. One-dimensional Schrödinger operator with point interactions in the Sobolev spaces. *Function. analysis and appl.* 40, 2 (2006), 74–79.

AMS Subject classification: 46F99, 35P99, 81Q05

Anatolij ANTONEVICH

Department of Mathematics and Mechanics, Belarussian State University
Niezavisimosti av. 4, Minsk-220030, BELARUS

and

University of Bialystok, POLAND
e-mail: antonevich@bsu.by

Tatiana ROMANCHUK

Department of Mathematics, University BSUIR
Brovki 4, Minsk-220050, BELARUS
e-mail: tanromanchuk@mail.ru

Lavoro pervenuto in redazione il 20.02.2012