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SCHRODINGER OPERATOR OF THE FORM —Au+ adu+ bg—flu

Abstract. The paper is devoted to the study of the formal differentigiression of the form
Lu= —Au+adu+ bﬁu
aX]_

with generalized coefficients. Approximations of the silagyart by means of a family of
finite range operators are constructed and resolvent apenee of the approximations is
investigated.

1. Introduction

The stationary Schrédinger operator with singular posngiymbolically written as
(1) —Au+adu,

whered is the Diracd-function, anda is the so-called coupling constant, models scat-
tering on a particle located at the origin of coordinates.

The mathematical difficulties that appear during the ingasion of expression
(1) are related to the fact that the prodéctu in (1) is not defined in the classical
theory of distributions. Therefore, giving sense to theregpion (1) as a self-adjoint
operator in the spade?(R3) (which is usually necessary in quantum theory) requires
overcoming some obstacles.

A mathematical interpretation of the expression (1) wasgiby F. Berezin and
L. Faddeev in [4]. It looks as follows. L&t be the restriction of the Laplace operator
—A on the domain

D(L) = {ue H3(R®), u(0) =0},

whereH?(R?) is the Sobolev space. Thénis a symmetric, but non-self-adjoint op-
erator onL?(R3). All self-adjoint extensions (¥ of the operatoi. can be consid-
ered as possible perturbations of the Laplace operator tanpals, supported at zero.
These self-adjoint extensioh&) are naturally parameterized by a single real parame-
tera € (—o,+o0], the valuen = + corresponds to the Laplace operator, tie= +o

if the perturbation does not influence the operator.

The expression (1) by itself does not contain the infornmatie to what self-
adjoint extensiom.(*) corresponds to the concrete situation. In applicationeitpees-
sion (1) arises as a formal limit (@as— 0) of some family of operatolls.. For example
let

(2) Leu= —Au+gg(X)u,
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where the potentials(x) is supported at-neighborhood of zero. Under the conditions

a(e) = [e(xdx 20,

[ 1 ldx < Ca(e)

we have
1
@q‘c’(x) )
and the family of potentialge can be symbolically written aa(€)d. Therefore the
family (2) can be considered as an approximation of the fbexaression (1).

The problem s to bring to light what self-adjoint extenstmmresponds to given
approximatiorLe. As a rule, in usual sense the limit bf does not exist and the resol-
vent convergence is considered here. Recall that one satfs:th> L(%) in resolvent
senseif

(3) lim(Le — A~ = (L@ — A1)~

e—0

Different approximations of (1) were investigated in marapers (see [1, 2, 6] and
references in [1]).

The main result looks as follows: #(e) = ag + aje + axe? + - - - , the limit (3)
exists and defines an operatéf); this limit is a non-trivial extensiono( # «) only in
the so-calledesonance casewhena(e) = aje+ are? + - -- and the numbeay belong
to a discrete seh from R, where/\ depends on the given approximation.

In more general cases the family of potenti@l€an be symbolically written as

() & =05+ bk<e>§—xi,

and then the family.¢ is an approximation of the formal expression

(5) Lu= —Au+a6u+gbk§76u
k

Expressions of the form (5) were investigated early in the-dimensional case
[5, 8, 7].

In the present paper we consider some approximations ofn(B)(R*) and
calculate the limits (3). A new effect is discoveretiong resonance casasise, when
the limit (3) does not exist and the family cannot be interpreted as an operator in
Lo(R3).
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2. Approximation using a family of finite rank operators

Let us consider the most simple approximation of the formptession

(6) Lu= —Au+a6u+b@u.
aXl

Letd1, 92 € D(R?) such thathy(x),d2(x) € R and [ ¢i(x)dx=1,i = 1,2. The family
of smooth functions

bt = 2o ()

gives an approximation @fas an element from the space of distributi@®&r?). The
family of linear functionals

Dice(t) = [ duely)uly)dy
gives an approximation @ as a linear functional, since for smoath
®pe(U)d1e — u(0)d=du,

the family of rank one operators
cbl,s(u)d)l.s

is an approximation of the operator of multiplication &ylet

_ 0b2e(x) 1092 /X
W)= e = G (5)

In order to have below a uniform expression, we will use thatan

_ 992(x) I
¢3_6—Xla ¢3,€_€3¢3(€)'
Then 1
ws = E¢37s~

The family of smooth functiongs gives an approximation afd/dx; as an element
from the space of distributior®’ (R?), the family of linear functionals

We(u) = [ wey)uly)dy

gives an approximation @d/0dx; as a linear functional.
For a smooth function, by definition
0% ou

_ 00 _ Nl ' /
a—xlu_ —a—Xl(O)6+ u(O)a—Xl = (8';u)0+ (5;u)d
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and the family of rank two operato¥g: (U)o (X) + P2 (U)Pe(X) is an approximation
of the operator of multiplication b§d/dx;.

Therefore the family of operators
(7) Le(u) = —Au+Teu,

where

Teu—a(e)re(x) [ U(y)912(y)dy
®
+016) 8220 [ W90 By ) [ ub2:) ]

is an approximation of the formal expression (6).

The problemis to find the limit of these approximations ingkase of resolvent
convergence.

For fixede > 0 the resolvenR(A, €) = (L — Al)~* can be constructed in explicit
form by using results from [3].

Let
a€) O 0
Alg) = ( 0 0 b(g) )

be a matrix, generated by the coefficieats) andb(g). The inverse matrix is
1

71 ag O
Ag=| 0 0 &
o L
B(e)

Let us introduce the fundamental solution

1

E(x) — — = gl

wherep? = —\, Rep > 0 and a vector function

E(e) = (Ex(e);E2(e);Ea(€)),  Ex(e) € L2(R®),

where
E1(g) = Ex*b1e, Ea(g) =Ex*b2e, E3(€) = Ey* Y.
Denote
(u,v) = /u(x)v(x)dx,
F(e) = (fu(e); f2(e); fa(e)), fu(e) €C,
where

fl(E) = <¢1.5,E)\ * f>7 fz(i) = <¢2,E,E)\ * f>, f3(8) = <l|J5,E)\ * f>
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THEOREM1. Lete > 0and suppose thata) € R, a(€) #0, b(g) € R, b(g) £0.
The resolvent R\, €) is determined foReA # 0 and can be given by the expression

-1

9) ROAE)f = f+Ey — < [AY(e) +B(e,\)] TF(e), E_(s)> ,

where

(026:E1(€))  (D26:E2(€)) (D26 Ea(€))
(We;E1(e))  (We;Ea(g))  (We;Ea(g))

Ifa(e) =0, b(e) € R, b(g) # 0, then

(<¢1,5;E1(8)> (b1 E2(€)) <¢1,s;|53(3)>>
(&)

1 = —

(10) ROAE)f = f+Ey — <[A—1(s) +B(e,\)] TF(e), E(s)> ,

where

(0 b ( (02eEa(e)) (026Es(e))
A@‘(b(e) 0 ) B“’”‘( (W Eale))  (bnEs(e)) )

F(8) = (f2(e); fa(e)),  E(e) = (E2(e); Es(e)).

3. Resolvent convergence of approximations

According to (9), the behavior of the resolvék({\, &) depends on the behavior of the
matricesA1, B(g,\), and on the behavior of the vectdEse) andF (&).

Let us denote
D(g,A) = A 1(e) + B(g,\)

and let
D (g, \) = (djj).

Then PP o
([AY(e) +B(N)] Fe).E(e)) = (D e NF(e). E(e))

) (
= [dha(g) fa(€) + di2(€) fa(€) + )
(

€

d3(e) f3(€)] Ea(e)
+[d21(€) f1(€) + d22(€) f2(€) + d23(e) fa(€)] Ex(e)
+[dz1(€) f1.(€) + da2(€) f2(€) + das(€) f3(€)] Es(€).

Let us consider the behavior of the vect&i() andF (¢) ase — O.

It follows from the properties of functiors ¢ that the limits

lim Eq(g) = liL‘%Ez(s) =E,

e—0

exist in the spack,(R3), and for anyf € L(R3) there exist the limits

lim fi(e) = lm} fa(g) = (f xEy)(0).

e—0
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In the distribution spacB’(R?) we have

But in the spacé(R?)

el = \// <éw(§)>2dx: </|lp(t)|2dt)% s

the norm||Ez(¢)|| is increasing as /e\/e andEz(€) do not have a limit in the space
Lo(R3).

Similarly, it can be that forf € Lo(R3) the valuefs(¢) increases and does not
have a limit, but alwayds(g) = o(1/e/€).

Therefore the finite limit of the resolvent (9) exists onlyhe elementsl;3(€),
d23(€), dz3(€), as well agdz1(€) f1(€) + da2(€) f2(€) 4 daz(€) f3(€)) are small, namely

(11)  daa(e) ~0(e?); dai(e)fa() + daale) fa(€) + daa(e) fa(g) ~ o(e?).

It follows that it is not enough to find the limit of the familyf anverse matrices
~L(g,N\), but it is also necessary to check subsequent terms (notluaigain term)
of the expansion of the matri®1(g,A), on which the behavior of expressions (11)

depends.

Let us consider the behavior dff ase — 0.
LEMMA 1. The functions
bij(e.A) = (d1e. Ex*bje)

are analytic functions of two variables p (A € C\R{, A = —p2, whereRep > 0,
p= (—A)%, a continuous branch of the functitﬁn)\)%), and admit an expansion

bij(e,A) = hij (e, —uz) =

™l
8

( ) (8u kM z E k+1MIJ)’

k=0

where

1
M = gy | (= 00ax

In particular, according to the properties of functioggx),
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THEOREM?Z2. Let
ae) =eay + % +e3ag+..., b(e) =ePbp+eP byt -,

where g # 0, by # 0.

I. Ifa; # —1/M§11), then the resolvents (9) converge to the resolvent of théakap
operator.

Il. Suppose that the resonance conditiqrm—l/MEl> holds.

e If p > 4, the resolvents (9) converge to the resolvent of the operftowhere
a=—ay(M{;")%
e If p=3the resolvents (9) converge to the resolvent of the ope#sttor

41

Ra(W)f =B\~ [(f «EA(0))] Ea

wherea = —ap(Mi;V)* ~ bs(M3; "M, + My M),
e If p < 2the limit of the family of resolvents (9) does not exist.

Proof. The matrixD(g,\) can be written in the form

1 1p (=1 1pg(=1) 1png(=

1pg(=1 1p(-1 1 1 (=
My, — My, — At Ws)‘L?fM)ZS +...
1pp(=1) 1 1pg(=1) 1pp(-1

1 1 1
— = —=b_3+ =b_
b(&) 83 3+82 2+ y
t 1 +do+
ae) € 1+a+t..

whereb_3 = g, a1 = £ In this case the expansion of the matiife, A) is

) —1) -1
e ML+
-1 1) -1
%Mél)—%ﬁ‘--- %Mé )_%4-___ glgb,3+glz(Mé3 b2+ |-
) -1 —)
gleé1>+--- gljvb73+€12(Mé2 )—i-bfz)—i-... gls‘Més)"‘---

For the inverse matrix, we have expression

1

_ #
~ detD(g,\) DY),

D~ 1(g,\)
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where
1 _
detD(eA) = — (b3’ (M +a1)
1 - - - — — _
E[(M(lzl)Méll>+Méll)M(131)—(M§11>+6L1)(M§31>+b2)) b s

(- gt ) (0.~ MY+ )M bl s+

an
di; di, dfs
D*eN)=| d, di, di; |,

# # #
d31 d32 d33

1 -
d?zz —gb_3M§_3l) +...,

1 (1
d’f3:8—4M(12 g+,

1 _
dgl: —§b73Méll> +,

1 -1 -1 ~Dpa(-1
d = = (MY (M5 +an) —My Mg )+

1 _
di, = _gb,gwgﬁ +a1)+...
1
d3#1: gMél )b_3+

1 B
dt, = —gb_g(Mﬁll> taq)+...,

1 -1 -1 —Dpg(-1
= (MG MY ey —MGIME )+

d3s =
33 €2

MY +a1)(b_s)? #0,

then
D 1(g,\) = 0, diz=O0(e®), da3=O(e®),

and the condition (11) fulfilled. It follows that the resohte (9) converge to the resol-
vent of the Laplace operator.
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The limit of the matrixD~1(g,\) can be non-zero, the resonance condition
(12) MY +a 1) (b 3)2=0,
is fulfilled. This condition is equivalent to
a =-1/M{; "
and the resonance is possible only if the coeffic&n} admits an expansion
a(e) = eay +€%ax +0(€?),

wherea; = —1/M§11>.
Under this condition

detD(g,\) = s_lﬁ [(ME”M:@_” + MéI”MEl)) bs— (‘ﬁ + a~°) (b*3)2} te

andD~1(g,\) is a matrix of the form

(13) g(--) e2(---) €2(--)
e2(-) () &)

So

41t 0

4T0—
Iir‘rz)D‘l(e,)\) = 0 0
= 0 O

where )
-1 -1 -1 -1 -1
a=-a (Mil )) —bs (Miz Mz + M M ))-
It follows from (13) that the condition (11) are fulfilled arlde limit of the family of

resolvents (9) is the resolvent of the operaibr

4t

Ru()f = F+Ey — 51— [(F+Er(0))]Ex.

If p# 3 the calculations are similar. O

We emphasize that a new effect arises here: it can be thatrite fmit of
the resolvents (9) does not exist. Let us demonstrate tféstéh detail for the case
a(e)=0.
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THEOREM3. Leta(e) =0and k(e) = ePbp+ePT by 1+ -+, where iy # 0.

e If p> 3, then the limit of the family (4) in resolvent sense is thelhepoperator.

e Ifp=2and
—3), (-1 2 2
MIMe" — (MG? +Re) (MG? +Re) £0,

then the limit of the family (4) in resolvent sense is the hagloperator.

¢ If p=2and resonance condition
—3)p4(~1 -2 -2
Mss M, - (Més )+R2) (Méz )+R2) =0
is fulfilled, then limit of the family of resolvents (6) doex exist.

Proof. If a(g) =0, then the matriD(g,A) is

Ipg(=1) _ u 1 1=
D(E) M2 — gt e TaMas”
R 1 15 p(=1) 1 (=)
B T zMs2 &Mgs™ +
Remark that

whereRp = 1/bp.
If p> 3, then the main term in the expansion of the maix{z,A) is the invert-

ible matrix
100 R
andD~1(g,\) — 0 aseP.
If p= 3, then the expansion of the matie,A) begins from the invertible

matrix
1 0 Rp
&\ Ry Mg"

and thuD~1(g,\) — 0 ase® whene — 0.

This means that ip > 3, then the conditions (11) are fulfilled and the limit of
the family (7) in the resolvent sense is the Laplace operator

If p= 2, then the matriD(g,\) can be written in the form

( IGY -k Eiz(M§31>+Rz)+%(M§31>+R1)+...)
1) :

- -1
3 (MGY+Re) + IR+ Img 4.
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—Dpg(-1 -1 -1
Mg ME" — (MGY +Re) (MGY +Re) £0,
thenD~1(g,\) — 0 whene — 0 ase® and the limit of the family (4) in resolvent sense
is the Laplace operator.
Set

—1)p 4 (-1 Hoo(-1 -1 -1
ds = M5, MY - EMEY - (MG +Re) (MG +Ry)

— (MY +Ry) (M7 +Re)
If the resonance condition
,3)

i — (s +Re) (M ) 0

is fulfilled andds # 0, the matrixD~1(g,\) can be written in the form

1 MY + ... —¢ (Mé;l> +R2) — 2Ry + ...
ds | —¢(M" +Re) —&Ri+ ... My, — e 4 4
and
Mg
DleN | @ O .
0 0

But in this case conditions, similar to the conditions (Et¥ not fulfilled. In particular
the expression from (11) includes the term of the form

Ce?f3(€)Es(e),
which for somef € L»(RR3) can satisfy
[€*f3(e)Ea(e)]|, — +eo.

So the finite limit of the family of resolvents (6) does notsxi O
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