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1 Introduction

The Hopf equation

2

_ % a((;; V=0 (1)
is used as one of models describing the motion of
waves. Not only smooth functions but shock like
wave functions or other generalized singular func-
tions must be considered as some solutions of this
equation because nonsmooth solutions of nonlin-
ear equations are very important from the physical
viewpoint. But these functions are not solutions of
(1) in the classical sense. In order to give a sense
the notion of solution in such situations, a notion of
asymptotic solution is used.

L(u) (x,t) +

Definition 1 [5]. A family of smooth functions
ue(x,t), indexed by a small parameter ¢, is called an
(weak) asymptotic solution of order m of an equa-
tion Lu(x,t) = f(x,t), if

+00

< L(u) - [, >::/ (Lu(e, t) — f (2, )]p(z)dz

=o(e™) for all ¢ € D(R), t € R. (2)

If (2) holds for all m then u.(z,t) is called an asymp-
totic solution of the order infinity.

The important point to note here is the following:
an asymptotic solution is not a function nor a dis-

Hopf equation, generalized solution, asymptotic expansion, shock wave, infinitely narrow

tribution. An interplay between an asymptotic so-
lution u.(z,t) and a distribution can be established
by association’s relation.

Definition 2. An asymptotic solution wu.(z, 1)
is said to admit an associated distribution-valued
function v : R — D'(R), if u.(z,t) — v(t) in
D'(R) VteR.

If an associated distribution exists, it is called a
generalized solution.

An asymptotic solution of the ”shock wave” type
is associated with the distribution of the form ug -+
BH (x—Vt), where H(z) is the Heaviside’s function,
up 18 a constant. This solution models a shock wave
of the height B moving with the speed V on some
fluid of the depth ug. The distribution ug+ BH (2 —
V't) is a generalized solution of equation (1) if the
Hugoniot relation V' = 2uy + B holds.

The case when an associated distribution-valued
function does not exist (or it is trivial) is also pos-
sible.

For example, a self-similar asymptotic solutions
of the ”infinitely narrow soliton” type of the form

Ue(xat) = qs(w — V1

where ug is a constant, ¢ is some smooth function

decreasing at infinity were built in [5,6,8,9,11,12].
Such a solution is associated with a constant ug

and this constant does not save any information

) + uo, (3)
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about properties of the asymptotic solution. More
visual representation may be given by an asymp-
totic expansion of the asymptotic solution in the
space D'(R).

The asymptotic solutions (3) have asymptotic ex-
pansions of the form

e ~ ug + Aed(x — Vi) + ...,

where ¢ is Dirac d-function. The solution (3) models
a narrow wave with the effective amplitude A mov-
ing with the speed V on some fluid of the depth uyg.
That explains the term ”infinitely narrow soliton”
type solution.

Note that in [5,6,8,9,11,12] more complex prob-
lems were considered, in particular some asymptotic
solutions of equations with variable coefficients were
constructed too. But all these asymptotic solutions
have the order 2 or 3. The problem to construct a
self-similar asymptotic solutions of higher order of
the Hopf equation was posed in [5].

In the present paper we will construct some large
set of asymptotic solutions of order m for arbitrary
m.

In view of the fact that equation (1) is nonlin-
ear, the problem considered is closely related with
the problem of multiplication of distributions. An
approach to solve this problem was developed in
[4,7,10] where new objects (new generalized func-
tions or mnemofunctions) were introduced instead
of distributions, that formed an algebra, i.e. they
allow well-defined multiplication, and at the same
time save general properties of distributions. So-
lutions of partial differential equations in spaces of
mnemofunctions were considered in number of pa-
pers (see, for example [1,2,3,4,7,10]).

Usually the constructions of new generalized
functions are based on some approximation of classi-
cal generalized functions by families of smooth func-
tions, indexed by a small parameter . It was found
out, that investigations of the asymptotic solutions
can be interpreted as some constructions in the the-
ory of new generalized functions. But we will use
the classical terminology in this paper only.

2 Hugoniot type conditions of
high orders

Let AC(R) be the set of all absolutely continuous
functions on R. Let F' be the set of real func-
tions f € AC(R), such that there exist limits:
lim f(x) := f(£o0) as © — +oo, and the derivative
/! has at +o00 one of the following representations:

Fl(z) = azz™® + o(|z| @) as z — +oo0,
lay|+]a—| #0, §>0
or
f'(z) = o(|z|™P) as z — Fo0,Vp > 0.
We consider the family

Tz —Vt
€

Ue(xvt) = f(

) (4)

and describe the set Fy,, of all functions f € F' such
that (4) is an asymptotic solution of the order m.
Let us denote by

and .
ME) = [ )

the ordinary moments and the right-hand moments
of a function f.

Theorem 1. The family (4), f € F, is a self-
similar asymptotic solution of the order m of (1) if
and only if the following conditions hold

) oge) = V@) + () =
o(|lz] ™ 1) as = — oo

ii) Mji(g)=0, j=0,1,..,m.

The proof of Theorem 1 uses concrete form of the
Hopf equation slightly and an analogous theorem
true for a more wide class of equations including
equations with a small parameter. For example,
the analogous proposition is true for the Burgers
equation

ou ou 0u B
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and the Korteweg-de Vries (KdV) equation

ou ou O3u

— 4+ bu—+e—==0

ot + e + ox? ’
where a small parameter ¢ models a small viscosity
and a small dispersion of medium. We note that

KdV-equation can be reduced to the form:

ou , u?)

ou 2 Pu _
ot " or Mo

=0 (5)

and this equation may be considered as a singular
perturbation of the Hopf equation.

Thus, analogous theorem is carried for a class
of nonlinear differential equations of order [ with
a small parameter of the following form

_ ou ou 82u alu
LU:E‘FP(&‘,U,%a@w“?ﬁ)_O’ (6)
where 5 !
ou 0%u 0'u
P(&‘,U, %, @7 veey _aflfl)

N Lo .
=> ¢ > as]IG%

j=0  |B|=j+1  i=0

aj 3 are constant coefficients, 8 = (0o, ..., 01), Bj €
N U {0}, Bo < Ny, is a multi-index and

l

18 =" iBi-

1=0

Theorem 2.  The family (4), f*Y € F, is
a self-similar asymptotic solution of the order m of
(6) if and only if the following conditions hold

i

N !
9@) = Vi@+3 3 s ]I @)"

§=0|8|=j+1 i=0

i) Mj(g) =0,
Proof. Substituting (4) in (1) we have

i=0,1,..,m.

<L, >= = [ o= w)/p@dz, (1)

where ¢ € D'(R) and

N l
g@) =~V @)+d Y aps [[FP @)% (8)

j=0|8|=j+1 =0

The problem is to investigate asymptotic behavior
of the integrals (7).

Such research is carried out on the base of the
method of consecutive expansion by A.N. Tikhonov
and A.A. Samarski [13] and as a result we obtain
the following proposition.

Proposition 1. Let the function g is locally inte-
grated on R and it admitts the asymptotic expansion
as © — oo of the following form

g9(z) = arz "+ 0(|x|’(°‘+5)),o¢ €N, > 0.

The family g(x/e) has the following asymptotic ex-
pansion in the space D'(R):

a—2 _1\k
Zote/e) ~ Y 0 )
k=0 '

+ (aP(fEa) + a+P(w+“))6“‘1+
per CU 00 (1 1(0) + 0 — 0 me)
et 1y, (9)

where

Moso)= [ a¥loe)—a z ot [ Fofa)da

+00
-I-/ *g(z) —ay zdzx
1

and
z Fp(z)dx

(P ).9) = |

|z[>1

k=1 4
—k T )
+ e (px) = ) —¢7(0) )da.
lz|<1 ( yZO .7! )
The conditions 7) and 7i) of Theorem 2 are equiv-
alent to the request, that all terms in (9) with ¥
vanish as k < m.
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If the function g has more terms in its asymptotic
expansion or there exists a total asymptotic expan-
sion, then it is possible to obtain the fuller picture
of asymptotic behavior of the integrals (7).

Applying Theorem 1 and Proposition 1 to the
family (4) we find that there exist only two type of
the asymptotic solutions of the Hopf equation.

Theorem 3. Let B := f(+o00) — f(—00) # 0.
The family (4), f € F, is a self-similar asymptotic
solution of the order m of (1) if and only if the
following conditions hold

i) a>m+1;

ii) The Hugoniot condition holds

V —2f(~o0) = B;

ii1) The high orders Hugoniot type conditions hold

(=V + 2(=o0) ) My(signaf) + My((7)) =0,
i=0,1,..,m—1,

where f(z) = f(z) — f(—o00) — BH(z).
The family (4) has the asymptotic expansion in
the space D'(R)

U, = ug + BH(z — Vit) + eMy(f)0(x — Vi) + ...,

this solution is the ”shock wave” type solution with
the depth ug = f(—o0) and the height B .

Theorem 4. Let f(+o0) — f(—o0) = 0.
The family (4), f € F, is a nontrivial self-similar
asymptotic solution of the order m of (1) if and only
if the following conditions hold

i) o >m+1;

i) (=V -+ 27 (=00) ) M) + M, (7)) =0,

j=0,1,...m—1;

The family (4) has the asymptotic expansion in
the space D'(R)

ue = ug +€A0(z — Vi) + ...,

it is an asymptotic solution of the "infinitely narrow
soliton” type with the depth ug = f(—o0) and the
amplitude

A= My(f), where A#0, signA = sign(V—2ug).

Proof of Theorems 3 and 4 follow immediately
from Theorem 1 and Proposition 1. We remark only
that the condition Mj(g) = 0 from Theorem 1 leads
to the Hugoniot condition i7) in Theorem 3 and the
condition My(g) = 0 holds automatically under the
condition of Theorem 4.

Corollary. The relation —V + 2f(—o00) # 0 is
necessary condition for a nontrivial asymptotic so-
lution exists.

3 The construction of
asymptotic solutions of high or-
ders

The condition 4i) of Theorem 4 means that the
moments of the function f with the index k =
0,1,...,m and the same moments of the function
f 2 should be directly proportional. Our problem is
to construct such functions now.

In [5] one asymptotic solution of the ”infinitely
narrow soliton” type was found in the form (4) with

where C; and C5 are some indefinite coefficients.
This function generates an asymptotic solution of
order 2 if Cy and Cy satisfy two conditions (gener-
alized Hugoniot conditions).

The first of the conditions is linear one and may
be satisfied simply. But the second condition is
square and it is necessary to do some calculations
for proof the existence of corresponding coefficients
C4 and Os.

More essential difficulties appear, if we try to con-
struct an asymptotic solution of higher order in a
similar way. Let us find the function f in the form
f=uo+Cifi+Cafo+...+C) fp, where fj, are some
basic functions such that

o0
fr(z) = Zak,jx*j at  infinity.
=1

Then for the indefinite coefficients Cj, we get some
set of square equations from the conditions i) of
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Theorem 4

S

~V+2uq) Z

p p
+Z Z 1(fi fr)CiCr = 0;
e (10)

1=0,1,...m—1.

The condition 7) leads to a set of linear equations

p
Zak,jOj = O;k = 1,
j=1

,m+ 1. (11)

The properties of the system (10) - (11) depend
on the values of the moments of fi, f;fi and the
form of expansions of f; at infinity. Therefore to
sort out the basic functions f; such as to make the
system (10) (11) solvable and to build its solutions
is not a simple problem.

One more complicated problem appears if we find
an asymptotic solution of the order infinity: it is
necessary to construct a function f such that all
moments of f and moments of f? are directly pro-
portional.

Theorem 1 prompts a more simple way to build
almost all desired functions f.

Denote by G, the set of all functions g satisfying
the conditions of Theorem 2, i.e.

Gm = {9 € Li(R)|g(x)
Mj(g) =0, j=0,1,....,m}.

Equality (8) may be considered as a differential
equation with a desired function f and known func-
tion ¢ € G,,. Then our problem is to find some
functions from G, and to solve this equation. The
set G, may be described as follows.

=o(|z|7™ ") as x — oo;

Lemma 1. i) If g € G, then there exists some
function J € CU™(R) such that J(z) — 0 as z —
00, JM € AC(R) and g(z) = J™D(z).

i) If J € C™(R) and J™ € AC(R), J(z)=
S drx at infinity then the function g(z) =
J+D) (1) belong to G

The most simple function from G, is ¢ = 0. In
the case of KAV equation (5) and g = 0 equality (8)
has the form

VI + (A +uf®=o. (12)

Nontrivial solutions of this equation exist, if y #
0. For example the function

f#)=V/2—7+37 cosh_Q(\/gx) (13)

is some solution of (12) for given V and all 7 such
that 7 > 0 and it generates ”infinitely narrow soli-
ton” type solution of KdV-equation with the ampli-

tude
=3V21p /
cosh2
and ug = V/2 — 7. This solutions were constructed

in [9]. It is not only an asymptotic solution of the
order infinity but it is an exact solution. In par-
ticular, this solution is a strong asymptotic solu-
tion. We remind, that a family of smooth functions
ue(x,t), indexed by a small parameter ¢, is called a
strong asymptotic solution of order m of the equa-
tion Lu(x,t) = f(x,t), if

L(us) — f = o(e™).

If u.(z,t) is a family of the form (4) then we have
L(u:)(z,t) = e~'g(z/e) for an operator of the form
(6). Therefore a family (4) is a strong asymptotic
solution of the equation Lu = 0 iff g = 0, i.e. if (4)
is an exact solution.

In the case p = 0 equation (5) turns into the Hopf
equation (1) and (12) changes into —V f'+(f?)" = 0.
However all solutions of the last equation are trivial
(constant).

Therefore nontrivial exact solution of the form
(4) of the Hoph equation does not exist, nontrivial
strong asymptotic solutions of (1) does not exist too
and only weak asymptotic solutions can be consid-
ered.

For the Hopf equation and nontrivial ¢ € G,,
equation (8) is Vf' + (f?)" = g and we can build all
solutions of the last equation. Let us consider the

function
f(z) =V/2+/B2/4 + go(x) (14)

where

B and V are arbitrary constants, B2%/4 >

—mingg(z) # 0.
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Theorem 5. Let g € Gip,g # 0 . Then the
function f defined by (14) satisfies the conditions of
Theorem 4 and generates by (4) a nontrivial asymp-
totic solution of the “infinitely narrow soliton” type
of order m with the depth ug = f(—o0) = V/2+B/2
and the effective amplitude

A= /_;Oo[f(x) — ug)dz.

Proof. The function (14) is a solution of the equa-
tion Vf'4 (f2)' = g and it has desirable properties.

We remark that from g # 0 follows that B > 0
and the condition —V + 2ug # 0 is true because
| -V 4+ 2U0| = B.

Corollary. For all V and ug such that =V +
2uy # 0 there exists a nontrivial asymptotic solu-
tion of the order infinity with the depth ug and the
velocity V.

Proof. Let 1 € S(R) and its the Fourier trans-
form (&) = 0 at a neighborhood of zero. Then
M;(4) =0, j=0,1,..., and ¢(x) = o(|z|™P) for
all p. Let C = —minyy(z), B = 2uy — V. If we set
g = %Q/) then the function f defined by (14) gives
an asymptotic solution of the order infinity.

Functions J described by the proposition 4i) of
Lemma 1 can be produced easily in an explicit form.
Example 1. Let J(z) = 1/(1 + 2?) and

where C = (=1)""!(m — 1)! . Then the function

sin[m arctan z],

sin[m arctan z]

flw)=V/2+ \/32/4 + m

gives an asymptotic solution of order m — 1 of
the ”infinitely narrow soliton” type if C is small
enough.

Example 2. The function J(z) = exp(—2?) sat-
isfies the condition 7i) of Lemma 1 and the function
go(z) = (exp(—x2))(™) generates an asymptotic so-
lution by (14). We remark that this function ¢ is
up to a multiplier is the Hermite function and has
the form

H,(z) = constE,(x) exp(—z?),

where E,(z) is the Hermite polynomial.

Note that some asymptotic solutions with new
properties appear if B2/4 = —mingg. Let us con-
sider a particulary case. Let min go(z) = go(zo) and
go(z) > go(zo) for all x # zg. Then a solution of the
class AC(R) of the equation (1) of the form differ
from (14) exists

f(z) =V/2 + sign(x — x0)y/B2/4 + go(x).

For this function we have f(+o0)— f(—o00) = B # 0
and the formula (4) gives a solution of the ”shock
wave” type by Theorem 3. Note that in this case
the parameter B, introduced here, have the same
sense that the height B in Theorem 3.

If My(g9) = Mi(g) =0 then limgy(z) =0 as x —
oo and My(go) = 0. Tt follows from this that the
function gg has both positive and negative values.
Therefore the set

S(g) ={r € R: go(z) = mingo}

is not empty, closed and bounded. The complement
S(g) =R\ S(g) consists of two half-lines (—oo, ;)
and (z2,4+00) and some finite (can be empty) or
denumerable set of intervals. We can choose an ar-
bitrary the sign in (14) at every component of S(g).
As a result we obtain a large set of exclusive asymp-
totic solutions. Among them there exist solutions of
the ”shock wave” type and solution of the ”infinitely
narrow soliton” type. More accurately the following
theorem holds. Let w(z) be a function on R such
that w(z) = 0 if z € S(g) and w(x) = const = £1
on each component of S(g). Denote by Q(g) the set
of all such functions w and let Q% (g) be a subset of
Q(g) of the form

Q% (g) = {w € Q| w(+oo)w(—00) = +1}.

Theorem 6. Let the function g satisfies the
conditions of Theorem 5, B?/4 = —mingy, w € Q

and
f(@)=V/2+ w(z)\/B2/4 + go(z).  (15)

If we Q™ then f satisfies the conditions of Theo-
rem 8 and gives birth to an asymptotic solution of
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order m of the "shock wave” type with height B. If
w € QF then the function f satisfies the conditions
of Theorem 4 and gives birth to an asymptotic so-
lution of order m of the "infinitely narrow soliton”

type.

4 On the profile of asymptotic
solution

The function f describes a profile of the moving
wave. It is natural to believe that the asymptotic
solution of high order describes the essence of the
matter more exactly and therefore an information
about the properties of such functions, giving an
asymptotic solution of the high order presents an
interest.

Theorem 7. Let f be a function of the form
(14) (it gives an asymptotic solution of order m of
the 7infinitely narrow soliton” type). Then it os-
cillates mear mean value ug at least m times, i.e.
there exist some points yop < x1 < Y1 < g < Yo <

. < &y < ym such that f(z;) = up, (f(ygl) —

Uo) <f(y2z+1) - Uo) <0.

This proposition means that ”infinitely narrow
soliton” of the order m is a collection of waves be-
cause it has some number of nodes.

A similar proposition is true for exclusive solution
described by Theorem 6.

Theorem 8. Let g € G, and f be a function of
the form (14) (it gives an asymptotic solution of the
order m). Denote W (z) = V/2+4 B/2w(z). Then f
oscillates near the function W (x) at least m times,
1.e.there exist points yop < 1 < Y1 < T2 < Yg <

o < Ty < Y, such that f(xj) = W(z;), <(f(y21) —

W(y2z)> <f(y2z+1) - W(y21+1)> <0.

The family (13) is exact solution of (5) and it
is not oscillated function. There is not a contra-
diction with Theorem 7 because this family is an
asymptotic solution of the order 1 only of the Hopf
equation. The equation (5) takes into account an

infinitely small dispersion. The solutions are more
smooth by this dispersion.

5 On interaction of ”infinitely
narrow soliton” type solutions

Now let us consider a problem of interaction. Let
we have two asymptotic solutions of the ”infinitely
narrow soliton” type of the form similar (4) with
the same order m and the same value of ug:

fl?—V}’(t—to)

i=1.2
. ), 7 =1,2,

uj(z,t) = uo + f5(
where suppf; are compact sets and ¢y > 0.
We consider an initial condition for equation (1)
of the form

T+ Vit T+ Vot
u(,0) = ug + f1(———) + o). (16)
For t < tg the expresion
z—Vi(t—t z—Vo(t—t
el 1) = ot fy(Z LTI g 2 2 VL2 ),

(17)
give us an asymptotic solution of (1) of order m.
This solution has asymptotic expansion of the form

U =< ug + A1(5(£E — Vl(t — tg)) + AQ(S(iE — Vg(t — tg))

and represent two ”infinitely narrow solitons” lo-
calized at the point z = Vi(t — ty) and point
x = Vi(t —ty) respectively. At the moment of times
t = ty these points coinsid, an interaction of two
solitons take place and (17) is not an asymptotic
solution at this moment of times.

In order to obtain an asymptotic solution of the
initial problem (1)(16) for all £ we will construct this
solution in the form

£

ue (7, 1) = up + Kl(t/g)fl(w)

€

xr — 852(t::t0)

+Ks(t/e) fa( ); (18)

where K1, K9,S7 and S5 are some unknown func-
tions. These functions must discribe change of am-
plitudes and velocities.
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If we require that (18) is an asymptotic solution
by definition 1 we have not a new condition for func-
tions K1, Ko, S7 and S5.

In order to obtain such a condition we give a new
definition of an asymptotic solution.

Definition 3. The family (18) is called a mi-
crolocal asymptotic solution of order m of (1), if
the equality (2) holds not only for all real values of
t but also for infinitesimally close to ¢ moments of
times of the form ¢ + e7.

If a family of the form (18) is an asymptotic solu-
tion in the sense of definition 3, it is also an asymp-
totic solution in the sense of definition 1.

The request that (18) is a microlocal asymptotic
solution of (1) of the order 4 leads by using of Propo-
sition 1 to a system of four differential equations
with respect to K7, K9,57 and S5 of the form

K (1) My, (f1(y — S1(7)) + K1 My (f1(y — S1(7))S1(7)
+ KT (1) My ((f1(y — S1(1))?(7)) + K5(1) M},
X (fa2(y — S2(7)) + KoMy (f3(y — Sa2(7))S5(7)
+K3 () Mg ((f2(y — S2(7))*(7))
= Ki(7)Ka (1) M (fi(y — Si(7) faly — Sa2(7)), (19)
k=0,1,2,3.

We remark that My(f]) = 0, Mo((f7)') = 0 for
j =1 andj = 2 and M[)(fl(y - S’l)fQ(y - 52)) =0.

Let m > 4. Then by theorem 2 the relations
(200 — V)Mi(f}) + Mi((£;)?) = 0 hold for k =
0,1,2,3 and theses relation hold for f;(y — S;(7))
and (ij)'(y— S;j(7)). Therefore the system (19) can
be transformed to the form

Ki{(r)Mg(f1) + [K181(7) + KF (1) (2uo — V1)

X M ((f1)(7)) + K3(7) Mi(f2)
+[K285(7) + K3 (1) (2uo — V2)IMi((f3)(7))
= 2K1(7’)K2(T)Mk((f1 : TTfQ),), k= 0, 1, 2, 3.

Left hand side of this system is linear with respect
to functions K|, K}, [K1S](1) + K2(7)(2up — V1)]
and [K255(7) + K2(7)(2ug — V2)]. Therefore the sys-
tem can be written

M(Sy, S2)W = K1 KyoR(S1, S2), (20)

where
W = (K1, K5, [K1S1(7) + K7 (7)(2ug — V1],

[K255(7) + K3(7)(2uo — Va)]),

My My M, M,
My May My Mg, |7
M31 M32 Mgl,l M?,,Q

Mij = M;(fi(y — Sj)), Mj; = M;(f;(y — Sj)),

R = R(r) = (0, M1 (fi(y — S1) - f2(y — S2)),
My (f1(y—>51)-f2(y—52)), M3 (f1(y—51)-f2(y—52))).

We remark that
Mo(fj(y — Sj)) = Mo(f;(y)),
My (f(y — S5)) = Mi(f;(y)) + SjMo(f;),

My (f(y—S;) = Ma(f;(y))+2S5;M1(f;(y))+S;Mo(f;(y),

Ms(f;(y — ;) = M3(f;(y)) + 35 Ma(f;(y))

+382 M (f;(y)) + S2Mo(f;(y)).
It follow from this that

M =

det M(S1, S2) = det M(0,0) = const. (21)

We remark as well that M (f") = kMj_1(f) and
the matrix M (0,0) have the form

Mo(f1) Mo(f2) 0 0
M(0,0) = Mi(f1) Mi(f2) Mo(fi) Mo(f2)
’ My(f1) Ma(f2) 2Mi(f1) 2Mi(f2)
Ms(f1) Ms(f2) 3Ma(f1) 3Ma(f2)

Definition 4. Two functions f; and fo are called
four — independent if detM(0,0) # 0.

If the functions f; and fy are four-independent
we can transform system (20) to the form

W = K, K;M(S1,S2) ' R(S, S5).
Initial conditions must be
K;1(0) =1, K3(0) = 1, 51(0) = Vito, S2(0) = Vat,

It follows from the (21) that the terms of matrix
M(S1, S2) ! are polynomials of the order 3.
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The most important property of the system (20)
is the following: there exists a constant C' such
that R(Sl,SQ) = 0, if |Sl — SQ| > C. It follow
from this property that, if we have some solution
of (20) such that |S;(¢t) — Sa(t)] > C for some
t1 > to, then Ki(t), Ka(t),S](t), S5(t) are constant
for ¢ > ¢;. This means that in this case we obtain
two new infinitely narrow solitons with some new
amplitudes and new velocities after interaction of
two initial solitons. One more case is possible too
|S1(t) — Sa(t)] < C for all ¢ > ty. In this case two
initial solitons stick together.

We constructed some set of weak asymptotic so-
lutions of arbitrary order and described their in-
teractions. However it should be pointed out that
this set is very extensive. This is an effect of thethe
fact that definition of weak asymptotic solution con-
tains few limitations for considered family of smooth
functions. We can give an example (the Schrodinger
equation with a d-potential [1]) when there exists
an unique exact solution and there are a lot of weak
asymptotic solutions which are very different from
the exact one. It follows from this that not all weak
asymptotic solutions have a physical sense.

Acknowledgments

This work was partially supported be the Funda-
mental Research Fund of the Republic of Belarus.

References

[1] A. Antonevich, D. Ilyin. Interpretation of the
Schrodinger operator with a d-potential with the
help of finite-dimensional perturbations. Spectral
and Evolutionary Problems, Simferopol, 9,3-16
(1999).

2]

3]

[7]
8]

[9]

[10]

[11]

[12]

[13]

H.A.Biagioni, M.Oberguggenberger. Generalized
solutions to the Korteweg-de Vries and the regu-
larized long-wave equations. STAM J. Math. Anal.,
23, No 4, 923-940 (1992).

H.A.Biagioni, M.Oberguggenberger. Generalized
solutions to Burgers’ equation. J. Diff. Eq., 97:2,
263-287 (1992).

J.F.Colombeau. FElementary Introduction to New
Generalized Functions. ( North-Holland, Amster-
dam, 1985).

V.G.Danilov, V.P.Maslov, V.M.Shelkovich. Alge-
bras of singularities of singular solutions to quasilin-
ear strongly hyperbolic first-order equations. Theor.
and math. physics. 114, 3-55 (1998).

V.G.Danilov, G.A.Omel’yanov. Truncation of a
chain of Hugoniot-type conditions of shock waves
and its justification for the Hopf equation. Vienna,
ESI-Preprint 502 (1997).

Yu.V.Egorov. On the theory of generalized func-
tions. Russian Math. Surveys. 45, No5, 3-40 (1990).

V.P.Maslov, G.A.Omel’'yanov. The asymptotic
soliton-like solutions of the equations with small dis-
persion. Russian Math. Surveys. 36, No3, 63-126
(1981).

V.P.Maslov, V.A.Tsupin. Necessary conditions for
the existence of infinitely narrow solitons in gas dy-
namics. Soviet Phys. Dokl. 24, 354-356 (1979).

M.Oberguggenberger. Multiplication of Distribu-
tions and Application to Partial Differential Equa-
tions. (Pitman Research Notes Math., 259, Long-
man, Harlow,1992).

V.M.Shelkovich. An algebra of distributions and
generalized solution of nonlinear equations. Soviet
Math. Dokl. 342, No 5, 600-602 (1995).

V.M.Shelkovich. An associative commutative al-
gebra of distributions, including multipliers, and
generalized solution of nonlinear equations. Russian
Math. Zametk. 57, No 5, 765-783 (1995).

A.N.Tikhonov, A.A.Samarski. An asymptotic ex-
pansion of integrals with slowly descending kernel.
Soviet Math. Dokl. 126, No 1, 26-29 (1959).

Nonlinear Phenomena in Complex Systems Vol. 3, No. 4, 2000



