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Аннотация. Приводится методология анализа угроз информационной безопасности киберфизических систем 
на основе цифровых двойников. Предлагаемый подход предусматривает формализацию системы и пространства 
угроз через многосрезовую структуру, включающую технический, процессный, функциональный, организационный 
и отраслевой срезы. Далее осуществляется динамическое моделирование угроз в безопасной виртуальной среде 
цифрового двойника, что позволяет воспроизводить сценарии атак и получать синтетические данные для обучения 
алгоритмов обнаружения индикаторов угроз. Для выявления аномалий применяются методы частотного анализа, 
машинного обучения и кластеризации, обеспечивающие адаптивное и точное обнаружение как известных, так 
и ранее неизвестных атак. Верификация методологии проводится на примере умной энергосети, где показывается 
эффективность обучения и тестирования алгоритмов на синтетических данных, отражающих реальные и аварий-
ные режимы. Результаты демонстрируют возможность создания самонастраивающихся систем информационной 
безопасности с высокой степенью адаптивности и точности обнаружения угроз. Представлен ная методология обе-
спечивает итеративную обратную связь между этапами, что повышает качество моделирования и обнаружения угроз.
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Abstract. This paper presents a methodology for analysing information security threats in cyber-physical systems based 
on digital twins. The proposed approach involves formalising the system and threat space through a multi-layered struc-
ture, including technical, process, functional, organisational and sectoral layers. Next, dynamic threat modelling is con-
ducted in a secure virtual environment of the digital twin, enabling the reproduction of attack scenarios and generation of 
synthetic data to train threat indicator detection algorithms. To identify anomalies, frequency analysis, machine learning 
and clustering methods are applied, ensuring adaptive and accurate detection of both known and previously unknown at-
tacks. The methodology is verified using a smart grid example, demonstrating the effectiveness of training and testing 
algorithms on synthetic data that reflect normal and emergency operating modes. The results show the potential for 
crea ting self-adjusting information security systems with a high degree of adaptability and threat detection accuracy. 
The presented methodology provides iterative feedback between stages, enhancing the quality of threat modelling and 
detection.

Keywords: cyber-physical system; digital twin; information security; threat modelling; anomaly detection; machine 
learning; synthetic data; adaptive system; smart grid; threat analysis.
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Введение
Современные информационные системы (ИС) представляют собой высокосложные распределенные 

киберфизические комплексы со множеством взаимосвязанных компонентов, функционирующих в усло-
виях высокой неопределенности. Эта неопределенность обусловлена не только возрастанием внутренней 
архитектурной и поведенческой сложности систем, но и постоянной эволюцией угроз информационной 
безопасности (ИБ), включая появление ранее не наблюдаемых (zero­day) и трудноидентифицируемых 
атак. В таких условиях особую значимость приобретает задача своевременного выявления индикаторов 
угроз (косвенных признаков наступления нежелательных событий) до их реализации в виде полномас-
штабных инцидентов. Эффективное решение данной задачи при ограниченном объеме достоверных 
эмпирических данных требует построения воспроизводимых моделей поведения защищаемых систем 
и потенциальных сценариев деструктивного воздействия. Одним из наиболее перспективных инстру-
ментов в этом контексте выступает технология цифровых двойников (ЦД) – цифровых репрезентаций 
объектов и процессов, позволяющих моделировать как нормальное функционирование системы, так 
и ее реакцию на внешние воздействия, включая реализацию сценариев атак.

Технология ЦД в настоящее время формализована в ряде отечественных и международных стандартов, 
таких как ГОСТ Р 57700.37-2021, ISO/IEC 30173:2023 и ISO/IEC 20924:2024. Однако следует отметить, 
что в указанных нормативных документах объектом цифрового моделирования преимущественно вы-
ступают физические изделия или технические устройства, в то время как вопросы применения ЦД для 
решения задач ИБ, в особенности динамического моделирования угроз и генерации данных для построе-
ния систем обнаружения аномалий, остаются практически неисследованными.

Кроме того, в современной научной и прикладной деятельности отсутствует единая методология, 
обеспечивающая логически непрерывный переход от формализованного описания архитектуры и по-
ведения защищаемой системы через моделирование сценариев атак к обучению и верификации средств 
обнаружения индикаторов нарушений. Данный разрыв между моделированием угроз и последующим по-
строением механизмов их выявления в реальных системах существенно ограничивает воспроизводимость, 
обоснованность и прикладную значимость разрабатываемых решений в области обеспечения ИБ.

Настоящее исследование направлено на преодоление обозначенного методологического дефицита. 
Его целью является разработка и экспериментальная верификация методологии анализа угроз ИБ на 
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основе ЦД, обеспечивающей замкнутый контур перехода от формализации структуры и поведения за-
щищаемой системы и пространства угроз к синтезу ЦД, воспроизведению сценариев атак, генерации 
синтетических данных и обучению алгоритмов обнаружения аномалий.

Ключевая гипотеза исследования заключается в следующем: алгоритмы детектирования аномалий, 
обученные исключительно на синтетических данных, полученных в результате моделирования типовых 
сценариев атак в ЦД, способны эффективно выявлять ранее неизвестные угрозы за счет выделения устой-
чивых поведенческих паттернов, характерных для соответствующего класса воздействий. Для проверки 
этой гипотезы реализована экспериментальная установка на основе модели умной энергосети (smart grid ), 
подверженной различным типам атак. Экспериментальные результаты демонстрируют применимость 
и эффективность предложенного подхода, подтверждая его научную новизну и практическую значимость.

Состояние исследований
В настоящем разделе дан аналитический обзор современных научных исследований, посвященных 

применению ЦД в контексте обеспечения ИБ киберфизических систем (КФС). Основное внимание 
уделено работам, касающимся моделирования угроз, генерации синтетических данных и обнаруже-
ния аномалий.

ЦД представляют собой виртуальные аналоги физических систем, применяемые для мониторинга, про-
гнозирования и оптимизации процессов в самых разных отраслях – от интеллектуального производства 
и КФС до строительной сферы и аэрокосмической промышленности [1; 2]. Вместе с тем расширение ис-
пользования ЦД в распределенных информационно-технических и производственных системах выявляет 
значительные вызовы в области ИБ [3; 4]. Одним из центральных рисков становится высокая степень 
интеграции ЦД с информационными и операционными системами, что открывает новые векторы атак, 
такие как атаки типа «человек посередине», отказ в обслуживании, компрометация данных и несанк-
ционированный доступ, комплексные распределенные атаки [5; 6]. В литературе выделены следующие 
ключевые направления анализа и защиты ЦД [4 –7]: анализ угроз в распределенных промышленных 
ЦД, разработка защищенных платформ и протоколов, а также превентивное моделирование поведения 
злоумышленников (human digital twins, HDT).

По мнению исследователей [8], для эффективного обеспечения безопасности ЦД должны обладать 
аналитической предсказуемостью, интегрироваться с физическим объектом и обеспечивать динами-
ческую синхронизацию. Ряд авторов [9] отмечают переход ЦД от оптимизационных функций к роли 
инструмента проактивной ИБ, что связано с возможностями безопасного моделирования атак, тести-
рования защиты, прогнозирования последствий инцидентов и автоматизации обнаружения аномалий, 
визуализации информации [10].

В литературе выделяются два основных режима функционирования ЦД в процессе моделирования 
кибератак [11]: режим репликации, при котором модель синхронизируется с физической системой в ре-
альном времени, и режим изолированного моделирования, позволяющий безопасно выполнять сцена-
рии атак. Количественная оценка рисков и моделирование влияния атак, основанные на динамических 
байесовских сетях и марковских процессах, подробно рассмотрены в ряде работ (см., например, [12]). 
Параллельно развиваются игровые среды для обучения ИБ-специалистов реализации сценариев атак 
и защиты [11].

Отдельное место в исследованиях занимают задачи обнаружения аномалий с использованием ЦД: 
сравнение прогнозируемого и фактического поведения системы позволяет выявлять вторжения 
и сбои [13]. HDT-технологии расширяют аналитику, добавляя в моделирование поведенческие пат-
терны человека [14].

Тем не менее использование синтетических данных, полученных из ЦД, для обучения алгоритмов 
обнаружения аномалий сопряжено с рядом проблем. Во-первых, ограниченная обобщающая способ-
ность упрощенных моделей ЦД снижает реализм выборок [1]. Во-вторых, доменный разрыв между син-
тетическими и реальными данными, включая распределительные смещения, шум и неопределенность, 
существенно снижает переносимость моделей [15]. Кроме того, отмечаются структурные и норматив ные 
уязвимости ЦД, отсутствие единых архитектур и дополнительные векторы атак, компрометирующие на-
дежность синтетических данных [16; 17]. В статье [18] предложено структурированное моделирование 
угроз на основе графовых и таксономических моделей, интегрирующих кибернетические и физические 
аспекты атак. В настоящей работе представлено развитие данного подхода путем его адаптации к много-
срезовому моделированию в ЦД, что позволяет охватить не только технические, но и организационные, 
процессные и отраслевые аспекты системы.

Онтологические и агентно-ориентированные модели, такие как концептуальная структура «Cybonto» 
(Cybonto conceptual  framework) [14], дополняют этот подход когнитивным компонентом, позволяя модели-
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ровать поведение потенциальных нарушителей. Технические обзоры (см., например, [19]) подчеркивают 
важность формализации сценариев атак в мультисистемных ЦД-архитектурах и адаптивных системах 
реагирования, способных обобщать результаты с учетом междисциплинарных связей [18].

Еще один значимый вызов – это обеспечение интероперабельности и стандартизации платформ 
ЦД, особенно в контексте ИБ. Разнородность форматов, протоколов и семантических моделей мешает 
унификации взаимодействия. Усложнение возникает из-за потребности в семантическом согласовании, 
защите и контроле конфиденциальности, а также в управлении жизненным циклом ЦД с учетом от-
раслевых особенностей [20 –22]. Среди стратегий решения обозначенной проблемы можно выделить 
стандарты ISO/IEC JTC 1/SC 41, ISO 23247, документ NIST IR 8356, а также рекомендации Консорциума 
цифровых двойников (Digital Twin Consortium).

Несмотря на значительный прогресс в указанных направлениях, в научной литературе отсутствует 
единая методология, обеспечивающая сквозной цикл от формализации системы и пространства угроз до 
генерации синтетических данных в ЦД, обучения алгоритмов обнаружения аномалий и их верификации. 
В настоящей работе авторы предлагают такую методологию, она представлена в следующих разделах.

Концептуальная схема методологии
Предлагаемый подход базируется на логически выстроенной последовательности этапов, объеди-

ненных одной целью – обеспечить переход от формализации КФС и пространства угроз к выявлению 
индикаторов реализации этих угроз на основе данных, полученных в ходе безопасного динамического 
моделирования угроз в ЦД. Рассматриваемая методология носит сквозной и итеративный характер, 
обеспечивая замкнутый контур анализа, в котором каждая последующая фаза уточняется на основе 
результатов предыдущей фазы.

В структурном виде методология включает четыре взаимосвязанных этапа.
Этап 1: формализация системы и пространства угроз. Создается формализованная многосрезовая мо-

дель ключевых аспектов КФС, отражающая ее архитектуру, функции, процессы и отраслевую специфику. 
Угрозы соотносятся с компонентами модели с учетом требований к конфиденциальности, целостности 
и доступности. Полученная модель служит основой для построения ЦД.

Этап 2: моделирование угроз в ЦД. На основе формализованной модели в виртуальной среде реа-
лизуются сценарии атак с учетом их динамики и последствий. ЦД синхронизируется с параметрами  
реальной системы. Результатом этапа является набор синтетических данных, отражающих как нормаль-
ное поведение системы, так и ее реакции на реализованные угрозы.

Этап 3: выделение индикаторов угроз. Данные, полученные при моделировании угроз в ЦД, исполь-
зуются для обучения алгоритмов обнаружения индикаторов угроз. Применяются методы частотного 
анализа и машинного обучения. Извлекаются устойчивые поведенческие паттерны, которые служат 
основой для построения адаптивных систем ИБ.

Этап 4: верификация подхода. Обученные алгоритмы проходят тестирование на новых сценариях 
атак и прототипе системы. Оценивается их способность выявлять как известные, так и ранее неиз-
вестные угрозы. Полученные результаты используются для уточнения модели, сценариев и параметров 
моделирования угроз.

Методология предусматривает обратные связи, обеспечивающие адаптивность и настройку всех ком-
понентов системы. Результаты этапа 3 (выделение индикаторов угроз) и этапа 4 (верификация подхода) 
используются:

  • для пересмотра и уточнения формализованной модели системы и пространства угроз (этап 1);
  • актуализации сценариев и параметров моделирования угроз (этап 2);
  • совершенствования архитектуры ЦД за счет повышения качества моделирования и генерации 

данных.
Схематично рассматриваемая методология представлена на рис. 1.
ЦД выступает ядром методологии, обеспечивая интеграцию всех этапов в единый итеративный 

процесс. Он представляет собой безопасную виртуальную среду для динамического моделирования 
сценариев атак, генерации синтетических данных и тестирования алгоритмов обнаружения аномалий. 
Благодаря двунаправленной синхронизации с реальной системой ЦД поддерживает актуальность модели 
и позволяет адаптировать сценарии атак с учетом результатов анализа.

Результатом применения методологии является комплекс моделей и инструментов: формализованная 
многосрезовая модель системы и пространства угроз, синтетические данные, обученные алгоритмы 
обнаружения аномалий и выделенные индикаторы угроз. Методологический каркас объединяет направ-
ления моделирования угроз, анализа данных, обеспечивает основу для построения самообучающихся 
адаптивных систем ИБ.
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Формализация системы и пространства угроз
Формализация КФС и пространства угроз является ключевым этапом методологии анализа угроз ИБ 

с использованием ЦД. На этом этапе формируется воспроизводимая модель, объединяющая архитектуру 
системы, ее поведенческие особенности и потенциальные векторы атак, что закладывает основу для 
цифрового моделирования и генерации синтетических данных.

Полученная модель описывает защищаемую систему через пять взаимосвязанных срезов:
  • технический срез (ST), включающий аппаратные средства, встроенные устройства, сети передачи 

данных, программное обеспечение и средства защиты;
  • процессный срез (SP), охватывающий эксплуатационные процедуры, сценарии функционирования, 

мониторинг и реагирование на инциденты;
  • функциональный срез (SF), отражающий назначение компонентов, их взаимодействие и участие 

в реализации функций управления и безопасности;
  • организационный срез (SO ), включающий роли, ответственность, внутренние регламенты и меха-

низмы управленческого контроля;
  • отраслевой срез (SI ), учитывающий особенности применения системы в конкретной предметной 

области, включая нормативные требования и характерные угрозы.
Каждому компоненту системы c S k T P F O I

i k
� �� �, , , , , , сопоставляется множество угроз U c Ui� �� , 

где U – общее множество рассматриваемых угроз, сформированное на основе авторитетных классифи-
каций (например, Банка данных угроз безопасности информации Федеральной службы по техническому 
и экспортному контролю (далее – БДУ ФСТЭК России)). Для удобства и формального анализа вводится 
бинарная матрица соответствия M n m

�� � �
0 1, , где n S

k

k

��  – общее количество компонентов во всех 

срезах, а m – количество учитываемых угроз. Значение Mij =1 указывает на наличие связи между ком-
понентом ci и угрозой uj, а значение Mij = 0 – на ее отсутствие.

Рис. 1. Схема методологии
Fig. 1. Methodology scheme
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В описанной модели каждый срез Sk представляет собой формализованное представление защищае-
мой КФС в пределах одного из структурных срезов – технического, процессного, функционального, 
организационного или отраслевого. Однако реальные угрозы ИБ часто затрагивают несколько сре зов од-
новременно. Например, реализация уязвимости в программном обеспечении может не только нарушить 
техническую целостность системы, но и повлиять на процессы эксплуатации и реагирования.

Для формализации взаимосвязей между срезами вводится матрица влияний V�� �
�

0 1
5 5

, , где каждый 
элемент Vab отражает долю угроз, которые одновременно затрагивают срезы Sa и Sb. Она вычисляется 
следующим образом:

V

u U c S c S M M

u U c S M
ab

a a b b c u c u

a a c u

a b

a

�
� � � � � � �� �

� � � �� �

, :

:
.

, ,

,

1 1

1

В числителе находится количество угроз u, которые одновременно воздействуют хотя бы на один компо-
нент из среза Sa и хотя бы на один компонент из среза Sb, а в знаменателе – количество угроз, воздейст-
вующих хотя бы на один компонент из среза Sa.

Матрица влияний V V
ab

� � � позволяет оценить, насколько реализация угрозы в одном аспекте системы 
(например, техническом) может повлиять на другой аспект системы (например, процессный). Практи-
ческое значение показателя Vab заключается в выявлении каскадных путей распространения угроз, что 
критически важно для построения многоуровневой защиты. Например, если значение VTP (технический 
срез → процессный срез) равно 0,7, это означает, что 70 % угроз, связанных с техническими компо-
нентами, также воздействуют на эксплуатационные процессы. Данная информация позволяет выявить 
потен циальные каскадные пути распространения атак и принять упреждающие меры на других уровнях 
системы. Таким образом, значение Vab отражает условную вероятность того, что угроза, влияющая на 
срез Sa, затрагивает и срез Sb. При обнаружении аномалии, например, в технической подсистеме это 
позволяет автоматически активировать мониторинг процессных и организационных процедур, предот-
вращая каскадный эффект.

Предложенная формализация обеспечивает основу для последующего динамического моделирова-
ния угроз в ЦД, где учет межсрезовых зависимостей критически важен для построения реалистичных 
сценариев атак и анализа поведения системы в различных условиях.

Моделирование угроз в ЦД
Следующим этапом методологии является динамическое моделирование угроз ИБ с использованием 

ЦД исследуемой КФС. На основе модели, сформированной на этапе формализации системы и про-
странства угроз, создается структура ЦД, включающая компоненты системы, связи между ними и соот-
ветствующие классы угроз.

Архитектура ЦД базируется на принципе двунаправленной синхронизации с реальной системой, что 
обеспечивает передачу актуальных данных о состоянии компонентов системы и получение результатов 
симуляций в режиме, максимально приближенном к реальному времени. Такая синхронизация гаранти-
рует актуальность и достоверность моделирования, повышая его практическую значимость.

Моделирование реализуется через формирование и проигрывание сценариев атак, соответствующих 
выявленным угрозам и отраслевой специфике. Сценарии атак строятся на основе следующих факторов:

  • таксономий угроз, сформированных в процессе формализации;
  • межсрезовых связей угроз, определенных с использованием матрицы влияний V;
  • информации о компонентах и процессах КФС.

Ключевым элементом предлагаемого подхода является расширенная динамическая модель угроз, 
формализуемая функцией

T F T DTextended base impact� � �, ,

где Tbase – базовая (статическая) модель угрозы, включающая описание атаки (вектор атаки, цель, экс-
плуа тируемые уязвимости, необходимые условия и технические характеристики); DTimpact – динамиче-
ский компонент, формализующий дополнительную информацию, полученную в результате симуляций 
и анализа данных в ЦД (динамика развития сценариев атак, реакции системы, поведение защитных ме-
ханизмов, а также последствия реализации угроз); F – функция интеграции, которая объединяет стати-
ческое описание атаки с результатами моделирования угроз в ЦД, формируя расширенную динамиче-
скую модель угрозы Textended.
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Базовая модель угрозы Tbase может быть формализована как следующий кортеж:
Tbase = 〈вектор атаки, цель, уязвимость, условия, технические характеристики〉.

Например, для атаки типа «ложные команды управления» в умной энергосети параметры кортежа 
могут быть следующими:

  • вектор атаки – MITM (man­in­the­middle);
  • цель – контроллер распределенного генератора;
  • уязвимость – отсутствие аутентификации команд;
  • условия – активность SCADA-сессии;
  • технические характеристики – протокол Modbus/TCP.

Динамический компонент DTimpact представляет собой временную траекторию развития инцидента, 
зафиксированную в ЦД, и включает:

  • временные метки начала и пика развития атаки;
  • реакцию защитных механизмов (например, срабатывание IDS);
  • каскадные эффекты (например, отключение смежных узлов);
  • изменение ключевых параметров системы (напряжение, частота, задержки).

Функция интеграции F реализуется как расширение статической модели Tbase с помощью вектора ди-
намических параметров DTimpact:

T T t t V t IDextended base start peak affected� � � �� �, , , ,�

где tstart – временная метка начала атаки; tpeak – временная метка пика развития атаки, указывающая на 
момент максимального воздействия угрозы на систему; �V t� � – функция изменения напряжения во вре-
мени (в контексте умной энергосети), отражающая динамику воздействия угрозы на параметры системы; 
ID
affected

 – идентификаторы затронутых компонентов системы, позволяющие определить, какие элементы 
инфраструктуры подверглись воздействию.

Практическая ценность такой модели заключается в генерации обогащенных сценариев атак для 
обу чения систем обнаружения индикаторов угроз, а также в количественной оценке эффективности мер 
защиты (например, время срабатывания защиты, глубина распространения угрозы).

Выделение индикаторов угроз
Следующим этапом методологии является разработка системы обнаружения индикаторов угроз – 

аномалий, свидетельствующих о реализации атак. Основная задача данного этапа состоит в обучении 
алгоритмов обнаружения характерных признаков угроз на основе синтетических данных, сгенериро-
ванных в ЦД.

В отличие от традиционных подходов, базирующихся преимущественно на реальных данных или 
экспертных оценках, предложенная методика использует синтетические, но достоверные и контролируе-
мые наборы данных, получаемые в безопасной виртуальной среде. Такой подход обеспечивает широкое 
разно образие обучающих примеров, включая редкие и ранее неизвестные сценарии атак, что значительно 
повышает универсальность и адаптивность алгоритмов обнаружения аномалий.

Для выявления аномалий используются взаимодополняющие методы трех типов:
1) анализ спектральных характеристик сигналов, который дает возможность обнаруживать нестан-

дартные изменения в параметрах работы системы;
2) обучение моделей распознавать нормальные паттерны поведения и выявлять отклонения, харак-

терные для атак;
3) кластеризация, позволяющая сгруппировать данные по типичным режимам функционирования 

и выделить элементы, не попадающие в эти группы, как потенциальные аномалии.
Архитектура системы обнаружения индикаторов угроз построена по принципу многокомпонентного 

анализа (рис. 2). Входной поток данных, поступающий как из реальной системы, так и из ЦД, проходит 
этап предобработки, после чего параллельно анализируется несколькими алгоритмами. Полученные 
результаты подвергаются агрегации и классификации. При классификации аномалий используется ин-
формация о видах угроз, сформированная на этапах формализации системы и пространства угроз и мо-
делирования угроз в ЦД, что обеспечивает точное сопоставление выявленных аномалий с конкретными 
классами атак.

Обучение на данных, сгенерированных в ЦД, существенно расширяет возможности системы по срав-
нению с традиционными методами обучения, обеспечивая адаптивность к редким и ранее неизвестным 
видам атак.
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Верификация подхода
Экспериментальная апробация предложенной методологии, направленная на ее верификацию, про-

водилась на примере умной энергосети. Цель этого этапа – подтвердить, что ЦД не только позволяет 
моделировать сценарии атак, но и генерирует данные, пригодные для обучения алгоритмов обнаружения 
аномалий, способных эффективно выявлять ранее неизвестные угрозы.

Современные угрозы ИБ, включая вредоносное программное обеспечение, фишинг, DDoS-атаки и целе-
направленные операции, представляют серьезную опасность для умной энергосети из-за высокой степени 
цифровизации и сетевой взаимосвязанности компонентов. Ключевая проблема состоит в том, что кибератаки 
могут маскироваться под естественные искажения, вызванные, например, нелинейными потребителями, 
погодными условиями или аппаратными сбоями. Это обстоятельство затрудняет их обнаружение и разгра-
ничение с неугрожающими отклонениями, создавая риски для устойчивости и безопасности системы [23].

В соответствии с предложенной методологией на первом этапе апробации подхода была построена 
формализованная многосрезовая модель умной энергосети, включавшая:

  • технический срез (аппаратные и программные компоненты – датчики, контроллеры, SCADA, ком-
муникационная инфраструктура и средства защиты);

  • процессный срез (процессы мониторинга, управления нагрузкой, автовосстановления и реагиро-
вания на инциденты);

  •функциональный срез (функции регулирования напряжения и частоты, балансировки нагрузки и пе-
редачи данных);

  • организационный срез (роли персонала, регламенты доступа и политики ИБ);
  • отраслевой срез (нормативные требования, включая ГОСТ Р ИСО/МЭК 27019-2021, и характер-

ные угрозы для энергетики).
Далее на основе этой модели была построена бинарная матрица соответствия между компонентами 

системы и угрозами из БДУ ФСТЭК России. Анализ показал, что 78 % угроз, связанных с подменой ко-
манд, искажением данных с датчиков и отказами в обслуживании, затрагивают компоненты, участвую щие 
в измерении и регулировании напряжения (в частности, датчики, контроллеры и каналы передачи данных 
в SCADA-системе). Исходя из этого, можно заключить, что реализация таких угроз с высокой вероятностью 
приведет к отклонению напряжения от нормы или к его некорректной регистрации. Следовательно, времен-
ной ряд напряжения становится чувствительным индикатором кибератак, поскольку в нем отражаются как 
прямые, так и косвенные (например, искаженные данные, используемые для управления) последствия атак.

На основе этой структуры был построен ЦД, реализованный в виде виртуальной имитационной 
среды на языке Python с использованием библиотек SimPy, Scapy, Pandas и NumPy. ЦД поддерживает 
двунаправленную синхронизацию с реальной системой и используется для моделирования сценариев 
кибератак и аварийных состояний.

Рис. 2. Архитектура системы обнаружения индикаторов угроз
Fig. 2. Architecture of the threat indicator detection system
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Для анализа поведения системы и выявления аномалий был разработан экспериментальный комплекс, 
интегрированный с ЦД и включающий:

  • сбор и предварительную обработку сигналов;
  • применение алгоритмов обнаружения аномалий;
  • агрегирование результатов и визуализацию;
  • автоматическое реагирование на события.

Такая архитектура позволила использовать ЦД в качестве безопасной тестовой платформы, обеспечи-
вающей гибкость и контролируемость эксперимента в условиях, приближенных к реальному времени, 
но без риска для физической инфраструктуры.

В основу подхода легли три ключевых направления анализа:
  • частотный анализ с вейвлет-преобразованием (используется на этапе предобработки для выявле-

ния характерных отклонений в сигналах);
  • анализ отклонений от штатного поведения (реализуется путем обучения моделей на данных нор-

мального функционирования системы);
  • кластеризация режимов работы (заключается в формировании устойчивых кластеров безопасных 

состояний, где все, что выходит за их пределы, рассматривается как потенциальная аномалия).
Представим поэтапную процедуру апробации предложенной методологии.
Этап 1: генерация в ЦД данных для обучения. На этом этапе эксперимента в ЦД была смоделирована 

работа энергосистемы в трех режимах:
  • нормальном режиме (напряжение сети описывалось синусоидальным сигналом с добавлением слу-

чайного шума, что отражало естественные колебания в системе при штатном функционировании);
  • режиме реализации угроз (кибератаки) (имитировались резкие скачки напряжения, характерные для 

кибератак, направленных на дестабилизацию сети; эти сценарии представляли собой сгенерированные 
паттерны аномалий – индикаторов угроз);

  • аварийном режиме (осуществлялось плавное, но устойчивое изменение амплитуды сигнала, что мо-
делировало сбои и технические неисправности, не связанные с вредоносными действиями).

На рис. 3 представлена иллюстрация одного из сгенерированных временных рядов напряжения с мар-
кировкой аномалий, соответствующих различным режимам работы системы.

Каждый режим моделировался многократно (100 раз) с варьированием параметров, что позволило 
сформировать датасет из нескольких наборов синтетических сигналов.

Рис. 3. Сгенерированный временной ряд напряжения с маркировкой аномалий (выделены 
красным цветом), соответствующих различным режимам работы системы:  

а – нормальный режим; б – режим кибератаки; в – аварийный режим
Fig. 3. Generated voltage time series with anomalies (highlighted in red)  

corresponding to different system operating modes:  
a – normal mode; b – cyberattack mode; c – emergency mode



85

Теоретические основы информатики 
Theoretical Foundations of Computer Science

Этап 2: предобработка и фильтрация данных. После генерации исходных данных в ЦД все временные 
ряды проходили этап предобработки. Для этой цели применялось двухуровневое дискретное вейвлет- 
преобразование с использованием различных типов вейвлетов, что позволило выбрать оптимальный метод 
фильтрации для последующего обнаружения аномалий. В ходе экспериментов были протестированы 
несколько типов вейвлетов, включая вейвлеты Добеши (db), симлеты (sym) и коифлеты (coif ). Для ил-
люстрации результатов в статье выбран вейвлет Добеши 1 (db1), который показал хорошие результаты 
при обработке сигналов напряжения в энергосистеме. Вейвлет Добеши 1 особенно эффективен для об-
работки сигналов с резкими переходами и разрывами, что характерно для кибератак на умные энергосети.

Особое внимание уделялось аппроксимирующим коэффициентам второго уровня (A2 ), которые пред-
ставляют собой низкочастотную компоненту сигнала напряжения, содержащую информацию об основной 
тенденции работы энергосистемы. В отличие от исходного сигнала коэффициенты A2 представляют собой 
«сглаженную» версию напряжения, где удалены высокочастотные шумы и кратковременные колебания, 
что позволяет фокусироваться на устойчивых характеристиках системы. В контексте энергосети коэф-
фициент A2 отражает базовую форму напряжения при нормальной работе и является чувствительным 
индикатором системных изменений, так как кибератаки и аварии часто влияют именно на основные 
характеристики сигнала, а не только на высокочастотные шумы.

На рис. 4 показан результат обработки сигнала напряжения, представленного на рис. 3, методом 
дискретного вейвлет-преобразования с использованием вейвлета Добеши 1. Визуально форма преоб-
разованного сиг нала близка к исходной, поскольку фильтрация сохраняет низкочастотную компоненту 
(основную волну), но удаляет высокочастотные колебания и случайные возмущения. Эти изменения не 
всегда заметны невооруженным глазом, однако они влияют на частотную структуру сигнала, что критично 
для автоматической классификации: сглаженный ряд позволяет алгоритмам надежно выделять аномаль-
ные отклонения, характерные для кибератак и аварийных состояний, при минимальном влиянии шумов.

Для последующего анализа и визуализации работы алгоритмов обнаружения аномалий были сфор-
мированы признаковые пространства, где по одной оси откладывались значения коэффициента A2 в нор-
мальном режиме работы системы, а по другой оси – значения коэффициента A2 в аномальном состоянии 
(режим кибератаки или аварийный режим). Такой подход позволил четко визуализировать изменения 
в основных характеристиках сигнала и выявить моменты, когда поведение системы существенно от-
клонялось от нормы.

Рис. 4. Вейвлет-преобразование временного ряда напряжения, представленного на рис. 3: 
а – нормальный режим; б – режим кибератаки; в – аварийный режим.  

Синяя линия отражает исходный сигнал с шумами, оранжевая линия – сглаженное приближение (A2 ),  
полученное из коэффициентов вейвлет-разложения

Fig. 4. Wavelet transform of the voltage time series shown in fig. 3: 
a – normal mode; b – cyber attack mode; c – emergency mode.  

The blue line represents the original signal with noise, the orange line represents  
the smoothed approximation (A2 ) obtained from the wavelet decomposition coefficients
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Этап 3: обучение алгоритмов. На этом этапе апробации методологии были проведены настройка 
и обучение алгоритмов обнаружения аномалий на объединенном датасете, включающем данные нор-
мального режима и режима реализации угроз, смоделированных в ЦД. Алгоритмы обучались выявлять 
устойчивые поведенческие паттерны, характерные для системы при штатном функционировании, а также 
распознавать отклонения, возникающие в момент реализации угроз.

Аварийные режимы, отражающие непреднамеренные сбои и технические неисправности, на этапе 
обучения не использовались, они были зарезервированы для этапа тестирования, что позволило сфор-
мулировать более строгую задачу для алгоритмов: научиться отличать реализации угроз от других видов 
отклонений, не связанных с враждебным воздействием.

Для апробации методологии были использованы как классические, так и более устойчивые к выбросам 
алгоритмы обнаружения аномалий и кластеризации. Их выбор объясняется следующими причинами:

  • алгоритмы обнаружения аномалий Isolation forest, One­class SVM, Local outlier factor (LOF) хоро-
шо зарекомендовали себя при работе с аномалиями в многомерных временных рядах, они способны 
фиксировать точечные или локализованные выбросы;

  • алгоритмы кластеризации Density­based spatial clustering of applications with noise (DBSCAN), Or­
dering points to identify the clustering structure (OPTICS), Spectral clustering устойчивы к шуму и способ-
ны формировать сложные по форме кластеры, их применение оправдано тем, что аномалии в сложных 
системах могут проявляться не как отдельные выбросы, а как сдвиги между кластерами устойчивых 
режимов.

В качестве дополнительных методов использовались методы K­means и Gaussian mixture models 
(GMM).

Этап 4: генерация новых реализаций угроз и аварийных состояний. Для проведения тестирования 
в ЦД были сгенерированы новые данные, включающие:

  • новые реализации угроз, которые отличались от сценариев, использованных при обучении алго-
ритмов (устойчивые искажения формы сигнала, а также долговременные отклонения параметров энер-
го системы, моделирующие новые возможные способы реализации потенциальных угроз);

  • аварийные состояния, вызванные непреднамеренными факторами, такими как внутренние сбои, тех-
ни ческие неисправности и прочие незлонамеренные аномалии, не связанные с вредоносной актив ностью.

Сформированная тестовая выборка позволила проверить способность обученных алгоритмов не только 
выявлять аномалии – индикаторы ранее неизвестных угроз, но и эффективно отличать их от незлонаме-
ренных отклонений, связанных с аварийными состояниями.

Этап 5: тестирование. Обученные на данных этапа 1 алгоритмы были применены к тестовой вы-
борке, сформированной на этапе 4. Основными задачами этого этапа являлись:

  • обнаружение отклонений от нормального поведения в режиме, близком к реальному времени;
  • корректная классификация выявленных аномалий с разделением их на две категории – индикаторы 

реализации угроз (кибератаки) и неугрожающие аномалии (аварии и технические сбои).
Результаты тестирования оценивались с помощью метрик F1­score, Precision и False positive rate (FPR).
На рис. 5 и 6 представлены результаты сравнительного анализа работы шести алгоритмов обработки 

временных рядов, примененных в рамках эксперимента по обнаружению аномалий в умной энерго-
сети. Были рассмотрены три алгоритма обнаружения аномалий (Isolation forest, LOF и One­class SVM ) 
и три алгоритма кластеризации (DBSCAN, OPTICS и Spectral clustering), которые обрабатывали данные 
после дискретного вейвлет-преобразования сигнала напряжения. На рис. 5 приведены результаты для 
тестового сценария, имитирующего режим кибератаки, который характеризуется точечными аномалиями, 
резко отличающимися от нормального поведения системы. На рис. 6 показаны результаты для сценария, 
соот ветствующего аварийному режиму, при котором наблюдаются устойчивые отклонения, вызванные 
техническими сбоями или авариями в сети.

Для каждого алгоритма представлены два графика. Верхний график – визуализация точек в двумерном 
признаковом пространстве, сформированном на основе коэффициентов вейвлет-преобразования сигнала 
напряжения. По оси x отложено значение коэффициента A2 вейвлет-преобразования сигнала напряжения 
в нормальном режиме, а по оси  y – значение того же коэффициента, но в аномальном режиме (кибератака 
или авария). Таким образом, каждая точка соответствует одному временному окну и отражает изменение 
поведения сигнала по сравнению с нормой. Точки, расположенные вдоль диагонали, соответствуют участ-
кам сигнала без аномалий, тогда как отклонения от диагонали указывают на моменты, когда основные 
характеристики сигнала изменились, – это и есть потенциальные аномалии. Цвет и маркеры отражают 
результат классификации: нормальные точки (фоновая цветовая заливка) и аномалии (красные точки 
или контуры). Нижний график – тепловая карта уровня аномальности во времени. По горизонтали от-
ложено время, уровень аномальности визуализирован цветом – от синего (низкий уровень отклонения 
от нормы) до красного (высокий уровень отклонения от нормы).
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Такой подход позволяет не только оценить поведение алгоритмов в признаковом пространстве, но 
и сопоставить обнаруженные аномалии с их временным расположением, что критически важно для 
диагностики и классификации режимов работы энергосистемы. Аналогичная обработка и анализ вы-
полнялись для всего тестового датасета.

Оценка эффективности протестированных алгоритмов была проведена на тестовом датасете. В табл. 1 
и 2 приведены усредненные метрики качества работы алгоритмов, рассчитанные по всем обработанным 
данным в рамках эксперимента.

Т а б л и ц а  1
Метрики оценки эффективности алгоритмов (режим кибератаки)

Ta b l e  1
Algorithm evaluation metrics (cyberattack mode)

Алгоритм Precision, % F1­score FPR, % Время отклика, мс

Isolation forest 98 0,96 2 20

LOF 89 0,82 15 150
One­class SVM 92 0,88 5 80
DBSCAN 98 0,95 3 130
OPTICS 96 0,92 8 160
Spectral clustering 92 0,89 12 180
K­means 85 0,78 10 50

GMM 84 0,82 17 100

Т а б л и ц а  2
Метрики оценки эффективности алгоритмов (аварийный режим)

Ta b l e  2
Algorithm evaluation metrics (emergency mode)

Алгоритм Precision, % F1­score FPR, % Время отклика, мс

Isolation forest 93 0,88 5 20

LOF 82 0,80 20 150
One­class SVM 83 0,82 10 80
DBSCAN 95 0,86 8 130
OPTICS 90 0,83 11 160
Spectral clustering 86 0,80 18 180
K­means 93 0,88 5 20

GMM 82 0,80 20 150

Проведенная оценка эффективности алгоритмов по всему тестовому датасету выявила значительные 
различия в способах обнаружения аномалий для двух принципиально различных сценариев – режима 
кибератаки и аварийного режима. Главное отличие между ними заключается в динамике проявления 
аномалий: кибератаки сопровождаются резкими кратковременными скачками сигнала, тогда как ава-
рийные состояния характеризуются плавным, но устойчивым изменением параметров системы. Это 
отличие отражается в показателях эффективности примененных алгоритмов.

В сценарии кибератаки (см. табл. 1) алгоритм Isolation forest демонстрирует максимальную точ-
ность (98 %) и минимальный уровень ложных срабатываний (2 %), что объясняется его высокой чув-
ствительностью к точечным выбросам. В то же время при анализе аварийных режимов (см. табл. 2) 
наблюдается общее снижение эффективности большинства алгоритмов, особенно по метрикам F1­score 
и FPR, что связано с постепенным и менее выраженным характером изменений сигнала. Алгоритмы 
кластеризации при этом показывают более стабильные результаты в обоих сценариях, поскольку они 
ориентированы на выявление пространственно-временных кластеров аномалий, а не на детектирование 
отдельных выбросов. Следует отметить, что время отклика алгоритмов остается практически неизмен-
ным независимо от типа аномалий.
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По результатам апробации методологии можно сделать следующие основные выводы:
  • получены подтверждающие результаты, свидетельствующие о возможности применения синтети-

ческих данных, сгенерированных в ЦД, для обучения алгоритмов обнаружения аномалий, что отражается 
в стабильных значениях метрики F1­score при выявлении ранее неизвестных угроз;

  • установлена способность предложенной системы эффективно различать аномалии, связанные с реа-
лизацией угроз ИБ, и незлонамеренные отклонения, вызванные аварийными состояниями и техниче-
скими неисправностями, что обеспечивается относительно низким уровнем ложных срабатываний;

  • зафиксирована тенденция к снижению времени обнаружения аномалий по сравнению с традицион-
ными сигнатурными методами, что потенциально способствует повышению оперативности реагирова-
ния в условиях реального времени;

  • установлено, что ЦД показал себя как перспективная платформа для моделирования разнообраз-
ных сценариев атак и генерации репрезентативных обучающих и тестовых данных, обеспечивая бе-
зопасную среду для апробации алгоритмов;

  • получены результаты, указывающие на целесообразность применения комбинированного подхода, 
включающего методы детектирования точечных выбросов и кластерного анализа, для повышения на-
дежности выявления аномалий различной природы в умных энергосетях.

Вместе с тем можно отметить следующие допущения и ограничения методологии и ее апробации:
  • результаты основаны на синтетических данных, сгенерированных в ЦД, что накладывает ограни-

чения на прямую экстраполяцию выводов на реальные производственные условия из-за возможных 
от личий в характере и разнообразии реальных аномалий;

  • в ходе обучения алгоритмов не были использованы аварийные режимы, что создает определенное 
ограничение на обобщающую способность моделей при классификации неугрожающих отклонений;

  • тестирование проведено в контролируемой среде с ограниченным набором сценариев, что не исклю-
чает необходимости дополнительной валидации в условиях реального времени и на реальных данных;

  • используемые методы кластеризации и обнаружения выбросов предполагают определенные ста-
тистические свойства данных и могут требовать адаптации под специфику конкретных систем.

Заключение
Таким образом, в статье изложена методология анализа угроз ИБ на основе ЦД, включающая фор-

мализацию КФС и пространства угроз ИБ, безопасное моделирование атак, генерацию синтетических 
данных и обучение систем обнаружения аномалий – индикаторов реализации угроз. Экспериментальная 
проверка методологии, проведенная на модели умной энергосети, показала, что алгоритмы, обученные 
исключительно на данных, сгенерированных в ЦД, демонстрируют высокую точность (значение метрики 
F1­score достигает 0,96) в выявлении редких и ранее неизвестных угроз.

Ключевым преимуществом методологии является ее проактивный характер, позволяющий готовиться 
к угрозам до их фактического проявления в реальных системах за счет моделирования разнообразных 
сценариев в ЦД. Это обеспечивает безопасность (обучение без риска для инфраструктуры), эффективность 
(сокращение времени реакции, повышение полноты и точности детектирования) и универсальность (при-
менимость к объектам критической инфраструктуры, интернету вещей, облачным средам).

Перспективы дальнейших исследований включают интеграцию с SIEM/SOAR-платформами для авто-
матизации реагирования и использование генеративного искусственного интеллекта для создания более 
репрезентативных сценариев атак в ЦД. Таким образом, предложенная методология открывает путь 
к созданию адаптивных систем безопасности, способных противостоять эволюционирующим угрозам 
в сложных КФС.
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