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BpEMsI BBIITOJIHEHHS TIPH TIOMCKE KpaTdaiimx myteid. JIocToBepHOCTh ChOpMYITHUPOBAHHBIX MOJOKESHUH TTOATBEPIKAACTCS
pe3yibTaTaMy NPOBEACHHBIX BHIYUCIIUTEC/IBHBIX SKCIICPUMEHTOB. Pa3pa6aT])IBaIOTCH OTHOIIOTOYHBIC peaiu3allui U MHOI'O-
norounsie OpenMP peanuzaiyn rmpeaiaraeMoro reTeporeHHOro allrOPUTMa 1 JBYX U3BECTHBIX TOMOTEHHBIX OJIOUHBIX ajl-
TOPUTMOB JIJISI TONCKA KpaTJalInX MyTel. BoraucnnTenbHble SKCIIEpUMEHTHI Ha MHOTOSIEPHBIX ITPOLIECCOpax MPOBOISATCS
Ha CIIyJaifHbIX OPHEHTHPOBAHHBIX B3BEUICHHBIX rpadax, JeKOMIIO3UPOBAHHBIX Ha C1a00CBsI3aHHBIC TUIOTHBIE KJIACTEPHI
pas3HbBIX pa3MepoB. OMUCHIBAIOTCS PE3YABTATHI I YETHIpEX KIacTepU30BaHHBIX rpadoB, IBa U3 KOTOpBIX nMeroT 4800 Bep-
mmH (20 u 41 kIacTep COOTBETCTBEHHO) M 1Ba M3 KOTOPhIX uMeroT 9600 BepimH (40 u 80 kacTepoB COOTBETCTBEHHO).
Ha xommnbrorepe MacBook M1 Max B cityyae ¢ OJHOIOTOYHOCTBIO MTPE/IJIOKEHHBIN TeTePOreHHbIH OJIOUHBIN aJlrOPUTM
JUISL KJIACTEPU30BaHHBIX I'padoB C rpaHMYHBIMU BEPIIMHAMHE ITPEB30ILIEI N3BECTHBIN TOMOT€HHBIH OJIOUHBII allrOPUTM LIS
TakuXx ke rpagos B 1,62—-1,94 pasa; B cixyuae ¢ OpenMP-MHOTonoTo4HOCTHIO YCKOpeHue coctasmio 1,87-1,97. Ha cepsepe
u3 ByX mporeccopoB Intel Xeon E5-2620v4 rereporeHHbIN anropuT™ IIPEB30IIeN TOMOTSHHBIN anropuT™ B 1,58—1,66 paza
JUT OTHOTIOTOYHOCTH U B 1,29-1,64 pasa mans MHOTrOnmotouHOCTH. CpaBHEHHE MPEIOKEHHOTO aTOPUTMa C KIlacCHYe-
CKUM OJouHBIM anroputMomM droiina — Yopiemnia, B KOTOPOM OJIOKH UMEIOT OJIMHAKOBBINA pa3Mep, MoKa3ajao YCKOPSHHE
B 4,17-8,18 paza B cimyuae ¢ OJHOMOTOUYHOCTHIO U yckopeHue B 3,91-6,36 pasa B cinyuae ¢ OpenMP-MHOTOnoTo4HOCTHIO.

Knrouegvie cnosa: xnacTepn30BaHHBINA B3BEIICHHBIH OONBIION rpad; KpaTdaiiine IMyTH MEXIy BCEMHU ITapaMH Bep-
IIMH; OJIOYHBIN aJITOPUTM; T€TEPOT€HHbIE BBIYHUCIICHHS; YCKOPEHHE.
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Abstract. New heterogeneous blocked algorithm of finding all-pairs shortest paths in a large directed weighted simple
graph consisting of weakly connected dense clusters (subgraphs) of different sizes is proposed. The algorithm considers
and actively exploits the input and output bridge-vertices and edges of each cluster to speed up computation and localise
memory accesses. It divides all blocks of the cost adjacent matrix into four types (square diagonal, rectangular vertical
cross, rectangular horizontal cross and rectangular peripheral) and uses a separate computation procedure for each type,
considering the design features of the block itself and the way it is computed through other blocks. A theoretical justifica-
tion of the advantages of the proposed algorithms, which reduce the execution time when searching for the shortest paths, is
given. The validity of the formulated statements is also confirmed by the results of computational experiments. We have de-
veloped single-threaded implementations and multi-threaded OpenMP implementations of the proposed heterogeneous algo-
rithm and two known homogeneous blocked algorithms of finding shortest paths. Computational experiments on multicore
processors were performed on directed weighted random sparse graphs decomposed into weakly connected dense clusters of
different sizes. The results are described for four clustered graphs, two of which have 4800 vertices (20 and 41 clusters,
respectively) and two of which have 9600 vertices (40 and 80 clusters, respectively). On the MacBook M1 Max computer
in the case of single-threaded implementations proposed heterogeneous blocked algorithm for clustered graph with bridge-
vertices outperformed the known homogeneous blocked algorithm for the same graphs by a factor of 1.62—1.94; in the case
of multi-threaded OpenMP implementations the speedup was 1.87—1.97. On a server with Intel Xeon E5-2620v4 processors
heterogeneous algorithm outperformed the known homogeneous algorithm by a factor of 1.58—1.66 for single-threaded
implementations and by a factor of 1.29—1.64 for multi-threaded implementations. A comparison of proposed algorithm
with the classical blocked Floyd — Warshall algorithm in which all blocks are of the same size showed a speedup of
4.17-8.18 times in the case of single-threaded implementations and a speedup of 3.91-6.36 times in the case of multi-
threaded OpenMP implementations.

Keywords: clustered weighted large graph; all-pairs shortest paths; blocked algorithm; heterogeneous computations;
speedup.

Introduction

The problem of all-pairs shortest paths (APSP) is fundamental in many domains including social networks,
bioinformatics, transportation networks, synthesis of quantum logic circuits, etc. [1; 2]. The classical Floyd —
Warshall algorithm (further FW) [3; 4] solves this problem. The blocked FWW (further BFW') [5-7], which is
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homogeneous, performs a partitioning of the graph into subgraphs of equal size and uses the same block cal-
culation procedure for all blocks of the distance matrix. New APSP algorithms for large clustered graphs were
proposed in the works [8; 9]. They combine the classical F/ and Dijkstra algorithm and utilise bridge-vertices
of the clusters to improve performance. The heterogeneous blocked APSP algorithm [10; 11] for non-clustered
dense graphs distinguishes four types of blocks, each computed by a separate procedure, but all blocks are
of the same size. The homogeneous BFW, which can handle subgraphs and blocks of different sizes [12; 13],
uses the same universal procedure to calculate the blocks of all types. The blocked APSP algorithm for clus-
tered graphs and unequally sized blocks [14], which uses bridge-vertices to reduce runtime, is homogeneous
because it uses a single block calculation procedure. The works [15-22] improve BFW while considering as-
pects such as efficient utilisation of graphics processing units, tuning to optimal block size, using cooperative
thread scheduler, reducing power consumption, establishing dataflow networks of actors, etc. In this paper, we
present a new heterogeneous blocked algorithm for solving the problem of APSP on large clustered graphs
considering bridge-vertices and bridge-edges, unequally sized blocks, separate computation procedures for
each block type and algorithm transformation for localising data references.

Homogeneous BFW

Let G= (V, E ) be a directed simple graph with real edge-weights composed of a set V' of N vertices and
a set £ of edges. A cost adjacency matrix W of G has w; ;=0, 1 <i< N, where w, ; is equal to the weight of
edge (i, j) €k, and w; ;=0 if i#/ and (i, j) ¢ E. When G has no negative-weight cycle, the dynamic prog-
ramming FW [3; 4] computes a sequence of distance matrices D’ = W, ..., Dk, ..., D" such that in matrix D" the

shortest path from i to j is composed of the vertex subset { L..., k}. FW calculates the elements of matrix D using
the formula
dr

T ij >

min(df ;, df + df ) (1)
and assuming that df S=W

Claim 1 [6]. We suppose that di]fj, k=1,..., N, is computed with the formula (1) for k', k" >k —1 and
k', k" < N, then upon termination FW correctly computes APSP.

Algorithm 1 (homogeneous BFW) [5; 6; 10—14] divides set V into subsets of equal size S and splits the mat-
rix D into blocks leading to matrix B[M x M ] Initially each block has a zero level of calculation, Bo[v, u] =
= W[v, u]

Algorithm 1. Homogeneous BFW

form<«1,...,Mdo

B" [m, m] <« BCal(Bmfl[m, m], Bmfl[m, m], B”’*l[m, m]) // DO block
forve{l,..., M} and v = m do
Bm[v, m] <—BCal(Bm71[v, m], Bmfl[v, m], Bm[m, m]) // C1 block
Bm[m, v] <« BCal(Bm_l[m, v], B'”[m, m], Bm_l[m, v]) // C2 block
for v,ue{l,...,M}and v #mand u # m do
B" [v, u] <« BCal(Bm_l[v, u], Bm[v, m], Bm[m, u]) // P3 block
return BY.

In each of M iterations of the loop along m, homogeneous BFW computes one diagonal D0 block B™ [m, m]
to level m of calculation, computes M — 1 vertical C1 cross-blocks Bm[v, m] to level m, computes M — 1 hori-
zontal C2 cross-blocks B"[m, v] to level m and computes (M — 1)2 peripheral P3 blocks B"[v, u] to level m.

All cross-blocks can be calculated mutually in parallel. All peripheral blocks can be calculated in parallel as
well. The following claim holds for all the blocks of type P3 [19; 20].

Claim 2. We suppose that the P3 block B”[v, u], m=1, ..., M, is computed with the formula
Bm[v, u] = BCal(B'”*l[v, u], B’”'[v, m], B’”"[m, u])

for m', m" > m and m’, m" < M. Upon termination BFW correctly computes APSP in graph G.
At each iteration BFW increments the calculation level of each block and fulfills the requirement of claim 2
for the P3 blocks. Therefore, BFW computes APSP correctly.
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The block calculation algorithm 2 (BCal) implements the classical W and can compute D0, C1, C2 and P3
blocks in three loops along k, i and j (loops along i and j can be reordered). Its three input blocks are denoted
B1°, B2° and B3", respectively. Every execution of the assignment in the nest of loops increases the calculation
level of element Bl from k —1 to k. The assignment fulfills the requirement of claim 1; therefore, BCal cor-
rectly computes B1 block over itself, B2 and B3 blocks. But if we reorder the loop along k with the loop along i
or j, the requirement is not fulfilled, and the algorithm becomes incorrect.

Algorithm 2. BCal (single calculation of all blocks)
fork<1,...,5do

for i,je{1>-~'a S} do
h . k-1 K K"
Bl; ; « mm(Bl,-J , B2, + B3k,j)
return B, P.

Directed weighted sparse graphs consisting
of unequally sized clusters

In the paper we call a graph clustered if it can be partitioned into dense subgraphs that are interconnected
by a few edges. We call a subgraph dense if its density (the actual number divided by the maximum number
of directed edges) is over 0.5. We call a graph sparse if its density is less than 0.3. Figure 1 shows an example
directed clustered graph that consists of 17 vertices, 69 edges and 3 clusters including 5, 5 and 7 inner vertices,
respectively, and 14, 15 and 31 one-direction-edges, respectively. The clusters have densities of 0.70, 0.75 and
0.74, respectively, and are interconnected by 9 one-direction-edges. The density of the entire graph is 0.25. Let

C be the set of all clusters, C[c].vert be the set of vertices of cluster ¢ and C[c]:size or size(c) be the vertex

set size. All vertices are numbered within the cluster, so C[c].vert[v].index e {1, s C[c].size} is assigned to
each v e C[c].vert.

Cluster 2

S
.’4‘" | In-bridge-vertex
v

Fig. 1. An example graph consisting of weakly connected clusters

The algorithms we have developed exploit the concept of cluster bridge-vertices. A vertex is a bridge in
cluster ¢ € C if it is incident to an edge, which connects the vertex with a vertex of other cluster e € C\ {c} Let
C[c]-bridge be the set of bridge-vertices of cluster ¢ such as C[c].bridge = C[c].vert. A vertex v is an input bridge
in cluster c if it has an incoming incident edge connecting v with other clusters’ vertices. Let C [c].bridge.inall
be the set of input bridge-vertices of cluster ¢ such as C|[c].bridge.inall = C[c].bridge. A vertex v is an out-
put bridge in cluster ¢ if it has an outgoing incident edge connecting v with other clusters’ vertices. Let
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C[c]-bridge.outall be the set of output bridge-vertices of cluster ¢ such as C[c]-bridge.outall = C[c]-bridge.
The set C [c].bridge.inout includes the vertices of cluster ¢, which are input and output bridges simultaneously:
C[c]-bridge.inout = C|[c].bridge.inall N C[c].bridge.outall. The set C|[c].bridge.in includes the purely input
bridge-vertices of cluster ¢: C|c].bridge.in = C[c].bridge.inall \[c].bridge.outall. The set C[c].bridge.out in-
cludes purely output bridge-vertices of ¢: C[c].bridge.out =[c].bridge.outall\ C|[c].bridge.inall. In fig. 1 clus-

ter 1 has two input bridges (vertices 1 and 2) and one output bridge (vertex 3), vertices 4 and 5 are inner. Cluster 2
has three input and output bridges (vertices 6, 7 and 8), vertices 9 and 10 are inner. Cluster 3 has one input and
output bridge (vertex 10) and two output bridges (vertices 11 and 12), vertices 13—16 are inner.

Having a partitioning C of graph G into clusters, we create matrix B of blocks of the shortest path distances

between the vertices (fig. 2). A block B [m, m] (below denoted B [m]) of dimension C [m].size x C [m].size lies
on the principal diagonal of matrix B and describes the shortest path distances between the vertices of clus-
ter m. A block B[c, e] of dimension C [c].size xC [e].size lies out of the principal diagonal and describes the
shortest path distance between the vertices of cluster ¢ and the vertices of cluster e.

¢ G G

In-bridges of cluster c,

-1~ In-out-bridges of cluster c,
| Out-bridge of cluster c,

------------------ Inner vertices of cluster c,

G

Fig. 2. Layout of distance-adjacency matrix in memory

A block element B, e]l_,j is identified with indices i € {1, s C[c].size} and j = {1, s C[e].size} of ver-

tices in clusters ¢ and e, respectively. Within each block the vertices are placed in the following order: input
bridges, input and output bridges, output bridges and other inner vertices of the cluster. This allows us to lo-
calise and assign the vertices of the same group in the same memory lines, and to speed up computations with
the algorithms we propose.

Heterogeneous blocked APSP algorithm for clustered graphs

In developing the heterogeneous blocked APSP algorithm for clustered graphs upon unequal block sizes and
bridge-vertices (algorithm 3 (HBSPCG)) we combined the following techniques: handling blocks of unequal
sizes, using input and output bridge-vertices of clusters to speed up computation, using a heterogeneous approach
to compute four types of blocks and considering all the features of each block type. Its input is a matrix W
describing the graph. Its output is matrix B of the shortest path distances between all pairs of vertices. Algo-
rithm 3 describes HBSPCG at the level of block computation sub-algorithms. Algorithm 4 (DOCG) calculates
the shortest path segments between the vertices of one subgraph, algorithm 7 (C1CG) and algorithm 8 (C2CG) —
between the vertices of two subgraphs, and algorithm 9 (P3CG) — between the vertices of two subgraphs, provided
that the path passes through the vertices of the third subgraph. HBSPCG organises the correct recalculation
of the shortest path segments, when searching for APSP in the entire graph. At the block level the same control
flow scheme is used as in BFW. The key difference between the algorithms is that HBSPCG uses four separate
sub-algorithms for calculating DO, C1, C2 and P3 blocks with different parameter profiles. The structure of
matrix B in HBSPCG is different from that in BFW.

Algorithm 3. HBSPCG
B [MxM]«W[NxN]
form<«1, ..., Mdo
B"[m] <« DOCG(C, m, B"~'[m]) // DO block

force{l,...,M}andv#=mdo
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B"[c, m]« C1CG(B"'[c, m], B"[m], C, c, m) // C1 block

B"[m, c]« C2CG(B" '[m, c], B"[m], C, m, c) // C2 block
forc,ee{l,...,M}and c#mande#=mdo

B’"[c, e] <—P3CG(B’"71[C, e], Bm[c, m], Bm[m, e], C,c,m, e) // P3 block

return BY.

At the control flow level the correctness of HBSPCG is ensured in the same way as BFW. The computation
level of each block, regardless of type, increases at each iteration of the loop along m. The main difference
between HBSPCG and homogeneous BFW is that the former is aimed at saving central processing unit and
memory resources, when calculating diagonal, vertical, horizontal and peripheral blocks.

New algorithm for calculating diagonal blocks
All blocks are square on the principal diagonal of B. When recalculating a diagonal block over itself, the bridge-
vertices are not considered. DOCG, which we propose as a sub-algorithm of HBSPCG, uses one cluster m and
computes one square block B[m, m]0 (which will also be denoted B[m]o) of dimension C[m].size x C[m] size
from computation level O to S. Since the block is computed over itself, the order of computing the elements
[ ] through elements B[m] and B[m]ij along k is crucial. It must satisfy the formula (1). The block
descrlbes APSP between the vertices of cluster m, which may pass through the vertices of other clusters. We in-

terpret block B°[m] as a matrix of edge weights between the vertices of cluster .
DOCG consists of two nests of loops. The first nest includes three loops along variables 4, i and j and three
assignments with the min operation. The first two loops along i and j cover k£ — 1 vertex of the subgraph of clus-
ter m. The loop along £ is repeated over the indices of vertices C [m].vert of cluster m. In DOCG three assign-

ments are aimed at updating APSP between vertices i and j, between vertices i and &, and between vertices &
and j over new paths of shorter length. The second nest consists of two loops along i and j. Finally, it computes

the shortest path between vertices 1, ..., S — 1 through the row and column labeled by S in the matrix B [m]
We developed DOCG as a competmg altematlve to BCal.

Algorithm 4. DOCG (calculation of the diagonal square block B[m])
S « C[m]size
fork<2,....,5do
fori<1,....k—1do
for j<1,....k—1do

B[m]].c_.1 (—min(B[m]l.c_.z, B[m]l.c_l_1 + B[m]/;:i]) 11y
Blm)/ ;" min(B[mY . B[m] "+ B[] ) I/ A,

(], < min(B[m], , B[], +B[m]") e
fori<1,...,5-1do
forj(—l,...,S—ldo
S . S-1 S N
Blm]} , «min(B[m] ", B[]} + B[m]; ) 11O
return B[m]S.

Theorem 1. Upon termination DOCG correctly computes the diagonal block B [m]s over B [m]o, which repre-
sents the shortest path lengths between all vertices of cluster m, possibly passing through vertices of other clusters

of graph G.
Proof. DOCG does not consider the bridge-vertices of cluster m because it computes the block B[m] over
itself. The competitive algorithm BCal recomputes each element of the block B[m] at each iteration of the

loop along k. Unlike BCal, DOCG starts with a one-vertex graph and a block B[m]1 of dimension 1x 1. It then
iteratively adds one row k and one column & to block B[m]ki1 and obtains block B[m]k. The procedure is
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illustrated in fig. 3, a. In this figure B [m]o denotes input block B[m] of dimension S x S before executing DOCG.
Variable b, denotes an element of the matrix B[m].

Two operations A, and €, are used to accomplish the procedure. The first operation A, computes APSP that
are represented by column k and row k of block B[m]k and are computed over APSP of subblock B[m]ki1

Column k is computes by the following equation:

Bl =min(Bm], B[m] "+ B[m], ) for i, j=1,...k~1. @)
Row k is computes according to equation

Bl =min(Bm], . B{m], + Blm]; ") for i, j=1,.... k1. (3)

It should be noted that clalm 1 does not apply to items (2) and (3). The second operation Q, calculates all
elements of subblock B[m] " over row k and column k of computation level , obtaining a block B[m] of
APSP in the subgraph on & vertices of cluster m. It uses the following formula to perform the calculation:

Blm]) =min(B[m]; ", B{m]| + Blm, ) for i, j=1,.... k=1,
We can describe the behaviour of DOCG as the sequence of pairs (A o Qk) of operations:
(A, ), (Mg Q5)s s (Mg, ) s (Ag, Q). 4)

Algorithm 5 displays the corresponding pseudocode. The loop along k represents sequence (4), in its body
the first nest of loops along i and j is the operation A,, and the second nest of loops over i and j is the opera-
tion ;. The operations A, and ©; do not change the block B [m]1 compared to B[m]o, so they are omitted, and
we start with £ = 2. The calculation levels of elements B[m]i’j, B[m]i’ , and B[m]k,j in the operation 2, of
algorithm 5 satisfy claim 2, so the elements B[m]i,j are calculated correctly. The operation A, correctly com-
putes the elements B[m]i’ , and B[m] (. ; from level 0 to level k. We can conclude that algorithm 5 is correct.

Algorithm 5. Recurrent procedure DOCG for calculating diagonal block

S « C[m]size

for k < 2 to S do

fori<1,....k—1do
for j<1,...,k—1do

Blm)l, " min(B[m] . Blm] '+ B[m] ) /A,
Bm],| min(B[m], . B[m], +Bm] ") /A,

fori<1, ...,k 1 do
forj<«1,...,k—1do

B[m]ij,(—min(B[m]i;l, B[m]ik +B[m]l,;j) /1€y
return B[m]S.

Two nests of loops along 7 and j cannot be combined into a single nest of loops due to data dependencies:
element B[m]l_ ; cannot be modified while it is used to modify all elements B[m]i and B [m] . To overcome

this obstacle, we resynchronise (fig. 3, ») sequence (4) with the following sequence of pairs (Q i—1o Mg ):
A (0 A5), (R0 As)s oo (1 Ay ) o (10 A ), Qs

Now we can rewrite algorithm 5 to algorithm 6. The loop along k includes two nests of loops along i and j,
which have the same iteration schemes. The first nest performs the operation €, _,, and recalculates all ele-

ments of the subblock B[m]kil The second nest performs the operation A, and calculates column & and row &
in the block B [m] The two nests of loops can be merged, since B [m] " will not change due to the calculation

of B [m] and B [m] ko and vice versa. As a result, we have obtalned DOCG The theorem is proved.
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Fig. 3. Iterating the diagonal block B[m] along calculation level k in DOCG:
a — adding vertex £ to cluster m; b — resynchronised process of adding vertices

Competitive BCal and DOCG have different iteration schemes. The total number of iterations
of the innermost loop of BCal is S°. The total number of iterations of the innermost loop of DOCG is

6
2+ 3(size(m))_1 + (size(m)z)
size(m)2 element accesses at each iteration of the loop along k. DOCG has k* accesses for k=1, ..., size(m).

Moreover, the element B [m]l ; is common to three assignments. In terms of data reference locality, DOCG out-

performs BCal by up to 3 times. We further transform DOCG to incorporate vectorisation and parallelisation
mechanisms.

— times smaller than that of BCal. It tends to be 3, when size(m ) — c. BCal has

Algorithm 6. Resynchronised DOCG
S « C[m]size
for k< 2 to Sdo
fori<1,....k—1do
for j<1,...,k—1do

Bl min(B[m]i;Z, Blm]', + B[m]ij’j) ey

fori<1,....k—1do
for j«<1,...,k—1do

Blm]/ "« min(B[m]] . B[m] "+ Bm] ) e
Blm], )« min(B[m], , B[m], +Blm] ") I/ A
fori<1,....5-1do
for j<1,....,5-1do
B[m].sx—rnin(B[m].ST1 B[m]s +B[m]S ) /1 Q
i, ] ij i,S S,Jj S
return B[m].

New algorithm for calculating vertical cross-blocks

C1CG computes APSP from the nodes of cluster ¢ to the nodes of cluster m and changes the vertical
cross-block Bl = B[c, m] of dimension size(c) x size(m) through diagonal block B3 = B[ m] of dimension
size(m) X size(m). In this paper we assume that the block sizes are not equal and use the bridge-vertices of

cluster m to speed up the computation of APSP. C1CG is a generalisation of BCal for vertical cross-blocks
describing APSP in clustered directed graphs. It considers two clusters ¢ and m and has two entries: a vertical

crossing block B[c, m] and a diagonal block B[m]. It returns the modified block B[c, m].
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Theorem 2. Upon termination C1CG correctly computes the vertical cross-block B[c, m] over the diago-
nal block B[m] which describes APSP distances from the vertices of cluster c to the vertices of cluster m that
pass through the input bridge-vertices of m.

Proof. The blocks B[c, m]and B[m] have different dimensions: size(c) x size(m) and size(m) x size(m),

respectively. The differences do not affect the fundamentals [ 12] of the shortest path calculation method (BCal)
and the execution of min-plus operations on matrices. Therefore, C1CG is valid with respect to unequal block
sizes.

The algorithm recalculates only one of the two blocks, i. e. B[c, m] and thus relaxes the requirements of

claim 1 to the ordering of the calculation levels of its elements. Therefore, it satisfies claim 1 in advance and is
correct from this point of view. As a result, three loops along £, i and j can be reordered arbitrarily.

Algorithm 7. C1CG (calculation of vertical cross-block upon bridges and unequal block sizes)
for i <— 1 to C[c] size do

for ve C[m].bridge.inall and k = C[m].vert[v].index do
for j <1 to C[m]size do
B[c, m]i’j «— min(B[c, m]i’j, B[c, m]i’k + B[m]k’j)
return B[c, m].

Now we prove that any shortest path from vertex i of cluster ¢ to vertex j of cluster m passes through an
input bridge-vertex k of cluster m. We assume that APSP between the inner vertices of cluster m have been
already calculated. For the shortest path between i and j 2 cases are possible (fig. 4).

1. The path p = (i, ek, ) passes through vertices of the cluster ¢, then passes through the input bridge-
vertex k and other vertices of cluster m, and finally reaches vertex ;.
2.The path p= (z', e Wy ko, j) passes through vertices of cluster ¢, then passes through vertices w

of cluster x and possibly through other vertices of other clusters, then through an input bridge-vertex & of clus-
ter m, and finally reaches the vertex j.

In both cases any shortest path between i and j passes through one of the input bridge-vertices of cluster m. That
is why for loop along & in C1CG it is sufficient to traverse only the input bridge-vertices of cluster m. The theo-
rem is proved.

Cluster x

\ ™ In-bridge-vertex

o

st i ; Inner vertex

Fig. 4. Calculation of vertical cross-block
through diagonal block
(illustration of proof of theorem 2)
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Corollary 1. If cluster m has no input bridge-vertices, C1CG does not change the vertical cross-blocks
B[c, m] in column m of matrix B and hence is not applied to the column.

C1CG gives a speedup in the computation of the vertical cross-blocks compared to the homogeneous blocked
algorithm [14] depending on the share of the input bridge-vertices in the total number of bridge-vertices in cluster .

New algorithm for calculating horizontal cross-blocks

C2CG computes APSP connecting vertices of cluster m with vertices of cluster c. It modifies a horizontal
rectangular cross-block B[m, ¢] of dimension size(m) x size(c) through the diagonal square block B[m] of

dimension size(m) x size(m). C2CG is a generalisation of BCal for horizontal cross-blocks describing shortest

path segments in clustered directed graphs. It uses the output bridge-vertices of cluster m to speed up the shor-
test path computation.

Algorithm 8. C2CG (calculation of horizontal cross-block upon bridges and unequal block sizes)
for i < 1 to C[m]size do

for ve C[m] bridge.outall and k = C[m].vert[v].index do
for j <1 to C[c]size do
B[m, c] ; (—min(B[m, c]l, I B[m] i B[m, c]k j)

return B[m, c|.

Theorem 3. Upon termination C2CG correctly computes horizontal cross-block B[m, c] through diago-
nal block B [m] which describes APSP distances from vertices of cluster m to vertices of cluster c¢ that pass
through the output bridge-vertices of m.

Proof. Although the blocks B[m, c] and B [m] have different sizes [12], these differences do not affect the

correctness of the shortest path calculation method and min-plus operations on matrices as it is done for BCal.
Therefore, C2CG is correct from this point of view.
The algorithm relaxes the requirements of claim 1 for the order of the matrix element calculation levels,

since it recalculates only one block B[c, m] and does not change other block B[m]at the same time. Therefore,
it correctly computes B[c, m] for any order of three loops along variables 7, k and j.

Now we suppose that APSP between the inner vertices of cluster ¢ and between the inner vertices of cluster m
have been already calculated. At this assumption, we prove that any shortest path from vertex i of cluster m to
vertex j of cluster ¢ passes through an output bridge-vertex & of cluster m. For the shortest path between i and
2 cases are possible (fig. 5).

1. The path p= (i, e ky o, j) passes through vertices of cluster m including an output bridge-vertex &,
then passes through vertices of cluster ¢, and finally reaches vertex j of the cluster.

2.The path p = (i, U U A | ) passes through vertices of cluster m including the output bridge-ver-
tex k, then passes through one or more vertices w of cluster x and may be other vertices of other clusters, then
passes through vertices of cluster ¢, and finally reaches vertex j of the cluster.

Cluster m

Out—bridgeivertex Cluster x

Fig. 5. Calculation of horizontal cross-block through diagonal block
(illustration of proof of theorem 3)
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In both cases any shortest path between i and j passes through one of the output bridge-vertices of clus-
ter m. This is why for the iteration scheme of the loop along k in C2CG it is sufficient to traverse only the
output bridge-vertices of cluster m. The theorem is proved.

Corollary 2. If a cluster m has no output bridge-vertices, C2CG does not change the horizontal cross-blocks

B[m, c] in row m of matrix B and hence is not applied to the row.
C2CG provides the speedup in computation of the horizontal cross-blocks in comparison to the homo-

geneous blocked algorithm [14] depending on the share of the output bridge-vertices in the total number of
bridge-vertices in cluster m.

New algorithm for calculating peripheral blocks

P3CG computes shortest-path segments. The segments connect vertices of cluster ¢ with vertices of clus-
ter e, passing through vertices of cluster m. The algorithm modifies a rectangular block B[c, e] of dimension

size(c) x size(e) using two rectangular blocks B[c, m| and B[m, e] of the dimension C[c].size x C[m]size
and C[m].size X C[e].size, respectively. P3CG is a generalisation of FW for clustered directed graphs. It uses

the input or output bridge-vertices of cluster m to speed up the computations.
The algorithm consists of three nested loops along variables 7, k£ and j and includes one assignment state-
ment. The loops along i and j traverse all vertices of clusters ¢ and e, respectively. The loop along £ traver-

ses the vertices of cluster m that belong to the subset C [m].bridge.best. The subset is one of two vertex subsets
that has the minimum size: C[m] bridge.best = C[m] bridge.inall if |C[m].bridge.inall| = |C[m].bridge.outall],
and C[m].bridge.best = C[c].bridge.outall, otherwise.

Algorithm 9. P3CG (calculation of peripheral rectangular block upon bridges and unequal block sizes)
for i < 1 to C[c]size do

for ve C[m].bridge.best and k < C[m].vert[v].index do
for j < 1 to C[e]size do
B[c, e] i <~ min(B[c, e]i,j, B[c, m]i’k + B[m, e]k’j)

return B[c, e]. "

Theorem 4. Upon termination P3CG correctly computes block B[c, e] over blocks B[c, m] and B[m, e],
which describe the shortest path segments from the vertices of cluster c to the vertices of cluster e that pass
through the best bridge-vertices of cluster m.

Proof. Although, unlike BCal, the input blocks B|c, e], B[c, m] and B[m, e]have different sizes in P3CG,
the differences do not affect the shortest path calculation technique [12] and min-plus operations on matrices as
is done in BCal. Therefore, P3CG is correct regarding different block sizes, since BCal is proven to be correct.

The algorithm relaxes the requirements of claim 1 for the order of the calculation levels of the distance mat-
rix elements, since it recalculates only the elements of one block B [c, e] and does not simultaneously change
the elements of the other two blocks B[c, m] and B[m, e]. Therefore, it correctly computes the block B|c, €]
with respect to the calculation levels for any reordering of three loops along variables i, k£ and ;.

Now we prove that any shortest path p = (i, ..., k, ..., j), where i € C[c].vert, k € C[m].vertand j e C|e].vert,
includes the input bridge-vertex of cluster m. As shown in fig. 6, there are 4 cases of the shortest path passing
through three clusters.

1. The strait path through clusters ¢, m and e is p = (i, vk, ) This means that the path starting from
i passes through the vertices of cluster ¢, enters cluster m through the input bridge-vertex £, exits cluster m
through one of the output bridge-vertices, and finally goes to vertex ; of cluster e.

2.The path is p=(i,..., w, ..., k, ..., j), where we C[x].vert, and x is a cluster other than ¢, m and e.
The path goes from i through vertices of cluster ¢, goes through vertices w of cluster x (might be several clus-
ters), enters cluster m through vertex k, exits it through an output bridge-vertex, and finally passes through
vertices of cluster e to vertex J.

3.Thepathis p=(i, ..., k, ..., z, ..., j), where z € C[ y].vert, and y is a cluster other than ¢, m and e. The path
goes from 7 through vertices of cluster ¢, enters cluster m through vertex £, exits it through an output bridge-ver-
tex, passes through vertices z of cluster y (there may be several clusters), and finally goes through vertices of
cluster e to vertex ;.

4.The path is p = (i, oWk Z, j), where w and z are vertices of clusters other than ¢, m and e.

The path goes from i through vertices of cluster ¢, passes through vertices w of cluster x (there may be several
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clusters), enters cluster m through vertex £, exits it through an output bridge-vertex, passes through vertices z
of cluster y (there may be several clusters), and finally passes through vertices of cluster e to vertex ;.

Having considered these 4 cases, we can conclude that no path from i to j that does not pass through an
input bridge-vertex of cluster m. Therefore, all iterations of loop along & in P3CG may correspond to the input
bridge-vertices of cluster m.

‘_I__.,-'r'rB[c, e]

i ] e

. Cluster e

In-l;ridge-vertex

Fig. 6. Calculation of peripheral block over two cross-blocks
through input bridge-vertices of cluster m (illustration of proof of theorem 4)

Similarly (fig. 7), it can be proved that any shortest path p = (i, ..., k, ..., j), where i € C[c].vert, k € C[m].vert
and jeC [e] .vert, includes an output bridge-vertex of cluster m. This means that the iterations of loop along &
in P3CG can correspond to the output bridge-vertices of cluster m. We have two alternatives for the loop ite-

ration scheme. To speed up the computations, we choose the subset C [m].bridge.best that has the smallest size.
The theorem is proven.

B [C’ e]i, Fi

Cluster ¢ Cluster e

Out-bridge-vertex

Fig. 7. Calculation of peripheral block over two cross-blocks
through output bridge-vertices of cluster m (illustration of proof of theorem 4)

Corollary 3. If cluster m has no input or output bridge-vertices, P3CG does not change the peripheral blocks
B [c, e], c ec {1, M } c # m and e # m, of matrix B and therefore is not applied to all the peripheral blocks.

The smaller the number of bridge-vertices in C[m].bridge.best than the less central processing unit time
the P3CG consumes.

Experimental results and comparison
of algorithms and their implementations

We developed in C++ language and used two versions (single-threaded and multi-threaded OpenMP (ver-
sion 4.5)) of implementations of the proposed HBSPCG and, for comparison, implementations of previously known
algorithms. The source code was compiled by GNU Compiler Collection (version 14.2.0) with auto-vectorisation
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enabled. The paper presents the results of experiments performed on two computers: MacBook M1 Max and
server consisting of two Intel Xeon E5-2620v4 processors (each has 8 cores and 16 physical threads).

The article describes experiments conducted on four random directed simple weighted graphs decomposed
into dense weakly connected clusters of different sizes (table 1). Judging by the number of edges in the graphs and
the number of edges between clusters, all clusters are dense subgraphs. The edge density in all four graphs was
in the range of 0.003 55-0.012 51, meaning that all graphs were sparse.

Table 1
A sample of four random sparse graphs consisting of tens of dense clusters
L\Ifu;:;ﬁ Vertices Clusters Edges Density Bridge-vertices | Bridge-edges
1 4800 20 288 245 0.01251 567 621
2 4800 41 153 858 0.006 68 620 687
3 9600 40 644 198 0.00699 3452 2374
4 9600 80 326 779 0.003 55 3550 2505

Table 2 shows results obtained on MacBook M1 Max. In case of single-threaded implementations the speedup
of the proposed heterogeneous blocked algorithm HBSPCG (clustered graph, bridge-vertices) compared to the
known homogeneous blocked algorithm BSPCG [14] (clustered graph, bridge-vertices) is of 1.62—1.94 times.
In case multi-threaded OpenMP implementations the speedup is 1.87-1.97 times.

Table 2
Runtimes of algorithms BSPCG and HBSPCG on MacBook M1 Max
Single-threaded implementations Multi-threaded OpenMP implementations
Number Speedup Speedup
of graph BSPCG, s HBSPCG,s |of HBSPCG over| BSPCG,s HBSPCG,s |of HBSPCG over
BSPCG, times BSPCG, times
1 321 1.65 1.94 0.69 0.35 1.97
2 2.70 1.66 1.62 0.48 0.26 1.88
3 37.30 19.52 1.91 5.54 2.87 1.93
4 34.84 21.15 1.65 5.31 2.84 1.87

The results obtained on the server are shown in the table 3. HBSPCG outperformed BSPCG by 1.58—-1.66
times for single-threaded implementations and by 1.29-1.64 times for multi-threaded OpenMP implementations.
Table 3 also provides a comparison of HBSPCG with the classical BFW with equal block sizes. The speedup
of HBSPCG over BFW was in the range of 4.17-8.18 for single-threaded implementations and 3.91-6.36 for
multi-threaded OpenMP implementations.

Table 3

Comparison of BSPCG, HBSPCG and BFW
on server with two Intel Xeon E5-2620v4 processors

Single-threaded implementations Multi-threaded OpenMP implementations
Number Speedup Speedup Speedup Speedup
of graph BSPCG, s| HBSPCG, s| of HBSPCG over | of HBSPCG over |BSPCG, s | HBSPCG, s| of HBSPCG over | of HBSPCG over
BSPCG, times BFW, times BSPCG, times BFW, times
1 11.07 6.28 1.76 8.18 0.91 0.57 1.59 6.36
2 11.18 6.82 1.64 7.24 1.05 0.82 1.29 4.13
3 148.08 89.06 1.66 4.59 9.62 5.86 1.64 4.52
4 149.95 94.90 1.58 4.17 10.50 6.48 1.62 3.91
Conclusions

The FW family of algorithms, which solve the problem of APSP has cubic time complexity and quadratic
memory complexity regardless of the number of edges in the graph that creates obstacles for processing real
large graphs on multi-processor systems. The goal of the BFW is to provide parallelism and efficient use of
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the hierarchical processor memory. It is most efficient on dense graphs and has losses on sparse graphs. Many
works and publications are devoted to achievements in the field of reducing the computational resources con-
sumed by the blocked algorithm. In the paper we propose a heterogeneous version of such an algorithm that
considers the features of large clustered directed weighted graphs, which are divided into dense clusters of
different sizes, weakly connected by bridge-vertices and bridge-edges. The algorithm distinguishes four types
of blocks and exploits their unique features in a separate procedure for each block to speed up the computa-
tion of APSP and improve the locality of references to data. This allowed us to reduce the runtime by approxi-
mately twice on the MacBook M1 Max computer compared to the well-known homogeneous BFW on the
clustered graphs and to reduce the runtime up to eight times on the server compared to the classical BFIW with
equal block sizes.

References

1. Madkour A, Aref WG, Rehman F, Rahman MA, Basalamah SM. Survey of shortest-path algorithms. arXiv:1705.02044vl [Pre-
print]. 2017 [cited 2025 May 2]: [26 p.]. Available from: https://arxiv.org/abs/1705.02044.

2. Prihozhy AA. Synthesis of quantum circuits based on incompletely specified functions and if-decision diagrams. Journal of the
Belarusian State University. Mathematics and Informatics. 2021;3:84-97. DOI: 10.33581/2520-6508-2021-3-84-97.

3. Floyd RW. Algorithm 97: shortest path. Communications of the ACM. 1962;5(6):345. DOI: 10.1145/367766.368168.

4. Warshall S. A theorem on boolean matrices. Journal of the ACM. 1962;9(1):11-12. DOI: 10.1145/321105.321107.

5. Venkataraman GA, Sahni S, Mukhopadhyaya S. A blocked all-pairs shortest-paths algorithm. Journal of Experimental Algo-
rithmics. 2003;8:857-874. DOI: 10.1145/996546.996553.

6. Park J-S, Penner M, Prasanna VK. Optimizing graph algorithms for improved cache performance. /[EEE Transactions on Pa-
rallel and Distributed Systems. 2004;15(9):769-782. DOI: 10.1109/TPDS.2004.44.

7. JTuxonen HA, Curneiiko JIC. O60061meHHbIMH 60uHbIi anroput™ Dnoiina — Yopiuesna. Kypuan Beropycckozo 2ocyoapcmeen-
Hozo ynugepcumema. Mamemamuxa. Hngpopmamura. 2019;3:84-92. DOI: 10.33581/2520-6508-2019-3-84-92.

8. Djidjev H, Chapuis G, Andonov R, Thulasidasan S, Lavenier D. All-pairs shortest path algorithms for planar graph for GPU-
accelerated clusters. Journal of Parallel and Distributed Computing. 2015;85:91-103. DOI: 10.1016/j.jpdc.2015.06.008ff.

9. Yang S, Liu X, Wang Y, He X, Tan G. Fast all-pairs shortest paths algorithm in large sparse graph. In: Association for Compu-
ting Machinery. /CS’23. Proceedings of the 3 7" International conference on supercomputing; 2023 June 21-23; Orlando, USA. New
York: Association for Computing Machinery; 2023. p. 277-288. DOI: 10.1145/3577193.3593728.

10. INpuxoxuit AA, Kapacuk OH. PazHOpomHBIi GIOYHBIH anropuTM IMONCKA KPaTYalIINX ITyTeH MKy BCEMH ITapaMH BEpIINH
rpada. Cucmemmvliii ananus u npukiaouas ungopmamuxa. 2017;3:68—75. EDN: ZWMSYN.

11. Prihozhy AA, Karasik ON. Advanced heterogeneous block-parallel all-pairs shortest path algorithm. Proceedings of BSTU.
Issue 3, Physics and Mathematics. Informatics. 2023;1:77-83. DOI: 10.52065/2520-6141-2023-266-1-13.

12. Prihozhy AA, Karasik ON. New blocked all-pairs shortest paths algorithms operating on blocks of unequal sizes. System Ana-
lysis and Applied Information Science. 2023;(4):4—13. DOI: 10.21122/2309-4923-2023-4-4-13.

13. Prihozhy AA, Karasik ON. Blocked algorithm of shortest paths search in sparse graphs partitioned into unequally sized clus-
ters. In: Bogush VA, Dik SK, Likhachevskii DV, Kazak TV, Piskun GA, editors. Big data and high-level analysis. Collection of scien-
tific articles of the 10™ International scientific and practical conference; 2024 March 13; Minsk, Belarus. Minsk: Belarusian State
University of Informatics and Radioelectronics; 2024. p.262-271. EDN: FSMHWS.

14. Karasik ON, Prihozhy AA. Blocked algorithm of finding all-pairs shortest paths in graphs divided into weakly connected clus-
ters. System Analysis and Applied Information Science. 2024;2:4-10. DOI: 10.21122/2309-4923-2024-2-4-10.

15. Carlson T, Wong G. Optimization of the Floyd — Warshall shortest path algorithm. In: Arabnia HR, Deligiannidis L, Amirian S,
Ghareh Mohammadi F, Shenavarmasouleh F, editors. Foundations of computer science and frontiers in education: computer science
and computer engineering. Proceedings of the 20" International conference on foundations of computer science and 20" Internatio-
nal conference on frontiers in education; 2024 July 22-25; Las Vegas, USA. Las Vegas: Springer; 2025. p. 84-90 (Communications in
computer and information science; volume 2261).

16. Sangeetha DP, Sekar S, Parvathy PR, GaneshBabu SRTR, Muthulekshmi M. Optimizing shortest paths in big data using the
Floyd — Warshall algorithm. In: GL BAJAJ Group of Institutions. Proceedings of the International conference on intelligent control,
computing and communications, 2025 February 13—14; Mathura, India. [S. 1.]: IEEE; 2025. p. 382-387. DOI: 10.1109/1C363308.2025.
10957179.

17. Liu G. Solving the all pairs shortest path problem after minor update of a large dense graph. arXiv:2412.15122v6 [Preprint].
2025 [cited 2025 November 16]: [10 p.]. Available from: https://arxiv.org/pdf/2412.15122.

18. Kumar S, Karthik S, Srilakshmi S, Dharun Viginesh P. Performance analysis of Floyd — Warshall algorithm: sequential and
parallel execution using intel oneAPI. In: RVS Technical Campus. Proceedings of the 8" International conference on electronics, com-
munication and aerospace technology, 2024 August 6, Coimbatore, India. [S. 1.]: IEEE; 2024. p. 205-211. DOI: 10.1109/ICECA63461.
2024.10800787.

19. Kapacux OH, ITpuxoxwuii AA. [IoTOKOBBIi OIIOYHO-TTApAIIICTBHBINA aNTOPUTM MOMCKA KpaTYalIuX myTel Ha rpade. /Jokiadvl
benopycckoeo eocydapcmeennoco ynusepcumema urngopmamuru u paouodnexkmpornuxu. 2018;2:77-84. EDN: YVOTCR.

20. Prihozhy AA. Generation of shortest path search dataflow networks of actors for parallel multi-core implementation. /nforma-
tics. 2023;20(2):65-84. DOI: 10.37661/1816-0301-2023-20-2-65-84.

21. Karasik ON, Prihozhy AA. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core implementation. Sys-
tem Analysis and Applied Information Science. 2022;3:57—65. DOI: 10.21122/2309-4923-2022-3-57-65.

22. Prihozhy AA, Karasik ON. Influence of shortest path algorithms on energy consumption of multi-core processors. System Ana-
lysis and Applied Information Science. 2023;2:4—12. DOI: 10.21122/2309-4923-2023-2-4-12.

Received 10.05.2025 / revised 25.08.2025 / accepted 19.11.2025.

75



