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УДК 004

РАЗНОРОДНЫЙ БЛОЧНЫЙ АЛГОРИТМ  
ПОИСКА КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ ВСЕМИ ПАРАМИ  
ВЕРШИН КЛАСТЕРИЗОВАННОГО ВЗВЕШЕННОГО ГРАФА

A. A. ПРИХОЖИЙ 1), О. Н. КАРАСИК 2)

1)Белорусский национальный технический университет, 
пр. Независимости, 65, 220013, г. Минск, Беларусь 

2)Иссофт Солюшенз, ул. Чапаева, 5, 220034, г. Минск, Беларусь

Аннотация. Предлагается новый гетерогенный блочный алгоритм поиска кратчайших путей между всеми 
парами вершин большого ориентированного взвешенного простого графа, состоящего из слабосвязанных плотных 
кластеров (подграфов) разных размеров. Алгоритм учитывает и активно использует входные и выходные граничные 
вершины и ребра каждого кластера для ускорения вычислений и локализации обращений к памяти. Он делит все 
блоки матрицы «стоимость – смежность» на четыре типа (квадратный диагональный, прямоугольный вертикальный 
на кресте, прямоугольный горизонтальный на кресте и прямоугольный периферийный) и использует отдельную 
процедуру расчета для них, учитывает конструктивные особенности самого блока и способ его расчета через 
другие блоки. Приводится теоретическое обоснование преимуществ предлагаемых алгоритмов, сокращающих 
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время выполнения при поиске кратчайших путей. Достоверность сформулированных положений подтверждается 
результатами проведенных вычислительных экспериментов. Разрабатываются однопоточные реализации и много-
поточные OpenMP реализации предлагаемого гетерогенного алгоритма и двух известных гомогенных блочных ал-
горитмов для поиска кратчайших путей. Вычислительные эксперименты на многоядерных процессорах проводятся 
на случайных ориентированных взвешенных графах, декомпозированных на слабосвязанные плотные кластеры 
разных размеров. Описываются результаты для четырех кластеризованных графов, два из которых имеют 4800 вер-
шин (20 и 41 кластер соответственно) и два из которых имеют 9600 вершин (40 и 80 кластеров соответственно). 
На компьютере MacBook M1 Max в случае с однопоточностью предложенный гетерогенный блочный алгоритм 
для кластеризованных графов с граничными вершинами превзошел известный гомогенный блочный алгоритм для 
таких же графов в 1,62–1,94 раза; в случае с OpenMP-многопоточностью ускорение составило 1,87–1,97. На сервере 
из двух процессоров Intel Xeon E5-2620v4 гетерогенный алгоритм превзошел гомогенный алгоритм в 1,58 –1,66 раза 
для однопоточности и в 1,29–1,64 раза для многопоточности. Сравнение предложенного алгоритма с классиче-
ским блочным алгоритмом Флойда – Уоршелла, в котором блоки имеют одинаковый размер, показало ускорение 
в 4,17– 8,18 раза в случае с однопоточностью и ускорение в 3,91– 6,36 раза в случае с OpenMP-многопоточностью.

Ключевые слова: кластеризованный взвешенный большой граф; кратчайшие пути между всеми парами вер-
шин; блочный алгоритм; гетерогенные вычисления; ускорение.
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Abstract. New heterogeneous blocked algorithm of finding all-pairs shortest paths in a large directed weighted simple 
graph consisting of weakly connected dense clusters (subgraphs) of different sizes is proposed. The algorithm considers 
and actively exploits the input and output bridge-vertices and edges of each cluster to speed up computation and localise 
memory accesses. It divides all blocks of the cost adjacent matrix into four types (square diagonal, rectangular vertical 
cross, rectangular horizontal cross and rectangular peripheral) and uses a separate computation procedure for each type, 
considering the design features of the block itself and the way it is computed through other blocks. A theoretical justifica-
tion of the advantages of the proposed algorithms, which reduce the execution time when searching for the shortest paths, is 
given. The validity of the formulated statements is also confirmed by the results of computational experiments. We have de-
veloped single-threaded implementations and multi-threaded OpenMP implementations of the proposed hetero geneous algo-
rithm and two known homogeneous blocked algorithms of finding shortest paths. Computational experiments on multi core 
processors were performed on directed weighted random sparse graphs decomposed into weakly connected dense clusters of 
different sizes. The results are described for four clustered graphs, two of which have 4800 vertices (20 and 41 clus ters, 
res pectively) and two of which have 9600 vertices (40 and 80 clusters, respectively). On the MacBook M1 Max computer 
in the case of single-threaded implementations proposed heterogeneous blocked algorithm for clustered graph with bridge- 
vertices outperformed the known homogeneous blocked algorithm for the same graphs by a factor of 1.62–1.94; in the case 
of multi-threaded OpenMP implementations the speedup was 1.87–1.97. On a server with Intel Xeon E5-2620v4 processors 
heterogeneous algorithm outperformed the known homogeneous algorithm by a factor of 1.58 –1.66 for single- threaded 
implementations and by a factor of 1.29–1.64 for multi-threaded implementations. A comparison of proposed algorithm 
with the classical blocked Floyd – Warshall algorithm in which all blocks are of the same size showed a speedup of 
4.17– 8.18 times in the case of single-threaded implementations and a speedup of 3.91– 6.36 times in the case of multi- 
threaded OpenMP implementations.

Keywords: clustered weighted large graph; all-pairs shortest paths; blocked algorithm; heterogeneous computations; 
speedup.

Introduction

The problem of all-pairs shortest paths (APSP) is fundamental in many domains including social networks, 
bioinformatics, transportation networks, synthesis of quantum logic circuits, etc. [1; 2]. The classical Floyd – 
Warshall algorithm (further FW ) [3; 4] solves this problem. The blocked FW (further BFW ) [5–7], which is 
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homogeneous, performs a partitioning of the graph into subgraphs of equal size and uses the same block cal-
culation procedure for all blocks of the distance matrix. New APSP algorithms for large clustered graphs were 
proposed in the works [8; 9]. They combine the classical FW and Dijkstra algorithm and utilise bridge-vertices 
of the clusters to improve performance. The heterogeneous blocked APSP algorithm [10; 11] for non-clustered 
dense graphs distinguishes four types of blocks, each computed by a separate procedure, but all blocks are 
of the same size. The homogeneous BFW, which can handle subgraphs and blocks of different sizes [12; 13], 
uses the same universal procedure to calculate the blocks of all types. The blocked APSP algorithm for clus-
tered graphs and unequally sized blocks [14], which uses bridge-vertices to reduce runtime, is homogeneous 
because it uses a single block calculation procedure. The works [15–22] improve BFW while considering as-
pects such as efÏcient utilisation of graphics processing units, tuning to optimal block size, using cooperative 
thread sche duler, reducing power consumption, establishing dataflow networks of actors, etc. In this paper, we 
present a new heterogeneous blocked algorithm for solving the problem of APSP on large clustered graphs 
considering bridge-vertices and bridge-edges, unequally sized blocks, separate computation procedures for 
each block type and algorithm transformation for localising data references.

Homogeneous BFW
Let G V E� � �,  be a directed simple graph with real edge-weights composed of a set V of N vertices and 

a set E of edges. A cost adjacency matrix W of G has wi, i = 0, 1 ≤ i ≤ N, where wi, i is equal to the weight of 
edge i j E, ,� ��  and wi,  j = ∞ if i ≠ j and i j E, .� ��  When G has no negative-weight cycle, the dynamic prog-
ramming FW [3; 4] computes a sequence of distance matrices D0 = W, …, D k, …, D N such that in matrix D k the 
shortest path from i to  j is composed of the vertex subset 1, , .�� �k  FW calculates the elements of matrix D using 
the formula
 d d d di j

k

i j
k

i k
k

k j
k

, , , ,min ,� �� �� � ��1  (1)
and assuming that d wi j i j, , .

0 =
Claim 1 [6]. We suppose that d k Ni j

k
, , , , ,� �1  is computed with the formula (1) for � �� � �k k k, 1 and 

� ���k k N, , then upon termination FW correctly computes APSP.
Algorithm 1 (homogeneous BFW ) [5; 6; 10 –14] divides set V into subsets of equal size S and splits the mat-

rix D into blocks leading to matrix B M M�� �. Initially each block has a zero level of calculation, B v u W
0
, ,� � �

u W v u, , .� � � � �
Algorithm 1. Homogeneous BFW
for m ← 1, …, M do 

 B m m BCal B m m B m m B m m
m m m m

, , , , , ,� �� � � � � � �� �� � �1 1 1  // D0 block 
 for v M� �� �1, ,  and v ≠ m do

 B v m BCal B v m B v m B m m
m m m m
, , , , , ,� �� � � � � � �� �� �1 1  // C1 block 

 B m v BCal B m v B m m B m v
m m m m

, , , , , ,� �� � � � � � �� �� �1 1  // C2 block
 for v u M, , ,� �� �1  and v ≠ m and u ≠ m do

 B v u BCal B v u B v m B m u
m m m m
, , , , , ,� �� � � � � � �� ��1  // P3 block

return B M.

In each of M iterations of the loop along m, homogeneous BFW computes one diagonal D0 block B m m
m ,� � 

to level m of calculation, computes M – 1 vertical C1 cross-blocks B v m
m ,� � to level m, computes M – 1 hori-

zontal C 2 cross-blocks B m v
m ,� � to level m and computes M �� �1 2 peripheral P3 blocks B v u

m ,� � to level m. 
All cross-blocks can be calculated mutually in parallel. All peripheral blocks can be calculated in parallel as 
well. The following claim holds for all the blocks of type P3 [19; 20].

Claim 2. We suppose that the P3 block B v u
m , ,� �  m = 1, …, M, is computed with the formula

B v u BCal B v u B v m B m u
m m m m
, , , , , ,� � � � � � � � �� �� � ��1

for � �� �m m m,  and � ���m m M, . Upon termination BFW correctly computes APSP in graph G.
At each iteration BFW increments the calculation level of each block and fulfills the requirement of claim 2 

for the P3 blocks. Therefore, BFW computes APSP correctly.
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The block calculation algorithm 2 (BCal ) implements the classical FW and can compute D0, C1, C 2 and P3 
blocks in three loops along k, i and  j (loops along i and j can be reordered). Its three input blocks are denoted 
B10, B20 and B30, respectively. Every execution of the assignment in the nest of loops increases the calculation 
level of element B1ij from k – 1 to k. The assignment fulfills the requirement of claim 1; therefore, BCal cor-
rectly computes B1 block over itself, B2 and B3 blocks. But if we reorder the loop along k with the loop along i 
or  j, the requirement is not fulfilled, and the algorithm becomes incorrect. 

Algorithm 2. BCal (single calculation of all blocks)
for k ← 1, …, S do 

 for i j S, , ,� �� �1  do

 B B B Bi j
k

i j
k

i k
k

k j
k

1 1 2 3
1

, , , ,min ,� �� �� � ��

return B, P.

Directed weighted sparse graphs consisting  
of unequally sized clusters

In the paper we call a graph clustered if it can be partitioned into dense subgraphs that are interconnected 
by a few edges. We call a subgraph dense if its density (the actual number divided by the maximum number 
of directed edges) is over 0.5. We call a graph sparse if its density is less than 0.3. Figure 1 shows an example 
directed clustered graph that consists of 17 vertices, 69 edges and 3 clusters including 5, 5 and 7 inner vertices, 
respectively, and 14, 15 and 31 one-direction-edges, respectively. The clusters have densities of 0.70, 0.75 and 
0.74, respectively, and are interconnected by 9 one-direction-edges. The density of the entire graph is 0.25. Let 
C be the set of all clusters, C c� �.vert be the set of vertices of cluster c and C c� �.size or size c� � be the vertex 
set size. All vertices are numbered within the cluster, so C c v C c� � � � � � � �� �. . , , .vert index 1 size  is assigned to 
each v C c� � �. .vert

The algorithms we have developed exploit the concept of cluster bridge-vertices. A vertex is a bridge in 
cluster c ∈ C if it is incident to an edge, which connects the vertex with a vertex of other cluster e� � �C c\ . Let 
C c� �.bridge be the set of  bridge-vertices of cluster c such as C c C c� � � � �. . .bridge vert  A vertex v is an input bridge 
in cluster c if it has an incoming incident edge connecting v with other clusters’ vertices. Let C c� �.bridge.inall 
be the set of input bridge-vertices of cluster c such as C c C c� � � � �.bridge.inall .bridge. A vertex v is an out-
put bridge in cluster c if it has an outgoing incident edge connecting v with other clusters’ vertices. Let 

Fig. 1. An example graph consisting of weakly connected clusters
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C c� �.bridge.outall be the set of output bridge-vertices of cluster c such as C c C c� � � � �. . .bridge.outall bridge  

The set C c� �.bridge.inout  includes the vertices of cluster c, which are input and output bridges simultaneously: 
C c C c C c� � � � � � � �. . .bridge.inout bridge.inall bridge.outall. The set C c� �.bridge.in includes the purely input 
bridge-vertices of cluster c: C c C c c� � � � � � �. . \ . .bridge.in bridge.inall bridge.outall  The set C c� �.bridge.out  in-
cludes purely output bridge-vertices of c: C c c C c� � � � � � �. \ .bridge.out .bridge.outall bridge.inall. In fig. 1 clus-
ter 1 has two input bridges (vertices 1 and 2) and one output bridge (vertex 3), vertices 4 and 5 are inner. Cluster 2 
has three input and output bridges (vertices 6, 7 and 8), vertices 9 and 10 are inner. Cluster 3 has one input and 
output bridge (vertex 10) and two output bridges (vertices 11 and 12), vertices 13–16 are inner.

Having a partitioning C of graph G into clusters, we create matrix B of blocks of the shortest path distances 
between the vertices (fig. 2). A block B m m,� � (below denoted B m� �) of dimension C m C m� � � � �. .size size lies 
on the principal diagonal of matrix B and describes the shortest path distances between the vertices of clus-
ter m. A block B c e,� � of dimension C c C e� � � � �. .size size lies out of the principal diagonal and describes the 
shortest path distance between the vertices of cluster c and the vertices of cluster e. 

A block element B c e
i j

, ,� �  is identified with indices i C c� � � �� �1, , .size  and j C e� � � �� �1, , .size  of ver-
tices in clusters c and e, respectively. Within each block the vertices are placed in the following order: input 
bridges, input and output bridges, output bridges and other inner vertices of the cluster. This allows us to lo-
calise and assign the vertices of the same group in the same memory lines, and to speed up computations with 
the algorithms we propose.

Heterogeneous blocked APSP algorithm for clustered graphs
In developing the heterogeneous blocked APSP algorithm for clustered graphs upon unequal block sizes and 

bridge-vertices (algorithm 3 (HBSPCG)) we combined the following techniques: handling blocks of unequal 
sizes, using input and output bridge-vertices of clusters to speed up computation, using a heterogeneous approach 
to compute four types of blocks and considering all the features of each block type. Its input is a matrix W 
describing the graph. Its output is matrix B of the shortest path distances between all pairs of vertices. Algo-
rithm 3 describes HBSPCG at the level of block computation sub-algorithms. Algorithm 4 (D0CG) calculates 
the shortest path segments between the vertices of one subgraph, algorithm 7 (C1CG) and algorithm 8 (C 2CG) – 
between the vertices of two subgraphs, and algorithm 9 (P3CG) – between the vertices of two subgraphs, provided 
that the path passes through the vertices of the third subgraph. HBSPCG organises the correct recalculation 
of the shortest path segments, when searching for APSP in the entire graph. At the block level the same control 
flow scheme is used as in BFW. The key difference between the algorithms is that HBSPCG uses four separate 
sub-algorithms for calculating D0, C1, C 2 and P3 blocks with different parameter profiles. The structure of 
matrix B in HBSPCG is different from that in BFW.

Algorithm 3. HBSPCG
B M M W N N

0
�� �� �� �

for m ← 1, …, M do 

 B m D CG C m B m
m m� �� � �� ��

0
1

, ,  // D0 block
 for c M� �� �1, ,  and v ≠ m do

Fig. 2. Layout of distance-adjacency matrix in memory
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 B c m C CG B c m B m C c m
m m m
, , , , , ,� �� � � � �� ��

1
1  // C1 block

 B m c C CG B m c B m C m c
m m m

, , , , , ,� �� � � � �� ��
2

1  // C 2 block
 for c e M, , ,� �� �1  and c ≠ m and e ≠ m do

 B c e P CG B c e B c m B m e C c m em m m m
, , , , , , , , , ,� �� � � � � � �� ��3 1  // P3 block

return B M.

At the control flow level the correctness of HBSPCG is ensured in the same way as BFW. The computation 
level of each block, regardless of type, increases at each iteration of the loop along m. The main difference 
between HBSPCG and homogeneous BFW is that the former is aimed at saving central processing unit and 
memory resources, when calculating diagonal, vertical, horizontal and peripheral blocks.

New algorithm for calculating diagonal blocks
All blocks are square on the principal diagonal of B. When recalculating a diagonal block over itself, the bridge- 

vertices are not considered. D0CG, which we propose as a sub-algorithm of HBSPCG, uses one cluster m and 
computes one square block B m m,� �

0 (which will also be denoted B m� �
0
) of dimension C m C m� � � � �. .size size 

from computation level 0 to S. Since the block is computed over itself, the order of computing the elements 
B m

i j

k
� � ,  through elements B m

i k

k
� �

�

,  and B m
k j

k
� �

��

,  along k is crucial. It must satisfy the formula (1). The block 
describes APSP between the vertices of cluster m, which may pass through the vertices of other clusters. We in-
terpret block B m

0� � as a matrix of edge weights between the vertices of cluster m.
D0CG consists of two nests of loops. The first nest includes three loops along variables k, i and j and three 

assignments with the min operation. The first two loops along i and  j cover k – 1 vertex of the subgraph of clus-
ter m. The loop along k is repeated over the indices of vertices C m� �.vert of cluster m. In D0CG three assign-
ments are aimed at updating APSP between vertices i and  j, between vertices i and k, and between vertices k 
and  j over new paths of shorter length. The second nest consists of two loops along i and  j. Finally, it computes 
the shortest path between vertices 1, …, S – 1 through the row and column labeled by S in the mat rix B m� �. 
We developed D0CG as a competing alternative to BCal.

Algorithm 4. D0CG (calculation of the diagonal square block B m� �)
S C m� � �.size
for k ← 2, …, S do
 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� �� �

�

�

�

�

, , , ,
min ,

1 2

1

1

1

1
 // Ωk – 1

 B m B m B m B m
i k

j

i k

j

i j

k

j k
� � � � � � � � � �� �� �

, , , ,
min ,

1 1 0
 // Λ k

 B m B m B m B m
k j

i

k j

i

k i i j

k
� � � � � � � � � �� �� �

, , , ,
min ,

1 0 1
 // Λ k

for i ← 1, …, S – 1 do
 for  j ← 1, …, S – 1 do
 B m B m B m B m

i j

S

i j

S

i S

S

S j

S
� � � � � � � � � �� ��

, , , ,
min ,

1
 // ΩS

return B m
S

� � .

Theorem 1. Upon termination D0CG correctly computes the diagonal block B m S
� �  over B m� �

0
, which repre-

sents the shortest path lengths between all vertices of cluster m, possibly passing through vertices of other clusters 
of graph G.

P r o o f. D0CG does not consider the bridge-vertices of cluster m because it computes the block B m� � over 
itself. The competitive algorithm BCal recomputes each element of the block B m� � at each iteration of the 
loop along k. Unlike BCal, D0CG starts with a one-vertex graph and a block B m� �

1 of dimension 1 × 1. It then 
iteratively adds one row k and one column k to block B m k

� �
�1 and obtains block B m k

� � . The procedure is 
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illustrated in fig. 3, a. In this figure B m� �
0 denotes input block B m� � of dimension S × S before executing D0CG. 

Variable bij denotes an element of the matrix B m� �.
Two operations Λ k and Ωk are used to accomplish the procedure. The first operation Λk computes APSP that 

are represented by column k and row k of block B m k
� �  and are computed over APSP of subblock B m k

� �
�1
. 

Column k is computes by the following equation:

 B m B m B m B m
ik

j

ik

j

ij

k

jk
� � � � � � � � � �� �� �1 1 0

min ,  for i j k, , , .� � �1 1  (2)

Row k is computes according to equation

 B m B m B m B m
kj

i

kj

i

ki ij

k
� � � � � � � � � �� �� �1 0 1

min ,  for i j k, , , .� � �1 1  (3)

It should be noted that claim 1 does not apply to items (2) and (3). The second operation Ωk calculates all 
elements of subblock B m k

� �
�1 over row k and column k of computation level k, obtaining a block B m k

� �  of 
APSP in the subgraph on k vertices of cluster m. It uses the following formula to perform the calculation:

B m B m B m B m
ij

k

ij

k

ik

k

kj

k
� � � � � � � � � �� ��

min ,
1  for i j k, , , .� � �1 1

We can describe the behaviour of D0CG as the sequence of pairs � �k k,� � of operations:

 � � � � � � � �1 1 2 2, , , , , , , , , .� � � � � � � � � �k k S S  (4)

Algorithm 5 displays the corresponding pseudocode. The loop along k represents sequence (4), in its body 
the first nest of loops along i and  j is the operation Λ k , and the second nest of loops over i and  j is the opera-
tion Ωk . The operations Λ1 and Ω1 do not change the block B m� �

1 compared to B m� �
0
, so they are omitted, and 

we start with k = 2. The calculation levels of elements B m
i j

� � , , B m
i k

� � ,  and B m
k j

� � ,  in the operation Ωk of 
algorithm 5 satisfy claim 2, so the elements B m

i j
� � ,  are calculated correctly. The operation Λ k correctly com-

putes the elements B m
i k

� � ,  and B m
k j

� � ,  from level 0 to level k. We can conclude that algorithm 5 is correct.

Algorithm 5. Recurrent procedure D0CG for calculating diagonal block
S C m� � �.size
for k ← 2 to S do

 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i k

j

i k

j

i j

k

j k
� � � � � � � � � �� �� �

, , , ,
min ,

1 1 0
 // Λ k

 B m B m B m B m
k j

i

k j

i

k i i j

k
� � � � � � � � � �� �� �

, , , ,
min ,

1 0 1
 // Λ k

 for i ← 1, …, k – 1 do
 for j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� ��

, , , ,
min ,

1
 // Ωk

return B m
S

� � .

Two nests of loops along i and  j cannot be combined into a single nest of loops due to data dependencies: 
element B m

i j
� � ,  cannot be modified while it is used to modify all elements B m

i k
� � ,  and B m

k j
� �

,
. To overcome 

this obstacle, we resynchronise (fig. 3, b) sequence (4) with the following sequence of pairs � �k k�� �1, :

� � � � � � � � � �1 1 2 2 3 1 1, , , , , , , , , , , .� � � � � � � � � �� �k k S S S

Now we can rewrite algorithm 5 to algorithm 6. The loop along k includes two nests of loops along i and  j, 
which have the same iteration schemes. The first nest performs the operation �k �1, and recalculates all ele-
ments of the subblock B m k

� �
�1
. The second nest performs the operation Λ k and calculates column k and row k 

in the block B m k
� � . The two nests of loops can be merged, since B m

i j

k
� �

�

,

1 will not change due to the calculation 
of B m

i k

k
� � ,  and B m

k j

k
� � , , and vice versa. As a result, we have obtained D0CG. The theorem is proved.
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Competitive BCal and D0CG have different iteration schemes. The total number of iterations 
of the innermost loop of BCal is S 3. The total number of iterations of the innermost loop of D0CG is 

6

2 3
1 2

1

� � �� � � � �� �� �

size sizem m
 times smaller than that of BCal. It tends to be 3, when size m� ���. BCal has 

size m� �2 element accesses at each iteration of the loop along k. D0CG has k 2 accesses for k size m� � � �1, , . 

Moreover, the element B m
i j

� � ,  is common to three assignments. In terms of data reference locality, D0CG out-
performs BCal by up to 3 times. We further transform D0CG to incorporate vectorisation and parallelisation 
mechanisms.

Algorithm 6. Resynchronised D0CG

S C m� � �.size
for k ← 2 to S do
 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� �� �

�

�

�

�

, , , ,
min ,

1 2

1

1

1

1
 // Ωk – 1

 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i k

j

i k

j

i j

k

j k
� � � � � � � � � �� �� �

, , , ,
min ,

1 1 0
 // Λ k

 B m B m B m B m
k j

i

k j

i

k i i j

k
� � � � � � � � � �� �� �

, , , ,
min ,

1 0 1
 // Λ k

for i ← 1, …, S – 1 do
 for  j ← 1, …, S – 1 do
 B m B m B m B m

i j

S

i j

S

i S

S

S j

S
� � � � � � � � � �� ��

, , , ,
min ,

1
 // ΩS

return B m� �.

New algorithm for calculating vertical cross-blocks
C1CG computes APSP from the nodes of cluster c to the nodes of cluster m and changes the vertical 

cross-block B B c m1� � �,  of dimension size sizec m� � � � � through diagonal block B B m3 � � � of dimension 
size sizem m� � � � �. In this paper we assume that the block sizes are not equal and use the bridge-vertices of 
cluster m to speed up the computation of APSP. C1CG is a generalisation of BCal for vertical cross-blocks 
describing APSP in clustered directed graphs. It considers two clusters c and m and has two entries: a vertical 
crossing block B c m,� � and a diagonal block B m� �. It returns the modified block B c m, .� �

Fig. 3. Iterating the diagonal block B m� � along calculation level k in D0CG: 
a – adding vertex k to cluster m; b – resynchronised process of adding vertices
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Theorem 2. Upon termination C1CG correctly computes the vertical cross­block B c m,� � over the diago-

nal block B m� �, which describes APSP distances from the vertices of cluster c to the vertices of cluster m that 
pass through the input bridge­vertices of m.

P r o o f. The blocks B c m,� � and B m� � have different dimensions: size sizec m� � � � � and size sizem m� � � � �, 
respectively. The differences do not affect the fundamentals [12] of the shortest path calculation method (BCal ) 
and the execution of min-plus operations on matrices. Therefore, C1CG is valid with respect to unequal block 
sizes.

The algorithm recalculates only one of the two blocks, i. e. B c m,� � and thus relaxes the requirements of 
claim 1 to the ordering of the calculation levels of its elements. Therefore, it satisfies claim 1 in advance and is 
correct from this point of view. As a result, three loops along k, i and  j can be reordered arbitrarily.

Algorithm 7. C1CG (сalculation of vertical cross-block upon bridges and unequal block sizes)
for i ← 1 to C c� �.size do
 for v C m� � �.bridge.inall and k C m v� � � � �.vert .index do

 for  j ← 1 to C m� �.size do

 B c m B c m B c m B m
i j i j i k k j

, min , , ,
, , , ,

� � � � � � � � � �� �
return B c m, .� �

Now we prove that any shortest path from vertex i of cluster c to vertex j of cluster m passes through an 
input bridge-vertex k of cluster m. We assume that APSP between the inner vertices of cluster m have been 
already calculated. For the shortest path between i and  j 2 cases are possible (fig. 4).

1. The path p i k j� � �� �, , , ,  passes through vertices of the cluster c, then passes through the input bridge- 
vertex k and other vertices of cluster m, and finally reaches vertex  j.

2. The path p i w k j� � � �� �, , , , , ,  passes through vertices of cluster c, then passes through vertices w 

of cluster x and possibly through other vertices of other clusters, then through an input bridge-vertex k of clus-
ter m, and finally reaches the vertex  j.

In both cases any shortest path between i and  j passes through one of the input bridge-vertices of cluster m. That 
is why for loop along k in C1CG it is sufÏcient to traverse only the input bridge-vertices of cluster m. The theo-
rem is proved.

Fig. 4. Calculation of vertical cross-block  
through diagonal block  

(illustration of proof of theorem 2)
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Corollary 1. If cluster m has no input bridge­vertices, C1CG does not change the vertical cross­blocks 
B c m,� � in column m of matrix B and hence is not applied to the column.

C1CG gives a speedup in the computation of the vertical cross-blocks compared to the homogeneous blocked 
algorithm [14] depending on the share of the input bridge-vertices in the total number of bridge-vertices in cluster m.

New algorithm for calculating horizontal cross-blocks
C2CG computes APSP connecting vertices of cluster m with vertices of cluster c. It modifies a horizontal 

rectangular cross-block B m c,� � of dimension size sizem c� � � � �  through the diagonal square block B m� �  of 
dimension size sizem m� � � � �. C 2CG is a generalisation of BCal for horizontal cross-blocks describing shortest 
path segments in clustered directed graphs. It uses the output bridge-vertices of cluster m to speed up the shor-
test path computation.

Algorithm 8. C 2CG (calculation of horizontal cross-block upon bridges and unequal block sizes)
for i ← 1 to C m� �.size do
 for v C m� � �.bridge.outall and k C m v� � � � �. .vert index do

 for  j ← 1 to C c� �.size  do

 B m c B m c B m B m c
i j i j i k k j

, min , , ,
, , , ,

� � � � � � � � � �� �
return B m c, .� �

Theorem 3. Upon termination C 2CG correctly computes horizontal cross­block B m c,� � through diago-

nal block B m� �, which describes APSP distances from vertices of cluster m to vertices of cluster c that pass 
through the output bridge­vertices of  m.

P r o o f. Although the blocks B m c,� � and B m� � have different sizes [12], these differences do not affect the 
correctness of the shortest path calculation method and min-plus operations on matrices as it is done for BCal. 
Therefore, C 2CG is correct from this point of view.

The algorithm relaxes the requirements of claim 1 for the order of the matrix element calculation levels, 
since it recalculates only one block B c m,� � and does not change other block B m� � at the same time. Therefore, 
it correctly computes B c m,� � for any order of three loops along variables i, k and  j.

Now we suppose that APSP between the inner vertices of cluster c and between the inner vertices of clus ter m 
have been already calculated. At this assumption, we prove that any shortest path from vertex i of cluster m to 
vertex  j of cluster c passes through an output bridge-vertex k of cluster m. For the shortest path between i and  j 
2 cases are possible (fig. 5).

1. The path p i k j� � �� �, , , ,  passes through vertices of cluster m including an output bridge-vertex k, 
then passes through vertices of cluster c, and finally reaches vertex  j of the cluster.

2. The path p i k w j� � � �� �, , , , , ,  passes through vertices of cluster m including the output bridge-ver-
tex k, then passes through one or more vertices w of cluster x and may be other vertices of other clusters, then 
passes through vertices of cluster c, and finally reaches vertex  j of the cluster.

Fig. 5. Calculation of horizontal cross-block through diagonal block  
(illustration of proof of theorem 3)
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In both cases any shortest path between i and  j passes through one of the output bridge-vertices of clus-
ter m. This is why for the iteration scheme of the loop along k in C 2CG it is sufÏcient to traverse only the 
output bridge-vertices of cluster m. The theorem is proved.

Corollary 2. If a cluster m has no output bridge­vertices, C 2CG does not change the horizontal cross­blocks 
B m c,� � in row m of matrix B and hence is not applied to the row.

C 2CG provides the speedup in computation of the horizontal cross-blocks in comparison to the homo-
geneous blocked algorithm [14] depending on the share of the output bridge-vertices in the total number of 
bridge-vertices in cluster m.

New algorithm for calculating peripheral blocks
P3CG computes shortest-path segments. The segments connect vertices of cluster c with vertices of clus-

ter e, passing through vertices of cluster m. The algorithm modifies a rectangular block B c e,� � of dimension 
size sizec e� � � � � using two rectangular blocks B c m,� � and B m e,� � of the dimension C c C m� � � � �. .size size 

and C m C e� � � � �.size size,.  respectively. P3CG is a generalisation of FW for clustered directed graphs. It uses 
the input or output bridge-vertices of cluster m to speed up the computations. 

The algorithm consists of three nested loops along variables i, k and  j and includes one assignment state-
ment. The loops along i and  j traverse all vertices of clusters c and e, respectively. The loop along k traver-
ses the vertices of cluster m that belong to the subset C m� �.bridge.best.  The subset is one of two vertex subsets 
that has the minimum size: C m C m� � � � �. .bridge.best bridge.inall  if C m C m� � � � �. . ,bridge.inall bridge.outall  

and C m C c� � � � �. .bridge.best bridge.outall, otherwise.

Algorithm 9. P3CG (calculation of peripheral rectangular block upon bridges and unequal block sizes)
for i ← 1 to C c� �.size do
 for v C m� � �.bridge.best and k C m v� � � � �. .vert index do

 for  j ← 1 to C e� �.size do
 B c e B c e B c m B m e

i j i j i k k j
, min , , , ,

, , , ,
� � � � � � � � � �� �

return B c e, .� �

Theorem 4. Upon termination P3CG correctly computes block B c e,� � over blocks B c m,� � and B m e,� �, 
which describe the shortest path segments from the vertices of cluster c to the vertices of cluster e that pass 
through the best bridge­vertices of cluster m.

P r o o f. Although, unlike BCal, the input blocks B c e, ,� �  B c m,� � and B m e,� � have different sizes in P3CG, 
the differences do not affect the shortest path calculation technique [12] and min-plus operations on matrices as 
is done in BCal. Therefore, P3CG is correct regarding different block sizes, since BCal is proven to be correct.

The algorithm relaxes the requirements of claim 1 for the order of the calculation levels of the distance mat-
rix elements, since it recalculates only the elements of one block B c e,� � and does not simultaneously change 
the elements of the other two blocks B c m,� � and B m e, .� �  Therefore, it correctly computes the block B c e,� � 
with respect to the calculation levels for any reordering of three loops along variables i, k and  j.

Now we prove that any shortest path p i k j� � �� �, , , , , where i C c� � �.vert, k C m� � �.vert and j C e� � �.vert, 
includes the input bridge-vertex of cluster m. As shown in fig. 6, there are 4 cases of the shortest path passing 
through three clusters.

1. The strait path through clusters c, m and e is p i k j� � �� �, , , , . This means that the path starting from 
i passes through the vertices of cluster c, enters cluster m through the input bridge-vertex k, exits cluster m 
through one of the output bridge-vertices, and finally goes to vertex  j of cluster e.

2. The path is p i w k j� � � �� �, , , , , , , where w C x� � �. ,vert  and x is a cluster other than c, m and e. 
The path goes from i through vertices of cluster c, goes through vertices w of cluster x (might be several clus-
ters), enters cluster m through vertex k, exits it through an output bridge-vertex, and finally passes through 
vertices of cluster e to vertex  j.

3. The path is p i k z j� � � �� �, , , , , , , where z C y� � �.vert, and y is a cluster other than c, m and e. The path 
goes from i through vertices of cluster c, enters cluster m through vertex k, exits it through an output bridge-ver-
tex, passes through vertices z of cluster y (there may be several clusters), and finally goes through vertices of 
cluster e to vertex  j.

4. The path is p i w k z j� � � � �� �, , , , , , , , , where w and z are vertices of clusters other than c, m and e. 
The path goes from i through vertices of cluster c, passes through vertices w of cluster x (there may be several 
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clusters), enters cluster m through vertex k, exits it through an output bridge-vertex, passes through vertices z 
of cluster y (there may be several clusters), and finally passes through vertices of cluster e to vertex  j.

Having considered these 4 cases, we can conclude that no path from i to j that does not pass through an 
input bridge-vertex of cluster m. Therefore, all iterations of loop along k in P3CG may correspond to the input 
bridge-vertices of cluster m.

Similarly (fig. 7), it can be proved that any shortest path p i k j� � �� �, , , , , where i C c� � �.vert,  k C m� � �.vert 
and j C e� � �.vert, includes an output bridge-vertex of cluster m. This means that the iterations of loop along k 

in P3CG can correspond to the output bridge-vertices of cluster m. We have two alternatives for the loop ite-
ration scheme. To speed up the computations, we choose the subset C m� �.bridge.best that has the smallest size. 
The theorem is proven.

Corollary 3. If cluster m has no input or output bridge­vertices, P3CG does not change the peripheral blocks 
B c e M, , ,� � � �� �, c, e ,1  c ≠ m and e ≠ m, of matrix B and therefore is not applied to all the peripheral blocks.

The smaller the number of bridge-vertices in C m� �.bridge.best than the less central processing unit time 
the P3CG consumes.

Experimental results and comparison  
of algorithms and their implementations

We developed in C++ language and used two versions (single-threaded and multi-threaded OpenMP (ver-
sion 4.5)) of implementations of the proposed HBSPCG and, for comparison, implementations of previously known 
algorithms. The source code was compiled by GNU Compiler Collection (version 14.2.0) with auto-vectorisation 

Fig. 6. Calculation of peripheral block over two cross-blocks  
through input bridge-vertices of cluster m (illustration of proof of theorem 4)

Fig. 7. Calculation of peripheral block over two cross-blocks  
through output bridge-vertices of cluster m (illustration of proof of theorem 4)
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enabled. The paper presents the results of experiments performed on two computers: MacBook M1 Max and 
server consisting of two Intel Xeon E5-2620v4 processors (each has 8 cores and 16 physical threads).

The article describes experiments conducted on four random directed simple weighted graphs decomposed 
into dense weakly connected clusters of different sizes (table 1). Judging by the number of edges in the graphs and 
the number of edges between clusters, all clusters are dense subgraphs. The edge density in all four graphs was  
in the range of 0.003 55– 0.012 51, meaning that all graphs were sparse. 

Ta b l e  1
A sample of four random sparse graphs consisting of tens of dense clusters

Number  
of graph Vertices Clusters Edges Density Bridge-vertices Bridge-edges

1 4800 20 288 245 0.012 51 567 621
2 4800 41 153 858 0.006 68 620 687
3 9600 40 644 198 0.006 99 3452 2374
4 9600 80 326 779 0.003 55 3550 2505

Table 2 shows results obtained on MacBook M1 Max. In case of single-threaded implementations the speedup 
of the proposed heterogeneous blocked algorithm HBSPCG (clustered graph, bridge-vertices) compared to the 
known homogeneous blocked algorithm BSPCG [14] (clustered graph, bridge-vertices) is of 1.62–1.94 times. 
In case multi-threaded OpenMP implementations the speedup is 1.87–1.97 times.

Ta b l e  2
Runtimes of algorithms BSPCG and HBSPCG on MacBook M1 Max

Number  
of graph

Single-threaded implementations Multi-threaded OpenMP implementations

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

1 3.21 1.65 1.94 0.69 0.35 1.97
2 2.70 1.66 1.62 0.48 0.26 1.88
3 37.30 19.52 1.91 5.54 2.87 1.93
4 34.84 21.15 1.65 5.31 2.84 1.87

The results obtained on the server are shown in the table 3. HBSPCG outperformed BSPCG by 1.58–1.66 
times for single-threaded implementations and by 1.29–1.64 times for multi-threaded OpenMP implementations. 
Table 3 also provides a comparison of HBSPCG with the classical BFW with equal block sizes. The speedup 
of HBSPCG over BFW was in the range of 4.17–8.18 for single-threaded implementations and 3.91–6.36 for 
multi-threaded OpenMP implementations.

Ta b l e  3
Comparison of BSPCG, HBSPCG and BFW  

on server with two Intel Xeon E5-2620v4 processors

Number  
of graph

Single-threaded implementations Multi-threaded OpenMP implementations

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

Speedup  
of HBSPCG over 

BFW, times 
BSPCG, s HBSPCG, s

Speedup  
of HBSPCG over 

BSPCG, times

Speedup  
of HBSPCG over 

BFW, times

1 11.07 6.28 1.76 8.18 0.91 0.57 1.59 6.36
2 11.18 6.82 1.64 7.24 1.05 0.82 1.29 4.13
3 148.08 89.06 1.66 4.59 9.62 5.86 1.64 4.52
4 149.95 94.90 1.58 4.17 10.50 6.48 1.62 3.91

Conclusions
The FW family of algorithms, which solve the problem of APSP has cubic time complexity and quadratic 

memory complexity regardless of the number of edges in the graph that creates obstacles for processing real 
large graphs on multi-processor systems. The goal of the BFW is to provide parallelism and efÏcient use of 
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the hierarchical processor memory. It is most efÏcient on dense graphs and has losses on sparse graphs. Many 
works and publications are devoted to achievements in the field of reducing the computational resources con-
sumed by the blocked algorithm. In the paper we propose a heterogeneous version of such an algorithm that 
considers the features of large clustered directed weighted graphs, which are divided into dense clusters of 
different sizes, weakly connected by bridge-vertices and bridge-edges. The algorithm distinguishes four types 
of blocks and exploits their unique features in a separate procedure for each block to speed up the computa - 
tion of APSP and improve the locality of references to data. This allowed us to reduce the runtime by approxi-
mately twice on the MacBook M1 Max computer compared to the well-known homogeneous BFW on the 
clustered graphs and to reduce the runtime up to eight times on the server compared to the classical BFW with 
equal block sizes.
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