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Исследования люминесцентных полупроводниковых нанокристаллов, или кванто-

вых точек (КТ), получили широкое распространение за последние два десятилетия. Стре-

мительный рост активности в разработке новых наноматериалов обусловлен потенциаль-

но широкими областями применения наноструктур. Благодаря отличительным оптиче-

ским свойствам нанокристаллов, таким как узкий симметричный спектр испускания, вы-

сокий квантовый выход, большие времена жизни флуоресценции, высокая фотостабиль-

ность, зависимость оптических спектров от размера структур [1], перспективно использо-

вание КТ в биологических приложениях в качестве биосенсоров, меток для визуализации 

клеточных и тканевых структур [2-4], средств направленной доставки лекарственных со-

единений [3]. Для успешного применения КТ в биоприложениях необходимо детальное 

изучение взаимодействия КТ с биологическими структурами, в том числе белками крови. 

Целью данной работы являлось исследование поведения водорастворимых КТ в 

водных средах и изучение процессов взаимодействия КТ с белками сыворотки крови. Эти 

вопросы имеют значение для понимания механизмов транспорта и распределения КТ в 

биосистемах, для разработки методов визуализации различных тканевых структур и 

функциональных процессов в организме. 

В работе использовались КТ CdSe/ZnS типа ядро/оболочка, поверхность которых 

была модифицирована для придания гидрофильных свойств полиэтиленгликолем, глута-

тионом или меркаптопропионовой кислотой и тиоглицерином. Исследовались КТ с диа-

метром ядра CdSe ~2.6 нм (КТП, КТГ, КТМТ) и ~6.2 нм (КТГ6, КТМТ6).   

Нормированные спектры поглощения и флуоресценции КТ с диаметром ядра 2.6 нм, 

модифицированных глутатионом (КТГ), показаны на рис. 1. Данные КТ характеризуются 

широким спектром поглощения (рис. 1, 1) с максимумами на длине волны 437 нм и 527 нм 

и наличием интенсивной флуоресценции. КТГ обладают узким (полуширина 28 нм) сим-

метричным спектром флуоресценции с максимумом на длине волны 551 нм (рис. 1, 2). 

Аналогичные исследования спектральных характеристик были проведены и для КТ с 

модификацией поверхности другими системами (КТП, КТМТ), а также с диаметром ядра 

6.2 нм (КТГ6, КТМТ6). Согласно полученным результатам, спектры КТ с различной мо-
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дификацией поверхности очень близки между собой. Спектральные характеристики КТ с 

диаметром ядра 6.2 нм значительно отличаются от таковых для КТ с ядром 2.6 нм. Пер-

вый экситонный максимум в спектре поглощения смещен до 630 нм, максимум флуорес-

ценции приходится на длину волны 661 нм. 

Введение белка в водные растворы КТ 

практически не влияет на спектры поглоще-

ния (рис. 1, 3) и флуоресценции (рис. 1, 4) 

по сравнению с аналогичными характери-

стиками КТ в буферном растворе. Для спек-

тров флуоресценции характерен гипсохром-

ный сдвиг на 1 нм, что, по-видимому, связа-

но с изменением характеристик микроокру-

жения КТ вследствие связывания с белком. 

Для использования КТ в практических 

целях в биологических системах важным 

аспектом является стабильность их флуо-

ресцентных свойств. Результаты наших ис-

следований флуоресценции водораствори-

мых КТ показывают, что величина их отно-

сительного квантового выхода флуоресценции в процессе инкубирования в водных рас-

творах сильно уменьшается (в 2-4 раза за 1 час инкубирования). 

Значительный интерес представляет исследование стабильности флуоресцентных 

свойств КТ в растворах с различным содержанием белка. На рис. 2 приведена кинетика 

изменения интенсивности флуоресценции КТГ при инкубировании в растворах бычьего 

сывороточного альбумина (БСА). 

В отсутствие белка интенсивность флуоресценции КТГ значительно падает через 2 

часа инкубирования в буферном растворе. Длительное время нахождения КТ в буферном 

растворе приводит к тому, что нанокристаллы агрегируют и выпадают в осадок. Добавле-

ние БСА приводит к существенному увеличению устойчивости флуоресцентных свойств 

КТ. Это выражается не только в снижении амплитуды, но и в замедлении скорости изме-

нения интенсивности флуоресценции КТ. При больших концентрациях белка нанокри-

сталлы сохраняют интенсивную флуоресценцию при временах инкубирования более 30 

суток. 
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1 – спектр поглощения в буфере Трис-HCl, 2 – 
спектр флуоресценции в буфере Трис-HCl, 3 – 
спектр поглощения в растворе БСА, 4 – спектр 

флуоресценции в растворе БСА 

Рис. 1. Спектры флуоресценции и погло-
щения КТГ 
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Рис. 2. Устойчивость флуоресцентных 
свойств КТГ в растворах БСА 

Рис. 3. Устойчивость флуоресцентных 
свойств КТМТ6 в растворах БСА 

Аналогичные результаты были получены и для КТМТ6 (рис. 3). При низких соотно-

шениях БСА:КТМТ6 стабилизирующий эффект белка выражен значительно меньше, чем 

для КТМТ. Так, при соотношениях БСА:КТМТ6 менее 2:1 не наблюдается изменения ус-

тойчивости по сравнению с КТМТ6 в водных растворах без белка. 

Из общих соображений можно предположить, что при взаимодействии молекулы 

БСА обволакивают КТ, приводя к образованию дополнительного слоя, защищающего на-

нокристаллы от взаимодействия с компонентами и примесями буферных растворов. Это 

значительно снижает скорость падения интенсивности флуоресценции, а также препятст-

вует агрегации КТ в течение длительного времени. Для КТ с диаметром ядра 2.6 нм ус-

тойчивость флуоресцентных свойств значительно возрастает по сравнению с КТ в водных 

растворах уже при соотношениях БСА:КТ больше 1:1. В случае КТ с диаметром ядра 6.2 

нм подобный эффект наблюдается при соотношениях БСА:КТ, больших 10:1. Эти разли-

чия, очевидно, обусловлены отличиями площадей поверхности нанокристаллов – для по-

крытия КТ большего диаметра белковой оболочкой требуется значительно большее число 

молекул белка. 

При исследовании процессов связывания КТ с белками сыворотки нанокристаллы 

помещали в раствор сыворотки и инкубировали в течение 1 часа, затем полученный обра-

зец пропускали через хроматографическую колонку 1.2х45 см, заполненную гелем 

Sephacryl 400-HR. Пропускание водорастворимых КТ через колонку показывает, что в 

свободном виде нанокристаллы не выходят из колонки, что, по всей видимости, связано с 

образованием устойчивых связей КТ с полимерным гелем. Существенно иное поведение 

демонстрируют нанокристаллы, проинкубированные с белками сыворотки крови: КТ вы-
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ходят из колонки в виде одного широкого пика. Измерения содержания КТ в полученных 

хроматографических фракциях по поглощению и флуоресценции КТ позволяет сделать 

вывод, что большая часть КТ (более 70%) выходит из колонки. Наши данные свидетельст-

вуют, что КТ взаимодействуют в основном с сывороточным альбумином. Поэтому основ-

ное внимание было сосредоточено на взаимодействии КТ с сывороточным альбумином. 

При исследовании процессов связывания КТ с БСА нанокристаллы предварительно 

инкубировали с белком при различных соотношениях БСА:КТ, а затем пропускали через 

колонку. Чистый БСА без КТ выходит из колонки в виде полосы с объемом исключения 

15-17 мл. Количество вышедших из колонки КТ зависит от концентрации БСА в образце. 

Анализ профилей элюции КТ и БСА показывает, что нанокристаллы выходят из колонки с 

объемом элюции 10-13 мл, причем БСА распределен между двумя фракциями: 10-13 мл и 

15-18 мл, что, очевидно, соответствует фракциям белка, связавшегося с КТ, и мономерно-

му белку, не связанному с КТ (рис. 4). При уменьшении соотношения БСА:КТ наблюдает-

ся увеличение веса фракции альбумина, выходящего с КТ, одновременно с уменьшением 

относительного количества белка, проходящего через колонку независимо от КТ. 
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Рис. 4. Профили элюции КТГ6 и БСА Рис. 5. Стехиометрия связывания КТ с БСА: 
1 – КТМТ6, 2 – КТГ6, 3 – КТМТ, 4 – КТГ, 5 – 
КТП 

Исходя из полученных результатов, можно сделать вывод, что КТ образуют ком-

плексы с БСА, проходящие через колонку. Экранировка поверхности нанокристаллов 

сорбированными молекулами белка предотвращает связывание с полимерным гелем и 

обеспечивает возможность элюции КТ через колонку. Комплексообразование сопряжено с 

появлением более крупных структур по сравнению с нативными белками, о чем свиде-

тельствует смещение полос БСА в гель-хроматограммах в сторону меньших объемов ис-

ключения. Размер комплексов зависит от соотношения БСА:КТ в исследуемом образце, 

так как при изменении соотношения наблюдается небольшое смещение пика выхода на-



 157

нокристаллов и белка из колонки. 

Процесс комплексообразования белка и КТ характеризуется насыщением при высо-

ких концентрациях белка. На основании анализа зависимости выхода КТ из колонки от 

концентрации белка можно охарактеризовать стехиометрию комплексообразования КТ и 

БСА. Так, для КТ с размером ядра 2.6 нм (рис. 5, 3-5) насыщение комплексообразования 

происходит при соотношении молекул белка и КТ около 5:1. Для КТ с диаметром ядра 6.2 

нм (рис. 5, 1-2) насыщение связывания наблюдается при значительно больших концентра-

циях белка (24:1 для КТГ6 и 40:1 в случае КТМТ6), что, очевидно, является следствием 

большей площади поверхности данных наноструктур. При достижении насыщения значи-

тельно возрастает фракция белка, несвязанного с КТ и выходящего в мономерной форме. 

Образованные БСА и КТ комплексы достаточно устойчивы и характеризуются временем 

диссоциации БСА с поверхности КТ большим, чем время проведения разделения. 

Наблюдаются отличия в связывании белка и КТ с различной модификацией поверх-

ности. Отличия могут быть связаны с изменением сродства КТ к белку и заполнением по-

верхности нанокристаллов. Для КТМТ характерно быстрое насыщение даже при невысо-

ких концентрациях белка (соотношение БСА:КТ ~1:1). Более объемная оболочка из поли-

мерных молекул у КТП, вероятно, обуславливает необходимость присутствия в образце 

большего количества молекул белка для достижения насыщения (рис. 5). 

Полученные результаты показывают, что КТ могут связывать большое число моле-

кул белка, причем стехиометрия комплексообразования зависит от размеров нанокристал-

ла и от свойств поверхности КТ. Образование на поверхности КТ белковой оболочки су-

щественно изменяет их поведение в водных растворах и в составе биологических систем, 

что должно учитываться при характеристике процессов распределения КТ в биосистемах. 
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