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О поляризационных характеристиках нелинейного усиления в 
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The influence of different radiation polarization states on the nonlinear gain spectra has been 
theoretically investigated in two optical models of the quantum-well active region: transitions with no the k-
selection rule and direct dipole transitions.  
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1. Введение  
Полупроводниковые лазеры и усилители относятся к основным компонентам 

систем информационных технологий [1]. В квантоворазмерных гетероструктурах 
возникает анизотропия оптических свойств, в частности, усиление в активной области 
чувствительно к поляризации излучения.  

В данной работе определена зависимость нелинейного усиления от поляризации 
монохроматического излучения и характера оптических переходов между состояниями 
размерного квантования. Модель активной области гетероструктуры представлена 
двумя квантовыми ямами, основные состояния которых соответствуют тяжелым или 
легким дыркам. Такие квантоворазмерные гетероструктуры используются для передачи 
сигналов в волоконно-оптических линиях связи на двух поляризациях излучения [2].  

2. Насыщение усиления  
Анализ особенностей нелинейного усиления в квантоворазмерных 

гетероструктурах проведем в рамках двухзонной модели активной среды, которая 
достаточно хорошо применима для соединений AIIIBV [3]. Выражения для 
коэффициента усиления k и поверхностной скорости спонтанной рекомбинации Rsp в 
случае оптических переходов без правила отбора по волновому вектору электрона 
имеют вид [4], соответственно,  
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Те же величины для прямых дипольных переходов находятся, как [3]  

 ( )12(1 e )(1 e ) ijk ε−Δ ε−Δ −= + + α ν ,         1
sp ln(1 e ) (1 e )R Δ −Δ −= + − + . (2) 

Здесь k и Rsp приведены в безразмерных единицах относительно нормировочных 
параметров 0′κ (mc/me)2 и 2

c1AN  (для переходов без правила отбора) и κ0(mc/me) и AcvNc1 
(для прямых переходов) и введены обозначения  
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Выражения для поляризационного фактора αij(ν) при обычной ориентации {100} 
плоскости p–n-перехода можно записать в следующем виде [5]: 
(случай 1), переходы на состояния тяжелых дырок, квантовая яма 1, ТЕ-мода 
излучения,  
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(случай 2), переходы на состояния тяжелых дырок, квантовая яма 1, ТМ-мода 
излучения,  
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(случай 3), переходы на состояния легких дырок, квантовая яма 2, ТЕ-мода излучения,  
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(случай 4), переходы на состояния легких дырок, квантовая яма 2, ТМ-мода излучения,  
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Параметры 0′κ (mc/me)2 и κ0(mc/me) характеризуют величину возможного 
усиления на переходах между уровнями подзон электронов и дырок для 
соответствующих квантовых ям, A и Acv – коэффициенты Эйнштейна для спонтанных 
переходов, Nc1 – эффективная плотность состояний двухмерного электронного газа, Е1 
– энергия основного состояния подзон. Введенные значения Δ и ε определяют разность 
квазиуровней Ферми ΔF и энергию квантов hν по сравнению с тепловой энергией kBT.  

По определению, насыщение усиления – зависимость коэффициента усиления от 
плотности светового потока в активной области, может быть описано соотношением [6]  
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где k0 – начальный коэффициент усиления (Δ = Δ0), α – параметр нелинейности, S – 
поверхностная плотность фотонов. Учитывая связь между скоростью спонтанной 
рекомбинации Rsp и скоростью вынужденной излучательной рекомбинации vkS на 
заданной частоте излучения ν, находим  
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В общем случае значение α зависит от частоты (длины волны) ε, разности 
квазиуровней Ферми ΔF0 (уровня возбуждения) и плотности потока излучения vU 
(поверхностной плотности фотонов S). Величина квантового выхода люминесценции 
может быть принята постоянной и равной ηsp0 ≈ ηsp ≈ 1. Далее спектр нелинейного 
усиления α(ν) приведен в безразмерных величинах относительно нормировочного 
параметра  
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где v – групповая скорость света, ρ(hν) – плотность мод, T – температура, d – ширина 
квантовой ямы.  

При малых световых потоках, когда k ≈ k0(1-α0S), следует использовать 
начальное значение параметра нелинейности α0. В условиях, когда коэффициент 
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усилении падает в два раза (k ≈ k0/2), целесообразно вводить среднее значения 
параметра нелинейности α1/2. При достаточно мощных световых потоках коэффициент 
усиления падает, как k ≈ k0/α∞S, где параметр нелинейности равен α∞.  

На рис. 1 а и 2 представлены зависимости коэффициента усиления k и параметра 
нелинейности α от частоты падающего света (ε) для прямых дипольных переходов. В 
этом случае усиление на длинноволновом крае полосы заметно ослаблено для ТМ-
моды и переходов с участием тяжелых дырок и для ТЕ-моды с участием легких дырок. 
Наибольшее усиление получается для ТЕ-моды и переходов с участием тяжелых дырок 
и для ТМ-моды с участием легких дырок.  

 
(а) 

 
(б) 

Рис. 1. Спектр усиления для прямых переходов (а) и в случае переходов без правила 
отбора (б). (1) изотропное излучение, (2) ТМ-мода, (3) ТE-мода,  

переходы с участием тяжелых дырок.  

 
(а) 

 
(б) 

 
(в) 

 
(г) 

Рис. 2. Спектр параметра нелинейности для прямых переходов. ТМ-мода, переходы на 
состояния тяжелых (а) и легких дырок (б), ТЕ-мода, переходы на состояния тяжелых (в) 
и легких дырок (г). (1) α0, (2) α1/2, (3) α∞, (1’), (2’), (3’) – соответствующие значения  

параметра α для изотропного излучения.  
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На рис. 1 б и 3 представлены спектр усиления и дисперсия параметра 
нелинейности для переходов без правила отбора по волновому вектору электрона. 
Значения параметра нелинейности αi (i = 0, 1/2, ∞) в основном возрастают с ростом ε. 
Влияние поляризации на дисперсию при этом механизме оптических переходов 
проявляется так же, как и для прямых переходов.  

 
(а) 

 
(б) 

 
(в) 

 
(г) 

Рис. 3. Спектр параметра нелинейности для переходов без правила отбора. ТМ-мода, 
переходы на состояния тяжелых (а) и легких дырок (б), ТЕ-мода для тяжелых (в) и 
легких дырок (г). (1) α0, (2) α1/2, (3) α∞, (1’), (2’), (3’) – соответствующие значения  

параметра α для изотропного излучения.  

3. Заключение  
Развитая оптическая модель квантоворазмерной активной среды позволяет 

оценить значение такого важного внутреннего параметра, как параметр нелинейности, 
и определить спектр нелинейного усиления в зависимости от материала 
полупроводника, тока, температуры, ширины квантовых ям, структуры уровней и 
поляризации падающего излучения, а также механизма оптических переходов. Это дает 
возможность адекватно анализировать выходные характеристики лазерных излучателей 
и усилителей многоканальных волоконно-оптических линий связи.  
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