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ДЛЯ РЕШЕНИЯ ПОЛНОГО ОБОБЩЕННОГО  
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Аннотация. Статья посвящена проблеме построения вычислительных схем для решения интегро-дифферен-
циальных уравнений Прандтля, возникающих во многих задачах механики. В ней разработаны приближенные 
численные алгоритмы для решения сингулярных интегро-дифференциальных уравнений вида обобщенного  
уравне ния Прандтля. Предлагаемые приближенные вычислительные схемы основаны на представлении реше-
ния уравнения в виде разложения по ортогональному базису полиномов Чебышева. Использование известных 
спект ральных соотношений позволило получить аналитическое выражение для сингулярной составляющей урав-
нения. Как следствие, разработанная методика демонстрирует высокую точность и экспоненциальную скорость 
сходимости приближенного решения относительно степени интерполяционных многочленов. Вычислительные 
качества данной методики продемонстрированы на тестовом примере. В частности, показано, что дискретная 



52

Журнал Белорусского государственного университета. Математика. Информатика. 2025;3:51–61
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:51–61 

модель, основанная на представлении решения в виде разложения по многочленам Чебышева, приводит к хо-
рошо обусловленной системе линейных алгебраических уравнений для коэффициентов разложения, а скорость 
сходимости погрешности приближенного решения может достигать линейной скорости относительно степени 
интерполяционного многочлена.

Ключевые слова: приближенный численный алгоритм; сингулярное уравнение; интегро-дифференциальное 
уравнение; ортогональный базис полиномов Чебышева; спектральный метод Чебышева; обобщенное уравнение 
Прандтля.
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Abstract. This article is devoted to the problem of constructing computational schemes for solving Prandtl integro-dif-
ferential equations that arise in many problems in mechanics. An approximate numerical method for solving singular 
integro-differential equations of the generalised Prandtl equation type has been developed. The proposed approximate 
computational schemes are based on representing the solution of the equation as an expansion over an orthogonal basis 
of Chebyshev polynomials. The use of known spectral relations has made it possible to obtain an analytical expression 
for the singular component of the equation. As a consequence, the developed method demonstrates excellent accuracy 
and exponential rate of convergence of the approximate solution in relation to the degree of interpolation polynomials. 
The computational qualities of this method are demonstrated using a test example. In particular, it is shown that a discrete 
model based on the representation of the solution as a decomposition by Chebyshev polynomials leads to a well-condi-
tioned system of linear algebraic equations for the decomposition coefÏcients, and the convergence rate of the approximate 
solution error can reach a linear speed in relation to the degree of the interpolation polynomial.

Keywords: approximate numerical algorithm; singular equation; integro-differential equation; orthogonal basis of 
Chebyshev polynomials; Chebyshev spectral method; generalised Prandtl equation.
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Введение
В теории крыла конечного размаха, контактных задачах теории упругости и других задачах механики 

сплошной среды важную роль играет уравнение вида
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которое называется уравнением Прандтля1. Здесь B x� � и f x� � – известные функции из класса C �� �1 1, , 

а � x� � – искомая функция, удовлетворяющая краевым условиям на границе интервала � �� � �1 0.

Ядро уравнения Прандтля имеет сингулярность, что порождает существенные трудности при чис-
ленном решении вышеупомянутых задач с использованием традиционных подходов, основанных на 
непосред ст венной аппроксимации интеграла квадратурными формулами [1]. В связи с этим, как по-
казано в исследованиях ряда авторов (см., например, [2–7]), весьма эффективный способ обработки 
подобного рода сингулярностей состоит в представлении решения задачи и коэффициентов уравнения 
в виде интерполяционных полиномов с использованием полиномов Чебышева. Данный прием с учетом 
известных спектральных соотношений [8, с. 188]

1Голубев В. В. Лекции по теории крыла. М. : Гос. изд-во техн. теорет. лит., 1949. 480 с.
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где T x
n � � и U xn � � – многочлены Чебышева степени n первого и второго рода соответственно, позво-

ляет вычислить аналитически сингулярную составляющую интеграла и получить экспоненциальную 
скорость сходимости приближенного решения задачи [3]. Показавшие высокую эффективность спект-
ральные методы на основе полиномов Чебышева для некоторых частных случаев уравнения Прандтля 
построены в работах [4–6].

Постановка задачи
Рассмотрим сингулярное уравнение Прандтля общего вида2 [7]:
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Здесь B x s x t g x t� � � � � �, , , ,  и f x� � – известные функции (при этом функция s x t,� � удовлетворяет усло-
вию Гёль дера по обеим переменным), а � x� � – искомая функция.

Предварительно в уравнении (2) выполним преобразование сингулярного интеграла 
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в соответствии с работой [9, с. 315]:
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Далее будем рассматривать уравнение (2) в виде
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Здесь B x b x g x t v x t� � � � � � � �, , , , ,  и f x� � – известные функции, а � x� � – искомая функция, удовлетво-
ряющая краевым условиям
 � �� � �1 0.  (4)

Полагаем, что производная решения задачи принадлежит классу функций h 0� � по Мусхелишвили 
(класс функций с интегрируемой особенностью в окрестности точек x � �1 [9, с. 31]), т. е. � x h� �� � �0 , 
если на отрезке � � �� �1 11 2� �, , ε1 > 0, ε2 > 0, � x� �  удовлетворяет условию Гёльдера и в окрестности 
точек ±1 допускает интегрируемую особенность.

Приведение уравнения (3) к уравнению Фредгольма
Как и в работе [10], сведем уравнение (3) к уравнению Фредгольма второго рода с логарифмической 

особенностью. Пусть
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Применим формулу обращения сингулярного интеграла (5) в классе h 0� �:
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где c – произвольная постоянная. Отсюда с учетом краевых условий (4) имеем
2Голубев В. В. Лекции по теории крыла… 480 с.
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Учитывая, что H t H t�� � � � �1 1, , , получаем c = 0.
Отметим, что функция H x t,� � симметрична и неотрицательна. Имеет место оценка
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Принимая во внимание, что
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введем линейный оператор
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Таким образом, граничная задача (3), (4) сводится к операторному уравнению вида
 u x K u x f x� � � � � � � �; .  (9)

Для вывода достаточных условий разрешимости уравнения (9), как и в работе [10], оценим опера-
тор (8) в равномерной метрике. На основании предыдущих обозначений и оценки (6) имеем
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Относительно условий разрешимости задачи (3), (4) справедлива следующая теорема.
Теорема. Пусть функции B x b x v x t g x t� � � � � � � �, , , ,, ,  входящие в уравнение (3), удовлетворяют ус-
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Тогда граничная задача (3), (4) имеет единственное решение в классе функций �� �� � �� x h 0  для любой 

f x C� �� �� �1 1, .

Некоторые предварительные сведения
Для получения приближенных схем решения задачи (3), (4) будем использовать интерполяционный 

многочлен для функции f x� �, построенный по узлам Чебышева первого рода [11, с. 89], в виде
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На основании формулы (10) получим следующий вид интерполяционного многочлена:
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Здесь были использованы известные свойства полиномов Чебышева [11]: 
T x U x T x U x T x U x U x jj j j0 0 1 1 22 2 2� � � � � � � � � � � � � � � � � � ��, , , .

С учетом формул (10) и (11) интерполяционные многочлены для функции двух переменных будем 
рассматривать в виде разложения по многочленам Чебышева как первого, так и второго рода:
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Вычислительные схемы
Приближенное решение задачи (3), (4) будем искать как решение следующего уравнения:
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F xn � � – некоторая функция из класса C �� �1 1,  такая, что F x f xn j j� � � � �, x j

n
j nj �

�
�

� �cos , , , , ,
1

2
0 1   

а g x tn n, ,� � и v x tn n, ,� � – интерполяционные многочлены для функций g x t,� � и v x t,� � соответственно.
Схема 1. Пусть u xn � � – интерполяционный многочлен для функции u x� �, построенный по узлам 

Че бышева первого рода:
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где c k n
k
, , , , ,� �0 1  – пока неизвестные постоянные.
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С учетом соотношений (1), (7), свойства 
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Для функций g x t v x t, , ,� � � � выберем интерполяционные многочлены g x t v x tn n n n, ,, , ,� � � � вида (12). 
Вычислим последовательно оставшиеся интегралы в равенствах (15). Имеем
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Изменяя порядок суммирования, с учетом свойства ортогональности многочленов Чебышева по-
лучаем
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Далее, используя явное представление интерполяционного многочлена вида (12) для функции 

v x tn n, , ,� �  с учетом соотношений (1) и свойства многочленов Чебышева [11] 2U t T t U t U tk j k j� � � � � � � �� �

U t U tk j� � � � �� �  получаем
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Таким образом, имеем u x K u x F xn n n� � � � � � � �;  или
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На основании уравнения (18) получаем систему линейных алгебраических уравнений для вычисле-
ния c c cn0 1, , ,  путем последовательной подстановки в уравнение (18) вместо x нулей многочлена Чебы-
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n
i ni �

�
�

� �cos , , , , .
1

2
0 1  Имеем

 

c U x
x

B x

U x

k

b x

k
T xk k i

i

i

k i i
k i

k

n

� � �
�

� �
� �
�

�
� �
�

� �
�

�

�
�

�

�

�
��

�
�

1

1 1

2

1

0

��

� � � � �� �
�

�
��

�

�
�� � �

� �
�
�c T x c

n
T xm i m m m

m

n

n m i0 0 2 1

04
2 2

4 4

�
� � �

�
, , , ��

�
�

�

m n

m

n

k m i m k

m

n

m ic T x
k

T x

,

,

�

�
�

�

�

�
�
�


�

�
�
�


�
�

� � � �
�

�
�� �

�

0

1

02 4 4
�� � �� �

�

�
�� � � �

	
� �

� �

�
��

�

�� � � �

�

m k k m k

m

n

k

n

i

k

f x

k n

k n

, , ,

, ,

,

2

01

1

0 2

1 22
0 1

,
, , , .

�
�



� �i n

 (19)

Совместность системы уравнений (19) позволяет вычислить коэффициенты c k n
k
, , , , .� �0 1  При-

ближенное решение задачи (3), (4) – функция �n x� � – вычисляется по формуле (17) для произвольной 
точки x� �� �1 1, .
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Схема 2. Если для функций g x t v x t, , ,� � � � выбрать интерполяционные многочлены g x tn n, , ,� �  v x tn n, ,� � 
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Следовательно,
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Далее получаем
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(20)

Как и выше, на основании равенства (20) получаем систему линейных алгебраических уравнений 
для вычисления c c cn0 1, , ,…  путем последовательной подстановки в равенство (20) вместо x нулей 
многочлена Чебышева второго рода x i

n
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Совместность системы уравнений (21) позволяет вычислить коэффициенты c k n
k
, , , , .� �0 1  При-

ближенное решение задачи (3), (4) – функция �n x� � – вычисляется по формуле (17) для произвольной 
точки x� �� �1 1, .

Результаты численного эксперимента
Приведем результаты численного эксперимента, проведенного согласно построенным вычислитель-

ным схемам. Рассмотрим интегро-дифференциальное уравнение 
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Известно, что решением задачи (4), (22) является функция

� x x x U xx x x� � � � � � � � �� � �1 132 32 6
2 2

5

5 3
.

Несложно убедиться в том, что производная данной функции �� �� � �� x h 0 .

Как показывают расчеты, уже при сравнительно небольших значениях n достигается предельная 
точность приближенного решения, погрешность которого ограничена снизу лишь с вычислительной 
погрешностью.

Решая систему уравнений (19) или (21) при n = 10 и n = 34, видим, что приближенные решения �n x� �, 
вычисленные по формуле (17), отличаются от точного решения � x� � в точках x � � � �0 99 0 98 0 99, , , , , ,  

не более чем на 5,6 ⋅ 10– 6 и 1,5 ⋅ 10–15 соответственно. Число обусловленности матриц систем (19) и (21) 
при размерности n = 10 и n = 34 составляет cond C

10
25� � �  и cond C34 142� � �  соответственно, что позво-

ляет грубо оценить зависимость числа обусловленности от размерности как cond C O n
n� � �

�

�
�
�

�

�
�
�

3

2 .

Заключение
Представленные результаты могут быть использованы как в теоретических научных исследованиях, 

так и в инженерных расчетах, а также в образовательных программах по вычислительной математике. 
Итоги работы создают основу для дальнейшего развития спектральных методов, их адаптации к новым 
постановкам и интеграции в современные вычислительные комплексы.
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