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COMPLETE CONVERGENCE FOR PARTIAL WEIGHTED SUMS
OF NEGATIVELY ORTHANT DEPENDENT
RANDOM VARIABLES

TLTTU?

*The University of Danang — University of Science and Education,
459 Ton Duc Thang Street, Danang 550000, Vietnam

Abstract. Negatively orthant dependence is regarded as a generalisation of independence for random variables, intro-
duced by K. Joag-Dev and F. Proschan. Numerous researchers have investigated inequalities and laws of large numbers
for such sequences of random variables. In particular, the concept of complete convergence, defined by P. L. Hsu and
H. Robbins, has attracted significant attention. Complete convergence for partial weighted sums of negatively orthant de-
pendent random variables dominated by a random variable X is established. Sufficient conditions for this type of conver-
gence are provided under mild assumptions on the weights and the moments of random variable X.

Keywords: complete convergence; negatively orthant dependence; weighted sums; limit theorems; dependent random
variables.

Introduction and preliminaries

The concept of a complete convergence was introduced by P. L. Hsu and H. Robbins [1] while K. Joag-Dev
and F. Proschan introduced the definition of negatively orthant dependent (NOD) sequences [2]. Since then a wide
range of limit theorems for NOD random variables have been developed by numerous researchers. H. C. Kim
established a Hajek — Rényi type inequality [3] while N. Asadian and his colleagues obtained a Rosenthal-type
inequality [4]. In addition, A. Volodin presented the Kolmogorov exponential inequality [5]. Results concer-
ning almost sure convergence appear in the articles [6—8]. Complete convergence has been investigated by the
authors of the works [9—15]. This paper aims to establish complete convergence for partial weighted sums of
NOD random variables dominated by a random variable.

Definition 1. A sequence of random variables {X s N2 1} is said to converge completely to a random vari-
able Xif forall € >0

> P(|x,-X|>¢e) <o
n=1
Definition 2. A finite collection of random variables X, X,, ..., X, is said to be NOD if

P(X\>x, X,>x,, ..., X, >xn)sf[P(X,. >x;)
i=1

and

P(X,<x, X,<x,, ..., X, <x,)<[]P(X;<x)
i=1
for all x;, x,, ..., x, € R. An infinite sequence {X,,, n>1} is said to be NOD if every finite subcollection is NOD.
Definition 3. An array of random variables { X,
bles if for every n >1 {X,

ni>

1<i<n, n> 1} is said to be rowwise NOD random varia-
1<i< n} is a sequence of NOD random variables.

Definition 4. A sequence of random variables {X e B2 1} is said to be stochastically dominated by a ran-
dom variable X if for any x > 0

sup P(|X,|>x)< P(|X|>x).
nx1

Let / (A) be the indicator function of the set 4. The symbol C denotes a positive constant, which may be

different in each appearance, and a, = O(b, ) stands for a, < Cb,. The following lemmas are useful for the proof
of the main results of the work.
Lemma 1 [16]. Let random variables X,, X,, ..., X, be NOD; f,, f,, ..., f, be all non-decreasing (or all

non-increasing) functions. Then random variables f(X,), f>(X5), ..., f,(X,,) are NOD.
Lemma 2 [16]. Let X, X,, ..., X, be non-negative NOD random variables. Then
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E(ﬁXiJSﬁE(X

Lemma 3 [4; 12]. Let p > 2 and {Xn, nz 1} be a sequence of NOD random variables with E(Xn ) =0 and
E(|Xn|p ) < oo for every n 2 1. Then there exists a positive constant C depending only on p such that for every
nx1

P

p
n 2
<C iE|X,.|” + (Z‘;E|Xi|2J

J
24

E| max
lSanizl

Lemma 4. For anyxe Rand r e [1, 2] the following inequality holds:

P
? " 2
}< Clog”(2n) zp:E|X,.|” + [ZEPQF]
i=1 i=1

e <1+ x+ l|x|re‘x‘
r

Proof. Letus consider 2 cases.

1.Casex>0. Sincee*—1-x=¢" I te”'dt, it is sufficient to show
0

f(x)=1x" = [1e”dr >0 forall x> 0.
0

This inequality holds because f(0)=0,

2-r - 2- 2-r y_2_ 2- 2
x* et <supx” e =(2-r) oM i<t e =],
x>0

andf’(x)zxrfl(l X" x)>0 for all x > 0.

2. Case x < 0. From the case 1 we have

J
%|x|re‘x‘ > M jte"dt = (ex—l - x) + (e_x —e*+ Zx), x<0.
0

—X

Since e " —e* +2x >0 for all x < 0, we obtain

%|x|’e\x\ 2e'—1-x,x<0.

Lemma is proved.
Lemma 5. Let p, g >0 and {X s N2 1} be a sequence of random variables, which is stochastically domina-

ted by a random variable X with E(|X|” ) <w. Foralln>1and x > 0 the following inequalities hold:
(i) E(J2, ' 1(1,| <)) < E(1X] 1(|1X] < x)) + 0P > x):
(i) E(1X,['1(1%, > x)) < E(|x 1" 1 (1x]> x)). g <p.
Proof. Let us prove the inequality (i). We have
E(jx, "1(x,|<x))= jtqu |X,|<1)= qudp X, >1)=

>x)+IP( I

0

=—X

(=]
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=x'P(|X|>x) - fﬂdP(|X| >1)=x"P(|X]>x)+ ftqu(|X| <t)=
0 0

= P(|X]> %)+ E(|x['1(|x] <))

Let us prove the inequality (ii). From the inequality (i) for ¢ < p and letting x — o0 we obtain

E|X,|"<E|X]|" <o foralln>1.
Similarly, for g < p we have

+0o0

E(jx,["1(1x,]> %)) = jtqdp X,|<1)= Itqu X, >1)=

+00
=x'P(|X,|>x)+ [ P(|X,|>1)dt <
+0o0

<x'P(|X|>x)+ j P(jx|> 1)t = E(|x["1(x]> x)).

Lemma 6. Let { X,,, x > 1} be a sequence of NOD random variables with mean zero and 0 < B’ = Z EX7<oo.

Then for any x >0 and y > 0

Pl 2x)2 3 p(xifz) 2|3 - S 12|

n

Wwhere S, = Z Xy

ProofForaﬁxedy>0andeachn>1putX’ X,I1(X,<y)and S, = ZX’ Then we have

i=1

P(S,2x)=P(S,2x,8,#S,)+ P(S,2x,8,=5,)=

n

—P(S,%5,) + P(S,22)< > P(X, 2 y) + P(S, 2).

k=1

hu
Note that for a fixed / > 0 the function f ( ) e—}zzul is increasing for u. Since E (X A ) =0, forany y>0
u
y
[ dP(x, <t) jtdp <1)<0, k1.

Therefore,

y +00
Ee™i = [ M"dP(X, <)+ [ dP(X,<1)=

—o y

=1+ hfth(stz) + f(e’”—l— ht)dP(X, <t)<

31+Iiz dP(X <t)sl+¢jth
EAE y
hy _ py
Sexp[ey—};ylE(X,f)], k>1.

By Markov inequality and lemma 2, for any 4 > 0

e —hy -1

(Sf >x) th( hS;, )<e thEthk <exp( hx + y2

)<

sz
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1 xy
Put A =—log| 1 + —= | and get
! g[ sz ‘

n

, Xy 1 xy X X xy
S >x)<e RN — |- —log| 1+ = | |<exp| — — =log| 1+ —=||.
e e () R )

This implies that

Replacing X; with —X,, we also have

g ool )

Combining the last two inequalities, we obtain the desired result. Lemma is proved.

Main results
The following theorem extends the result of lemma 2.3 from the article [11] to the case r € (1, 2].
Theorem 1. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0 and
let {bn, nz 1} be a sequence of positive real numbers. We assume that there exists a positive constant v € (1, 2]
such that
max |X,;|=0(b,).

1<i<n

ZE|XM|F =0(b,),

Bl

Z b <ooforsomeoc>0.

Then Z X,; converges completely to zero.

Pr o o f. Applying lemma 4 for any 7z > 0, we have

E(exp(tX,,)) < E{l LIX, %|tXm.|rexp(|tXm.|)} ~1+ %E(|tXni|rexp(|tXni|)) <

1 r t r
<l+ 7E(|tXm| exp(Ctb, )) < exp[7exp(Ctbn)E(|Xm.| )]

By Markov inequality and lemma 2, for any € > 0

P[iXm > 8] < e’aEexthiXm} < eftgll[Eexp(tXmA)S

i=1 i=1 i=1

<eexp [é eXp(Ctbn)iE“er )] <e™™ exp(t’ exp(Ctb, )Cb, )
ol

Putz= (?—Jrll)_l for n large enough and C > 0 such that C (oc + l)r ¢ >1 we obtain
eb, ~

n

i=1

P[iXm‘ > 8] < exp((C(a +1) e eXp(C(OL + l)aflb,(qrfz)(r*l)i1 ) —o— 1),},}1(’1)l ) <

<exp| —C(a+1)'e™ s <exp s

n n
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Therefore,

MS

(z X, > SJ <o,
Since {—X,,;, 1<i<n, n>1} is still an array of rowwise NOD random variables, we can replace .X,,; with —X
from the above statement. That is

i=1

i (ZX < 8J<OO.

Theorem is proved.
Theorem 2. Let {Xni, I<i<n,nz 1} be an array of rowwise NOD random variables such that E(Xni)
1<i<n,n> 1} are stochastically dominated by a random variable X satisfying E (|X |p log|X |)

and {X,;,1<
1<i<n,n2 1} is an array of positive real numbers such that

for some p (1, 2). We assume that {am-, <
—1 -2

max |a,,|=0| n” andZam— n'te
1<i<n

n

Then z a,; X,; converges completely to zero.

1+p] put X,, =X, + X,., where

i=1 2
Proof Forge
2—
1
> XlZi:XniI |Xm‘|>nq ,”lZl,lSl‘Sn,

g

1

Xy =Xl || X, <0

For any € > 0 we have
n - EXni)

}’Il

>28}S

Zn:am(x,;; —-EX,)|>¢
i=1

=1

< E.O:P > ani(X;;i_EXrlli)
n=1 i=1
:(logn)fl, 257> P4

q-p

we get

For n large enough and b,
1 11

a, (X}, — EX!,) <2|a,|n” <cn® ? <Cb,,

r r
1+———
r|r q P
WX < Cn <Cb,,

am‘(Xr’u' _EX;:i)r S

i=1

0
(r-
Zeb" < oo for any o > 1.

Therefore, by theorem 1, we obtain
> SJ < o0,

> a, (X, —EX);)

n=1 [
Additionally, by Markov inequality, C -inequality and lemma 3, we have

[ Zam X” Xrltlz)

sciaﬁﬂ)@;’i EX"[ <CZ

2
<

Z am Xl! X"

>8j<—

1

|X,',’i|2:CZn:a5iE X1 [ X, > n
i=1

IN

0
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1
H < CZafiE{|X|2 I[|X| >plt? N <
i=1

1
<Cn'E |X|p+1]{|X| >n'*P B

1
a,.( Xy — EX) )| > g} <> nlE{|X|pHI[|X| >nltP N -
n=1

< Czn:afiE[|X|2 1(|X| >n’

i=1

Consequently,

© © o 1
3% [m”“ k1+P<|X|s<k+1>wJ .

ok L 1
= ZZ [|X|’”‘1 K'P < |X|<(k+1)+p | |<
© L 1
<CY log(k)E| | X" 1| K7 <|X|<(k+1)ivp ||<
k=1

o0 L 1
<Cy’ E[|X|p+llog(|X|)I[k”” <|X|<(k+ 1)1+pﬂ =
k=1

= CE(|X|"" log(|x])) <.

Theorem is proved.

Theorem 3. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0, 1<
<i<n, n21, which is stochastically dominated by a random variable X; {am., 1<i<n,n2 1} be an array of
positive real numbers; {bn, n> 1} be a sequence of positive real numbers, b, T oo. Let {wn(l), n 1} be a se-
quence of non-negative even functions satisfying the following conditions:

()T dW"()ias|t|T
| f

for some real number p € (1, 2] We assume that

A <oo an a EW’(X)
T2y <o X

Then

completely.
Proof. Note that for any r e [O, 2]

For a fixed n > 1 define
XM= b, 1(X,; <b,) + X, 1(|X,,|<b,) + b,I(X,; >b,), 1<i<n,

1
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> bns} =

Z am ni

Forany e >0

ni nl

2

>b,e, max |X |<b J+P{

<p[
(n)
iZam.EXi(”) —0 asn —> .

SP[Tn
ni=1

<|X,|1(|X,|<b,). 1<i<n, nx1. Since E(X,)=

by a, EX")|<
i=1

ni m

1<i<n

[

>b,e, max | X, |>anS

zam i

> b 8]+P(max |X |>bnjs
1<i<n

]+P(max |X |>b j
1<i<n

>b,e—

Zn:am’EXi(n)
i=1

We will show that

v, (1)
d

Indeed, it is clear that ‘X l.(")

Tas T, we have

<lb 1§;amE( 1(|x,]<8,)) +

1ZamE( 1(x,]>b,)) <

-

IA

b, Z a,E(X,1(X,

=1

1<5,))
'S 0, (01, ,)

v b IZamE(‘X

+ Zn:aniP(|Xm| >bn)£
i=1

<b! ZamE(|X|[(|X| >b, )) + ianiP(|X| >b,)<
i=1

i=1

o E(w(X)1(X]>8,)) & Ey(X)

S am. —+ ani LA N
i=1 ‘Vi(bn) ; \Vi(bn)

Thus, for n large enough
P( D a,X,,|>b SJ < P[

To complete the proof, it is sufficient to show:

(e

)+P( max | X, |>bnj.
2 1<i<n

and

n 2
Put B2 = ZaﬁiE(Xi(”) - EX,.(”))  n>1. Take x =2, by
i=1 2 2n
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Ex

1

< 221)(% X _

b - B’
>87"j+cz /T R
n=1 B2+8

n

2n

By Markov inequality, C,-inequality, lemma 5 and the facts that %|E||t|) T and W|i |(lt|)  as
t
w E , E‘X
I“<CZZa <CZZa

n=1li= n n=1i=

« n  ElX |PI(|X, |<b
$ S CARCASS

P
n:li:l bn

‘X — x|

w E <b,
<C al C alP(|X|>b,)<
n=1i=1 " b,

n n=1i=

and
2\
. ; I E‘Xl.(")
Ilzgcz(b,;zzaﬁiE(X}” EX(”))J <cY Y 11| <
n=1 i=1 n=1|i=1 bn
w [ s E(|Xm|21(Xm|£bn))n w [ n E(|Xm|p1(|Xm|Sbn))
<CY | Day - <CY | Day <
n=1|i=1 bn n=1|i=1 b;f
o E(|Xm.|p1(|Xm|Sbn)) !
<C Z a,; Y. <
n=1i=1 n
o o E(X1(X]<8,) & '
Cl Y. > ay, v + 2> anP(|X|>b,) | <
n=1i=1 n n=1li=1
© n Evy (X) 1
<C nzi d <00
(Zz w,»(b,,)J
On the other hand,

Theorem is proved.
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Theorem 4. Let {X

ni>

1<i<n,n21} be an array of rowwise NOD random variables with E(X,;)=0,
1<i<n, nZl} be an array of
positive real numbers; {bn, n> 1} be a sequence of positive real numbers, b, T oo. Let \|f(t) be a non-negative
even function satisfying the following conditions:

1 ¥,y

forsomerealnumberpe(l 2] PutA n t Za n>1,t>0.1If

1<i<n, n>1, which is stochastically dominated by a random variable X; {a

ni»

0 E (X) P 2 () E (X)
z::A(”’ ) \u\l](bn) <o, 1€{0,1}, and Z:}A (n, 2)log*”(n) \Vw(bn) <o,

n=1

then

Z anz ni

— max
b, 1<j<n|;

completely.
Proof. We continue to use the notations X;" ™) and T ™) introduced in the proof of theorem 3. For any € > 0

>st

>b 8}+P(1max |X |>b )

]+P( max |X |>bn).
1<i<n

b.' max Zam.EXi(”) <

1<j<n|%

J

Z am ni

P| max
1<j<n izl

J

< P| max Z
ISanizl

( )

77

J
< P| max T.( )‘>bs— max Z
1<j<nl’ 1</ <n|2

T, it follows that

(1)
i

Since

<b max
1<j<l’l

<b! Zn:aniE(|X|1(|X| >b, )) + Zn:aniP(|X| >b,)<
i=1 i=1

. [X]1(|X]>5,) Ey(X)
_A(n,l)E[b—J+A(n,1) \:’(bn) <

Za E (Xl (|Xu]>5,))

+ max ZamP(|X |>bn)£

]<j<n

n

Ey(X)

v(b,)

—>0 asn — oo.

<24(n,1)

Therefore, for n large enough

max Za
{1<]<n ni<* ni

It is sufficient to show that

b j+P(max |X |>bnj.
2 1<i<n

47



ZKypnaa Besopycckoro rocyrapcTBeHHOro yaupepcurera. Maremaruka. Madopmaruka. 2025;3:38-50
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:38-50

and
J,= Z:l (1IPza<Xn|X | > bnj < oo,

On the one hand, by Markov inequality, lemma 3 and C,-inequality, we have
2p j
<

+ Zn:a,fiE‘Xi(") -
i=1

7;()

2
J, < CZ:lb ”E[ltgljazcn

_ gx® 2p

SCi b,*" log*” {Zasz

n=1

p
<Cb," log2p(n)[zaﬁfE‘X,-(n) Ty ZaﬁiE‘X,(”)zJ ]<
n=1 i=1 i=1

X, ['1(

SCibfplog {Zaz”E(

n=1

1(x,,|<b, )) + (Z}azE(

t t
On the other hand, by lemma 5 and the facts that \V( ) T and \V( )

< b"))]p }
4 ik

b2r Zn:aﬁf’E(|Xm|2p 1(|x,] <, )) <57y a,f,!’E(|Xm.|" 1(|x,] <, )) <
i=1 i=1

<b7Y o [E(|X|pl(|X| <b,))+ b7 P(|X]> b, )} <
i=1

v(X)1(1X]<B,))  Ey(X)
b

E(
SA(n, 2p) \V( n) + \Il(b,,)

]S CA(n, 2p)

and

3

ni

b2y aE (X, [ 1(X,]<b,))<

i=1

<b2A(n, 2)[E(|X|2I(|X| <b,))+ b2P(|1X|>b, )J <

< A(n, 2)[E£|X|2[(L#b”)} + P{W’l’(x) > wfl’(bn )]] <

n

b

n

i) E[|X|z<|X|sz)n>J+ B (X))

< A(n, 2)
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Therefore,

v(b,)
S Ey(X)
<CY 4”(n, 2)log* (n <0,
2 NG
For J, we have
J,< iip(|xm|>bn)s 3 nP(|X|>b,)< in%b)())<oo.
n=1li=1 n=1 n=1 YO,

Theorem is proved.

Without the assumption of stochastic domination of {X,;, 1<i<n, n>1} the proof of theorem 3 immedia-
tely yields the following result.

Theorem 5. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0,1<

<i<n,n2l; {am., 1<i<n,n> 1} be an array of positive real numbers; {bn, n> 1} be a sequence of positive

ni»

real numbers, b, T oo, Let { \un(t), n> 1} be a sequence of non-negative even functions satisfying the following
conditions:

‘Vn|(|| |) 1+ and YA\ \Ifn(| |) |t|T
i

for some real number p (1, 2]. We assume that

Ewi(X) <© an 3 2EW’ )<oo
$EEU 3 P,

n=1li=1 n) n=1i=1
Then

blianani —0

ni=1

completely.
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