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ПОЛНАЯ СХОДИМОСТЬ ЧАСТИЧНЫХ ВЗВЕШЕННЫХ СУММ  
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Аннотация. Отрицательная ортантная зависимость рассматривается как обобщение независимости случай-
ных величин, которое ввели К. Джоаг-Дев и Ф. Прошан. Многие исследователи изучали неравенства и законы 
больших чисел для таких последовательностей случайных величин. В частности, понятие полной сходимости, 
определенное П. Л. Хсу и Г. Роббинсом, привлекло значительное внимание. Устанавливается полная сходимость 
для частичных взвешенных сумм отрицательно ортантно зависимых случайных величин, над которыми домини-
рует случайная величина X. Приводятся достаточные условия такой сходимости при выполнении мягких предпо-
ложений относительно весов и моментов случайной величины X.

Ключевые слова: полная сходимость; отрицательная ортантная зависимость; взвешенные суммы; предельные 
теоремы; зависимые случайные величины. 
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OF NEGATIVELY ORTHANT DEPENDENT  

RANDOM VARIABLES
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Abstract. Negatively orthant dependence is regarded as a generalisation of independence for random variables, intro-
duced by K. Joag-Dev and F. Proschan. Numerous researchers have investigated inequalities and laws of large numbers 
for such sequences of random variables. In particular, the concept of complete convergence, defined by P. L. Hsu and 
H. Robbins, has attracted significant attention. Complete convergence for partial weighted sums of negatively orthant de-
pendent random variables dominated by a random variable X is established. SufÏcient conditions for this type of conver-
gence are provided under mild assumptions on the weights and the moments of random variable X.

Keywords: complete convergence; negatively orthant dependence; weighted sums; limit theorems; dependent random 
variables.

Introduction and preliminaries
The concept of a complete convergence was introduced by P. L. Hsu and H. Robbins [1] while K. Joag-Dev 

and F. Proschan introduced the definition of negatively orthant dependent (NOD) sequences [2]. Since then a wide 
range of limit theorems for NOD random variables have been developed by numerous researchers. H. C. Kim 
established a Hájek – Rényi type inequality [3] while N. Asadian and his colleagues obtained a Rosenthal-type 
inequality [4]. In addition, A. Volodin presented the Kolmogorov exponential inequality [5]. Results concer-
ning almost sure convergence appear in the articles [6 – 8]. Complete convergence has been investigated by the 
authors of the works [9–15]. This paper aims to establish complete convergence for partial weighted sums of 
NOD random variables dominated by a random variable.

Definition 1. A sequence of random variables X nn , �� �1  is said to converge completely to a random vari-
able X if for all ε > 0

P X Xn

n

� �� � � �
�

�

� � .

1

Definition 2. A finite collection of random variables X X X n1 2, , ,…  is said to be NOD if

P X P Xx X x X x xn n i i

i
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for all x x xn1 2, , , .� �  An infinite sequence X nn , �� �1  is said to be NOD if every finite subcollection is NOD.
Definition 3. An array of random variables X i n n

ni
, ,1 1� � �� � is said to be rowwise NOD random varia-

bles if for every n ≥ 1 X i n
ni
,1� �� � is a sequence of NOD random variables.

Definition 4. A sequence of random variables X nn , �� �1  is said to be stochastically dominated by a ran-
dom variable X if for any x ≥ 0

sup .
n

nP X P X xx
�

�� � � �� �
1

Let I A� � be the indicator function of the set A. The symbol C denotes a positive constant, which may be 
different in each appearance, and a O b

n n
� � � stands for a Cbn n≤ . The following lemmas are useful for the proof 

of the main results of the work.
Lemma 1 [16]. Let random variables X X X n1 2, , ,…  be NOD; f f fn1 2, , ,…  be all non­decreasing (or all 

non­increasing) functions. Then random variables f X f X f Xn n1 1 2 2� � � � � � �, , ,  are NOD.
Lemma 2 [16]. Let X X X n1 2, , ,…  be non­negative NOD random variables. Then



40

Журнал Белорусского государственного университета. Математика. Информатика. 2025;3:38–50
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:38–50 

E X E X
i

i

n

i

n

i

� �
� �
�

�
��

�

�
��
� � �

1 1

.

Lemma 3 [4; 12]. Let p ≥ 2 and X nn , �� �1  be a sequence of NOD random variables with E X n� � � 0 and 
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Lemma 4. For any x ∈  and r�� �1 2,  the following inequality holds:

e x
r
x ex r x
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.

P r o o f. Let us consider 2 cases.
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 for all x ≥ 0.

This inequality holds because f 0 0� � � ,
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2. Case x < 0. From the case 1 we have

1
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Since e e x
x x� � � �2 0 for all x < 0, we obtain

1
1 0

r
x e e x x
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Lemma is proved.
Lemma 5. Let p q, > 0 and X nn , �� �1  be a sequence of random variables, which is stochastically domina­

ted by a random variable X with E X
p� � � �. For all n ≥ 1 and x > 0 the following inequalities hold:
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P r o o f. Let us prove the inequality (i). We have 

E X I X x t dP X t t dP X tn

q

n
q

n
q

n

xx

�� �� � � �� � � � �� � ���
00

� � �� � � �� � � �� � �� �x P X x P X t dt P X t dtq

n n

q

x

n

q

x

0 0



41

Теория вероятностей и математическая статистика
Probability Theory and Mathematical Statistics

� �� � � �� � � �� � � �� � �� �x P X x t dP X t x P X x t dP X tq q
x

q q
x

0 0

� �� � � �� �� �x P X x E X I X xq q .

Let us prove the inequality (ii). From the inequality (i) for q ≤ p and letting x → ∞ we obtain 
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Similarly, for q ≤ p we have
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Lemma 6. Let X xn , �� �1  be a sequence of NOD random variables with mean zero and 0 2 2
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By Markov inequality and lemma 2, for any h > 0
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Replacing Xk with – Xk , we also have
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Combining the last two inequalities, we obtain the desired result. Lemma is proved.

Main results
The following theorem extends the result of lemma 2.3 from the article [11] to the case r�� �1 2, .

Theorem 1. Let X i n n
ni
, ,1 1� � �� � be an array of  rowwise NOD random variables with E X ni� � � 0 and 

let b nn , �� �1  be a sequence of  positive real numbers. We assume that there exists a positive constant r�� �1 2,  
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By Markov inequality and lemma 2, for any ε > 0
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Theorem is proved.
Theorem 2. Let X i n n
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Therefore, by theorem 1, we obtain 
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Additionally, by Markov inequality, Cr-inequality and lemma 3, we have
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Theorem is proved.
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By Markov inequality, Cr-inequality, lemma 5 and the facts that 
�i t

t

� �
� and 

�i
p

t

t

� �
�  as t ↑, we obtain

I C a
E X EX

b
C a

E X

b
ni
p

i

n

i

n
p

n
p

i

n

n

ni
p

i

n
p

n
p

i

n

n

11
11 1

�
�

�

� � � �

��

�
� �

�
�� �

��

�

� �
1

�
�� �� �

�
��

�

��C a
E X I X b

b
ni
p

ni

p

ni n

n
p

i

n

n 11

�
�� �� �

� �� � �
��

�

��

�

�� ��C a
E X I X b

b
C a P X bni

p

p

n

n
p

i

n

n

ni
p

n

i

n

n11 11

�
�� �� �

�
� �

� �
� �
� ���

�

�
��C a

E I X b
C a

EX

b

X

b
ni
p n

ni

n

n

ni
p

ni

i

i

i

i

�

�

�

�11 1

nn

n

��
�

�

�
1

� ��
� �
� ���

�

��C a
E X

b
ni
p

ni

n

n

i

i

�

�11
and 

I C b a E X EX C a

E X

n ni i

n

i

n

i

n

ni

i

n
i

n

12

2 2
2

1

2

1

� �� ��

�
��

�

�
�� �� � � � �

� �
� �

� �� �

�

�

�

�
�

�

�
�
�

�

�

�
�
�
���

2

2
11 bnnn

�

�
�� �� ��

�

�
�
�

�

�

�
�
�
�

��

�

�

�� �C a
E X I X b

b
C a

E

ni

i

n ni ni n

nn

ni

i

n
2

1

2

2
1

2

1

�

XX I X b

b

ni

p

ni n

n
p

n

�� �� ��

�

�
�
�

�

�

�
�
�
�

�

�

�

�

1

�
�� �� ��

�

�
�
�

�

�

�
�
�
�

��

�

��C a
E X I X b

b
ni

i

n ni

p

ni n

n
p

n

2

11

�

�
�� �� �

� �� �
�

�

�
�
� � ��

�

�

�

� ���C a
E X I X b

b
a P X bni

i

n
p

n

n
p ni

i

n

nn

n
2

1

2

111

��

�

�
�
�
�

�

�
�

�
��

�

�
�� � �

� �
� ���

�

��C a
E X

b
ni

i

n

n

i

i n

2

11

�

�

�

.

On the other hand,

I P X b P X b
i n

ni n ni n

i

n

nn

2
1

111

� ��

�
�

�

�
� � �� � �

� � ��

�

�

�

��� max

� �� � � � �
� �
� ���

�

��

�

�� ��P X b
E X

b
n

i

n

n i

n

n

i

i n11 11

�

�
.

Theorem is proved.
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Theorem 4. Let X i n nni , ,1 1� � �� � be an array of rowwise NOD random variables with E X ni� � � 0, 
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Therefore, 
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Theorem is proved.
Without the assumption of stochastic domination of X i n nni , ,1 1� � �� � the proof of theorem 3 immedia-

tely yields the following result.
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real numbers, bn � �. Let �n t n� � �� �, 1  be a sequence of non­negative even functions satisfying the following 
conditions:

�n t

t

� �
� and 

�n
p

t

t

� �
� as t ↑

for some real number p�� �1 2, . We assume that

E X

b

i

i n

ni

i

n

n

�

�

� �
� �

� �
��

�

��
11

 and a
X

b

E
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i

n
i

i nn

ni2

11 ��

�

��
� �
� �

� �
�

�
.

Then 
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a X

n

ni ni

i

n

�
� �

completely.
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