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КОНФОРМНОЕ УРАВНЕНИЕ КИЛЛИНГА  
НА 2-СИММЕТРИЧЕСКОМ ШЕСТИМЕРНОМ  

НЕРАЗЛОЖИМОМ ЛОРЕНЦЕВОМ МНОГООБРАЗИИ  
С ТРИВИАЛЬНЫМ ТЕНЗОРОМ ВЕЙЛЯ
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Аннотация. Исследован конформный аналог уравнения Киллинга на 2-симметрических шестимерных нераз-
ложимых лоренцевых многообразиях, а также изучены свойства конформного множителя данного уравнения. Для 
случая конформно-плоских метрик построены новые нетривиальные примеры конформно-киллинговых векторных 
полей с переменным конформным множителем.

Ключевые слова: конформно-киллингово векторное поле; лоренцево многообразие; k-симметрическое про-
странство; тензор Вейля.
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CONFORMAL KILLING EQUATION  
ON A 2-SYMMETRIC SIX-DIMENSIONAL INDECOMPOSABLE  

LORENTZIAN MANIFOLD WITH TRIVIAL WEYL TENSOR
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Abstract. In this paper, we study the conformal analogue of the Killing equation on 2-symmetric six-dimensional in-
decomposable Lorentzian manifolds, and also study the properties of the conformal factor of this equation. For the case 
of conformally flat metrics, new non-trivial examples of conformal Killing vector fields with a variable conformal factor 
are constructed.

Keywords: conformal Killing vector field; Lorentzian manifold; k-symmetric space; Weyl tensor.

Введение
Конформно-киллинговы векторные поля являются естественным обобщением векторных полей Кил-

линга и играют важную роль в изучении группы конформных преобразований многообразия, потоков Рич-
чи на многообразии, теории солитонов Риччи. Псевдоримановы симметрические пространства порядка k, 
где k ≥ 2, возникают в исследованиях по псевдоримановой геометрии и в физике. В случаях, когда k = 2 
и k = 3, они изучены Д. В. Алексеевским и А. С. Галаевым [1]. При малых размерностях эти простран-
ства и векторные поля Киллинга на них исследовали Д. Н. Оскорбин, Е. Д. Родионов и И. В. Эрнст [2].

Солитоны Риччи являются обобщением метрик Эйнштейна на (псевдо)римановых многообразиях. 
Уравнение солитонов Риччи изучалось на различных классах многообразий многими математиками. 
В частности, Д. Н. Оскорбиным и Е. Д. Родионовым [3] найдено общее решение уравнения солитона 
Риччи на 2-симметрических лоренцевых многообразиях малой размерности, доказана локальная разре-
шимость этого уравнения в классе 3-симметрических лоренцевых многообразий. В случае постоянства 
константы Эйнштейна в уравнении солитона Риччи векторные поля Киллинга позволяют найти общее 
решение уравнения солитона Риччи, отвечающее данной константе. Однако для различных значений 
константы Эйнштейна роль векторных полей Киллинга играют конформно-киллинговы векторные поля, 
в связи с чем возникает потребность в их изучении.

В настоящей работе исследован конформный аналог уравнения Киллинга на 2-симметрических  
шестимерных неразложимых лоренцевых многообразиях, изучены свойства конформного множителя 
этого уравнения на них. Установлено, что конформный множитель конформного аналога уравнения 
Киллинга зависит от поведения тензора Вейля. Так, если тензор Вейля нетривиален, то конформный 
множитель постоянен (данный случай исследован ранее в работах [3; 4]). Если же тензор Вейля тривиален, 
то конформный множитель и общее решение конформного аналога уравнения Киллинга выражаются 
через функции Эйри. Кроме того, для случая равенства нулю тензора Вейля построены новые нетри-
виальные примеры конформно-киллинговых векторных полей с переменным конформным множителем.

Предварительные сведения
Псевдоримановым многообразием называется гладкое многообразие M, на котором задан гладкий не-

вырожденный симметричный метрический тензор g. Если метрический тензор имеет сигнатуру 1 1, ,n �� �  

то M g,� � называется лоренцевым многообразием.
Псевдориманово многообразие M g,� � называется симметрическим порядка k, или k­симметриче-

ским, если � �kR 0, � ��k R1 0, где k ≥ 1, R – тензор кривизны M g, ,� �  а ∇ – связность Леви-Чивиты.
В работах [5–7] М. Каэн и Н. Уоллах показали, что односвязное лоренцево симметрическое простран-

ство изометрично произведению риманова симметрического пространства и одного из следующих ло-
ренцевых многообразий: , ,dt

2� �  универсальной накрывающей k-мерного пространства де Ситтера или 
анти де Ситтера (k ≤ 2), пространства Каэна – Уоллаха, т. е. пространства CW A g

n n� �� � � � �2 2 ,  с мет-
рикой

g du dv A x x du x zij
i j

ij
i j� � �� � �2 � ,

где δij – символы Кронекера; Aij – матричные константы.
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Далее все рассматриваемые лоренцевы многообразия будем полагать локально неразложимыми, так 
как из теоремы Ву [8] вытекает, что любое лоренцево многообразие локально может быть представлено 
в виде прямого произведения некоторого риманова многообразия M g1 1,� � и локально неразложимого 
лоренцева многообразия M g2 2, .� �

Определение 1. Обобщенное пространство Каэна – Уоллаха CW gd
n �� �2
,  размерности n + 2 ≥ 4, по-

рядка d определяется как n + 2 с метрикой

g dudv dx a u x x du A a u H u
i

i

n

ij
i j

i j

n

ij i
i

i

� � � � � � � � � �� � �
� � �
� �2

2

1

2

1,

,
00

n

� ,

где Hi  – симметрические постоянные матрицы размера n × n.
Теорема 1 [1; 9]. Локально неразложимое лоренцево многообразие M g,� � размерности n + 2 ≥ 4 

является 2­симметрическим (3­симметрическим) в том и только в том случае, если оно локально изо-

метрично обобщенному пространству Каэна – Уоллаха CWd
n �� �2  порядка d = 1 (d = 2).

Определение 2. Гладкое полное векторное поле K на (псевдо)римановом многообразии M g,� � на-
зывается векторным полем Киллинга, если выполняется равенство L gK = 0, где L gK  – производная Ли 
метрического тензора вдоль поля K.

Определение 3. Гладкое полное векторное поле K на (псевдо)римановом многообразии M g,� � назы-
вается конформно-киллинговым векторным полем, если выполняется равенство L g f p gK � � � , где L gK  – 

производная Ли метрического тензора вдоль поля K, p ∈ M, а f p� � – гладкая вещественная функция на 
многообразии.

Пусть M g,� � – 2-симметрическое локально неразложимое лоренцево многообразие размерности n. 
Исходя из работы Д. В. Алексеевского и А. С. Галаева [1], выберем в M g,� � локальную систему коор-
динат v x x x un

, , , , ,
1 2 � � такую, что

 g dudv dx H x x uH x dui

i

n

ij
i j

i j

n

ii
i

i

n

� � � � � � � �
� � �
� � �2

2

1

0

1

1

2
2

1,

,  (1)

где H0 – симметрические постоянные матрицы размера n × n; H1 – невырожденная диагональная матрица.
В уравнении конформного аналога уравнения Киллинга L g f p gK � � �  вид конформного множителя 

f p� � зависит от того, является ли метрика g конформно-плоской. Путем прямых вычислений компо-
нент тензора Вейля метрики (1) доказывается следующая лемма.

Лемма. Равенство тензора Вейля метрики (1) нулю (W = 0) равносильно условиям, что все Hii1 рав-
ны между собой, все Hii0 равны между собой, а при i ≠ j имеем Hij0 0= .

Д о к а з а т е л ь с т в о. Тензор Вейля на многообразии с метрикой (1) принимает вид

W
n

n H u H H u Hii ii jj jj

j

n

�
�

�� � �� � � �� �
�

�
��

�

�
�� �

�

�
1

2
2 1 0 1 0

1

� � � �� � �
�
� dudx dudx dx dudx du dudx dx du dx dududx

i i i i i i i i

i

n

1

� �� � � � �� �H dudx dx du dx dududx dudx dudx dx dudx duij ij
i j i j i j i j

i

0 1 �
,,

.
j

n

�
�

1

Заметим, что в случае, когда i ≠ j, компоненты тензора Вейля при dudx dx dui j , dx dududxi j, dudx dudxi j 

и dx dudx dui j  равны Hij0. Следовательно, если W = 0, то при i ≠ j имеем Hij0 0= .

Все компоненты тензора Вейля при dudx dudxi i, dx dudx dui i , dudx dx dui i  и dx dududxi i с точностью до 
знака имеют следующий вид:

� � �
�

�� �
�
�H u H

n
H u Hii ii jj jj

j

n

1 0 1 0

1

1

2
.

Приравняем к нулю коэффициент при u, а также свободный член данного выражения:

� �
�

�
�
�H

n
Hii jj

j

n

1 1

1

1

2
0,
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� �
�

�
�
�H

n
Hii jj

j

n

0 0

1

1

2
0.

Так как эти уравнения должны быть справедливы при любых 1 ≤ i ≤ n, то из них следует, что все Hii1 
равны между собой и все Hii0 также равны между собой. Лемма доказана.

Шестимерный случай
Перейдем к анализу уравнения конформно-киллингова векторного поля. Зафиксируем точку p ∈ M  

и рассмотрим уравнение L g fgK =  в локальных координатах (1) в окрестности этой точки. С уче-
том результатов работы [10] будем считать, что гладкая функция  f  зависит только от переменной u. 

Исходя из этого, можем принять, что f
dF u

du
�

� �  для некоторой функции F u� �. Для простоты изло-

жения будем полагать, что x1 = x, x2 = y, x3 = z, x4 = t. Обозначим координаты искомого векторного  
поля K через V V v x y z t u� � �, , , , , , X X v x y z t u� � �, , , , , , Y Y v x y z t u� � �, , , , , , Z Z v x y z t u� � �, , , , , ,  
T T v x y z t u� � �, , , , , , U U v x y z t u� � �, , , , ,  (V, X, Y, Z, T, U – гладкие функции), H H x H xy� � � �110

2

120
2 2

xy H xz H xt H y H yz H yt H� � � � � �
130 140 220

2

230 240 3
2 2 2 2 2

330

2

111

2

221

2

340 440

2
2z u H x H yH zt H t� � �� ��

� ��H z H t331

2

441

2
. В результате получим систему уравнений кон формно-киллинговых векторных по-

лей в локальных координатах:

 

U

U X U Y U Z U T

X Y X Z Z Y

v

x v y v z v t v

y x z x y z

�

� � � � � � � �

� � � � �

0

0 0 0 0

0 0

,

, , , ,

, , �� � � � � � �

� � � �

� �

0 0 0 0

2 2 2 2

, , , ,

, , , ,

X T Y T Z T

X f Y f Z f T f

U V

t x t y t z

x y z t

u v ff

HU X V HU Y V HU Z V HU T V

fH HU

x u x y u y z u z t u t

,

, , , ,� � � � � � � � � � � �

� �

0 0 0 0

2 uu u x y z t uV XH YH ZH TH UH� � � � � � �

�

�

�
�
�
�
�

�

�
�
�
�
� 2 0.

 (2)

Рассмотрим все уравнения, кроме последнего. Из них, следуя рассуждениям работ [4; 11; 12], полу-
чаем систему

 

U F u

X
dF u

du
x C y C z C t b u

Y C x
dF u

du
y C
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�
� �
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� �

�

,

,
1

2

1

2

1 2 3 1

1 3zz C t b u

Z C x C y
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t b u

V
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�

�

�
�
�
�
�
�
�
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t
x y z t d F u
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C

2 2 2 2 2

2 6
4

,

 (3)

где Ci – произвольные константы, а b ui � �  – гладкие функции, определяемые системой дифференциаль-
ных уравнений b u a u b ui ij j� � � � � � �. Эта система с заданными начальными условиями разрешима, и раз-
мерность пространства решений при большей размерности равна 2n (подробнее см. [3; 12]).

Подставляя полученные выражения в уравнение (2), имеем
dF u

du
u H x H y H z H x H xyH t

� �
� �� � � � �� �111

2

221

2

331

2

110

2

120441

2
2
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� � � � � � � �2 2 2 2 2
130 140 220
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230 240 330
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2
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 � � � � �� � ��F u H x H y H z H t111
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2
0.  (4)

Далее покажем, что в случае, когда тензор Вейля метрики (1) нетривиален, это равенство может вы-

полняться только для постоянной функции f
dF u

du
�

� � .
Теорема 2. Пусть M – 2­симметрическое шестимерное неразложимое лоренцево многообразие с ме-

трикой (1) и нетривиальным тензором Вейля. Тогда конформный множитель f p� � конформного ана-

лога уравнения Киллинга L g f p gX � � �  постоянен.
Д о к а з а т е л ь с т в о. Левая часть уравнения (4) является полиномом относительно переменных x, y,

x y z t, , , , его коэффициенты при x y z t
2 2 2 2
, , ,  должны обращаться в нуль:
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uH H C H C H C H HH F u111 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 221 220 1 120 3 230 4 240

d F u

du

dF u

du
uH H C H C H C H HH F u221 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 331 330 2 130 3 230 5 340

d F u

du

dF u

du
uH H C H C H C H HH F u331 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 441 440 3 140 4 240 5 340

d F u

du

dF u

du
uH H C H C H C H HH F u441 0� � � .

Рассмотрим почленные разности этих уравнений:

2 111 110 221 220 111 221

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �4 2 2 2 2 01 120 2 130 3 140 3 230 4 240C H C H C H C H C H ,  (5)

2 111 110 331 330 111 331

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �2 4 2 2 2 01 120 2 130 3 140 3 230 5 340C H C H C H C H C H ,  (6)

2 111 110 441 440 111 441

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �2 2 4 2 2 01 120 2 130 3 140 4 240 5 340C H C H C H C H C H ,  (7)
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2 2
221 220 331 330 221 331 1 120

dF u

du
uH H uH H F u H H C H

� �
� � �� � � � � �� � � �

� � � � �2 4 2 2 02 130 3 230 4 240 5 340C H C H C H C H ,

2 2
221 220 441 440 221 441 1 120

dF u

du
uH H uH H F u H H C H

� �
� � �� � � � � �� � � �

� � � � �2 2 4 2 03 230 3 140 4 240 5 340C H C H C H C H ,

2
331 330 441 440 331 441

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

� � � � � �2 2 2 2 4 02 130 3 230 3 140 4 240 5 340C H C H C H C H C H .

Далее рассмотрим полученные уравнения в разных случаях.
Случай 1. Если H H H H111 221 331 441= = = , то рассматриваемые уравнения принимают вид

2 4 2 2 2 2
110 220 1 120 2 130 3 140 3 230 4 24

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 4 2 2 2
110 330 1 120 2 130 3 140 3 230 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 4 2 2
110 440 1 120 2 130 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 4 2 2220 330 1 120 2 130 3 230 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 2 4 2220 440 1 120 3 230 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 2 2 4330 440 2 130 3 230 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � �

00
0� .

Следовательно, при H H H H111 221 331 441= = =  и H Hii jj0 0≠ , i =1 4, , j =1 4, , имеем 
dF u

du

� �
� const.

Случай 2. Если один из Hii1 не будет равен остальным (пусть для определенности H H jj111 1≠ , j = 2 4, ), 
поделив уравнение (5) на H H111 221− , уравнение (6) на H H111 331

−  и уравнение (7) на H H111 441− , полу-
чим

2
4 2 2

110 220

111 221

1 120 2 130
dF u

du
u

H H

H H
F u

C H C H� �
�

�

�

�

�
�

�

�
� � � � � � � � CC H C H C H

H H

3 140 3 230 4 240

111 221

2 2
0

� �

�
� ,

2
2 4 2

110 330

111 331

1 120 2 130
dF u

du
u

H H

H H
F u

C H C H� �
�

�

�

�

�
�

�

�
� � � � � � � � CC H C H C H

H H

3 140 3 230 5 340

111 331

2 2
0

� �

�
� ,

2
2 2 4

110 440

111 441

1 120 2 130
dF u

du
u

H H

H H
F u

C H C H� �
�

�

�

�

�
�

�

�
� � � � � � � � CC H C H C H

H H

3 140 4 240 5 340

111 441

2 2
0

� �

�
� .

Пусть D H H

H H
1

110 220

111 221

2 2
�

�

�
,  D

H H

H H
2

110 330

111 331

2 2
�

�

�
, D

H H

H H
3

110 440

111 441

2 2
�

�

�
,

E
C H C H C H C H C H

H H
1

1 120 2 130 3 140 3 230 4 240

111 221

4 2 2 2 2
�
� � � � �

�
,
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E
C H C H C H C H C H

H H
2

1 120 2 130 3 140 3 230 5 340

111 331

2 4 2 2 2
�
� � � � �

�
,

E
C H C H C H C H C H

H H
3

1 120 2 130 3 140 4 240 5 340

111 441

2 2 4 2 2
�
� � � � �

�
.

Тогда имеем
dF u

du
u D F u E

� �
�� � � � � � �2 01 1 ,

dF u

du
u D F u E

� �
�� � � � � � �2 02 2 ,

dF u

du
u D F u E

� �
�� � � � � � �2 03 3 .

Заметим, что если D D D1 2 3= =  и E E E1 2 3= = , то достаточно рассмотреть первые два полученных урав-
нения. Остальные уравнения рассматриваются аналогично.

Пусть D D1 2≠ . Вычтем из первого уравнения второе: 
dF u

du
D D E E

� �
�� � � � �1 2 1 2 0. Следовательно, 

при D D1 2≠  получаем постоянство 
dF u

du

� � .
Пусть D D1 2= . Вычтем из уравнения (5), умноженного на H

221
, уравнение (6), умноженное на H111:

 

d F u

du

H H dF u

du
H H H H C

3

3

111 221
110 221 220 111 1

2
2 2 4

� � ��

�
�

�

�
� �

� �
�� � � HH H H

C H H C H H C H H C H

120 221 111

2 130 221 3 140 221 3 230 111 4
2 2 2 2

�� � �

� � � �
2240 111

0H � .

 

(8)

Выразим из уравнения (5) производную функции F u� � через функцию F u� �:

dF u

du

F u H H C H C H C H C H� �
�
� � � �� � � � � � �111 221 1 120 2 130 3 230 3 1404 2 2 2 2CC H

u H H H H

4 240

111 221 110 2202 2 2

� �
�� � � �

.

Вычислим из полученного выражения поочередно вторую и третью производные. Полагая, что S C� �
S C H C H C H C H C H� � � � �4 2 2 2 21 120 2 130 3 230 3 140 4 240, имеем

dF u

du

F u H H S

u H H H H

� �
� �

� � �� � �
�� � � �

111 221

111 221 110 2202 2 2
,

d F u

du

F u H H S H H

u H H H

2

2

111 221

2

111 221

111 221 1

3 3

2 2

� �
�

� � �� � � �� �
�� � � 110 220

2

2�� �H

,

d F u

du

F u H H S H H

u H H

3

3

111 221

3

111 221

2

111 221

15 15

2

� �
� �

� � �� � � �� �
�� � �� �� �2 2

110 220

3

H H

.

Подставим эти производные в уравнение (8). В результате получим следующее уравнение в общем виде: 
T u F u T u1 2 0� � � � � � � � , где T u1 � � и T u2 � � – некоторые постоянные многочлены, зависящие от u, коэффи-
циенты которых можно выразить через Hijk и Ci.

Заметим, что F u� � – рациональная функция. В то же время уравнение (8) с помощью линейной под-
становки сводится к однородному дифференциальному уравнению третьего порядка с постоянными ко-
эффициентами. В таком случае решением уравнения (8) не может быть рациональная функция. Следова-
тельно, F u� � – постоянная функция.

Конформно-плоский случай размерности 6
С учетом вышеприведенной леммы метрический тензор имеет вид

g dudv dx dy dz b x y z au x y z dudt t t� � � � � � �� � � � �� �� �� � �2
2 2 2 2 2 2 2 2 22 2 2 22

,
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где a H H H H= = = =111 221 331 441 и b H H H H= = = =110 220 330 440
 – произвольные постоянные. В таком слу-

чае получаем дифференциальное уравнение относительно функции F u� � следующего вида:

�
� �

�
� �

�� � � � � �1

2
2 0

3

3

d F u

du

dF u

du
au b aF u .

Из этого уравнения функция F u� � выражается как

 F u C AiryAi
au b

a

C AiryAi
au b

a

� � � �

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
�
�

1 2

3

2

2 2

3

��

�

�
�
�

�

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
�
�

�

�

AiryBi
au b

a

C AiryBi
au b

a
2

3

3 2

3

��
�
�

2

,  (9)

где AiryAi и AiryBi – частные решения дифференциального уравнения  ��� �y uy 0, называемые функция-
ми Эйри. Это дифференциальное уравнение имеет на действительной оси точку, в которой вид решения 
меняется с колеблющегося на экспоненциальный. Для действительных u функция Эйри первого рода 
определяется следующим несобственным интегралом:

AiryAi u
x

ux dx� � � �
�

�
�

�

�
�

��

�
1

3

3

0
� cos .

Другим линейно независимым частным решением данного уравнения является функция Эйри второ-
го рода, у которой при x → ∞ колебания имеют ту же амплитуду, что и у функции Эйри первого рода 
AiryAi u� �, но отличаются по фазе на π

2
. Для действительных u функция Эйри второго рода выражается 

следующим интегралом1:

AiryBi u
x

ux
x

ux dx� � � � �
�

�
�

�

�
� � �

�

�
�

�

�
�

�

�
�
�

�

�
�
�

��



1

3 3

3 3

0
� exp sin ..

В данном случае имеем векторное поле вида (3), где 

 b u C AiryAi
au b

a

C AiryBi
au b

a
1 4 2

3

5 2

3

� � � �

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
�
�

��

�

�
�
�
,  

 b u C AiryAi
au b

a

C AiryBi
au b

a
2 6 2

3

7 2

3

� � � �

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
�
�

��

�

�
�
�
,  

(10)

b u C AiryAi
au b

a

C AiryBi
au b

a
3 8 2

3

9 2

3

� � � �

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
�
�

��

�

�
�
�
,

b u C AiryAi
au b

a

C AiryBi
au b

a
4 10 112

3

2

3

� � � �

�� �

�

�

�
�
�

�

�

�
�
�
�

�

�� �

�

�

�
��
�

�

�

�
�
�

являются решениями уравнения L g f p gK � � �  для системы (1), а конформный множитель принимает 
вид

f u

aC AiryAi
au b

a

AiryAi
au b

a
� � �

�

�� �

�

�

�
�
�

�

�

�
�
�

�

�� �

�

�

�
�2 1

12 2

3

2

3

,

��

�

�

�
�
�

�� �
�

�

�� �

�

�

�
�
�

�

�

�
�
�

�

�

a

aC AiryBi
au b

a

AiryBi
au b

2

3

13 2

3

2 1,

aa

a

� �

�

�

�
�
�

�

�

�
�
�

�� �
�

2

3

2

3

1Федорюк М. В. Эйри функции // Математическая энциклопедия : в 5 т. Т. 5 / гл. ред. И. М. Виноградов. М. : Сов. энцикл., 
1985. С. 939–941.
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 �

�

�� �

�

�

�
�
�

�

�

�
�
�

�

�� �

�

�

�
�
�

�

�

�
2 114 2

3

2

3

aC AiryAi
au b

a

AiryBi
au b

a

, ��
�

�� �
�

�

�� �

�

�

�
�
�

�

�

�
�
�

�

�� �

a

aC AiryAi
au b

a

AiryBi
au b

a

2

3

15 2

3

2
2 1,

33

2

3

�

�

�
�
�

�

�

�
�
�

�� �a
.  (11)

Теорема 3. Пусть M – 2­симметрическое шестимерное неразложимое лоренцево многообразие 
с мет рикой (1), тензор Вейля которого равен нулю. Тогда решение конформного аналога уравнения 

Кил линга L g f p gK � � �  и конформный множитель f
dF u

du
�

� �  определяются в локальной системе ко-

ординат v x y z t u, , , , ,� � точки p из соотношений (3), (9) – (11).
Замечание. Доказанная теорема продолжает исследования, начатые в работе [4], и позволяет построить 

новые нетривиальные примеры конформно-киллинговых векторных полей с переменным конформным 
множителем на 2-симметрических неразложимых лоренцевых многообразиях. Кроме того, разработан-
ные методы дают возможность получить многомерный аналог доказанной теоремы.
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