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Аннотация. Рассматривается решение задачи детектирования новых антропогенных объектов при проведении 
экологического мониторинга территории Беларуси с использованием разновременных панхроматических спут ни-
ко вых изображений Белорусской космической системы дистанционного зондирования Земли и нейронной сети 
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глубокого обучения, обеспечивающей максимально достоверное обнаружение изменений наземных объектов при 
минимизации ложных срабатываний. Для реализации данной задачи выполнен анализ моделей нейронных сетей 
глубокого обучения для детектирования новых антропогенных объектов на основе семантической сегментации 
разновременных спутниковых изображений, по результатам которого выбрана модель нейронной сети глубокого 
обучения с проверкой гипотезы о необходимости обучения на собственной сформированной выборке антропо-
генных объектов. Проведено обучение выбранной модели нейронной сети глубокого обучения для реализации за-
дачи детектирования новых антропогенных объектов на основе разновременных панхроматических спутниковых 
изображений с оптимизацией настроек и подбором гиперпараметров. Исходя из полученных результатов, сделан 
вывод о реальной возможности автоматизации контроля появления новых антропогенных объектов при проведе-
нии экологического мониторинга.
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мантическая сегментация.

NEW ANTHROPOGENIC OBJECTS DETECTION  
IN MULTI-TEMPORAL SATELLITE IMAGES  

OF THE BELARUSIAN SPACE SYSTEM  
OF EARTH REMOTE SENSING

L. V. SEMIANENKAa, E. N. KOCHYK a, A. M. SAROKAb

aA. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University,  
7 Kurchatava Street, Minsk 220045, Belarus 

bIndependent researcher, Zaslawl, Belarus

Corresponding author: E. N. Kochyk (eugene.kochik@gmail.com)

Abstract. The article considers the solution to the problem of detecting new anthropogenic objects during envi-
ronmental monitoring in the territory of Belarus using multi-temporal panchromatic satellite images of the Belaru-
sian space system of Earth remote sensing and a deep learning neural network that ensures the most reliable detection 
of changes in ground objects while minimising false positives. To solve this problem, an analysis of deep learning 
neural network models for detecting new anthropogenic objects based on semantic segmentation of multi-tempo-
ral satellite images was carried out. Based on this results, a deep learning neural network model was selected, the 
hypothesis about the need for training on our own formed dataset of anthropogenic objects was tested, training and 
validation datasets were formed. The training of the selected deep learning neural network model, including the 
op ti mi sa tion of settings and selection of hyperparameters, was carried out to implement the task of detecting new 
an thro po ge nic objects based on multi-temporal panchromatic satellite images. The obtained results of this research 
showcased the practical feasibility of automating the detection of new anthropogenic objects during environmental 
monitoring.

Keywords: detection; environmental monitoring; multi-temporal satellite images; Belarusian space system of Earth 
remote sensing; neural network; deep learning; semantic segmentation.

Введение
Применение нейронных сетей для обработки данных дистанционного зондирования Земли в основном 

направлено на обнаружение определенных объектов.
В число актуальных задач, которые возникают при обработке данных, полученных с помощью систем 

дистанционного зондирования Земли, входит обнаружение новых объектов на основе анализа разновре-
менной пары изображений, покрывающих одну территорию. С использованием разработанных методик 
может выполняться контроль появления новых антропогенных объектов в природной среде, наличия 
новых объектов строительства и т. д.
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Как было установлено в ходе ранее проведенных исследований, автоматизация мониторинга измене-
ний наземных объектов на разновременных снимках Белорусской космической системы дистанционного 
зондирования Земли (далее – БКСДЗ) на территории Беларуси имеет ряд существенных проблем [1]. 
Дополнительно можно отметить, что решение данной задачи требует распознавания релевантных изме-
нений, а также снижения влияния срабатываний, вызванных схожими (ложными) объектами. При  прак-
тическом применении разработанных методик важно учитывать, что нейронные сети не могут обеспечить 
100 % обнаружение новых объектов, в связи с чем необходима заверка полученных результатов операто-
ром на основе визуального анализа. По этой причине одной из актуальных задач является обеспечение 
качественных результатов распознавания, которые позволят минимизировать работу оператора по их 
заверке.

Для решения указанной задачи выполнен анализ моделей нейронных сетей глубокого обучения для 
детектирования новых антропогенных объектов на основе разновременных спутниковых изображений, 
выбрана оптимальная модель нейронной сети глубокого обучения и проведено ее обучение на сформи-
рованной выборке антропогенных объектов.

Анализ моделей нейронных сетей глубокого обучения  
для детектирования новых антропогенных объектов на основе  

разновременных спутниковых изображений
Предметную задачу детектирования новых антропогенных объектов на основе разновременных спут-

никовых изображений можно определить следующим образом: выявление изменений определенного 
типа между парами спутниковых снимков.

В большинстве случаев применение нейронных сетей для обработки данных дистанционного зонди-
рования Земли проводится с использованием свободно предоставляемых мультиспектральных спутни-
ковых изображений с пространственным разрешением от 10 м на 1 пк и выше (т. е. границы объектов 
можно определять с точностью до 30 –50 м). В то же время для качественного контроля и анализа обычно 
требуется более высокая точность.

Для повышения пространственного разрешения используются панхроматические спутниковые сним-
ки БКСДЗ, а именно снимки Белорусского космического аппарата и родственного ему космического 
аппарата «Канопус-В» с разрешением 2,1 м на 1 пк (т. е. границы объектов можно определять с точ-
нос тью до 6 – 8 м). Подробная информация о характеристиках целевой аппаратуры приведена в ста-
тье [2, с. 14 –15].

Формальную постановку задачи можно определить следующим образом: семантическая сегментация 
изображений с разделением на два класса – «нет изменений», «есть изменения».

Задача обнаружения изменений на парах спутниковых снимков в настоящее время успешно решается 
для некоторых схожих задач с использованием нейронных сетей глубокого обучения. В статье [3] про-
ведено сравнение следующих существующих моделей: FC­EF [4], FC­Siam­Di [4], FC­Siam­Conc [4], 
DTCDSCN [5], STANet [6], IFNet [7], SNUNet [8], BIT [9], ChangeFormer [3].

Как отмечено в настоящем исследовании, решение вышеуказанной задачи с помощью нейронной сети 
ChangeFormer показывает наилучший результат при тестировании модели на подобного рода задачах 
в случае использования двух стандартных наборов данных – LEVIR-CD [6] и DSIFN-CD [7].

Для детектирования новых антропогенных объектов на основе разновременных спутниковых изо-
бражений в рамках настоящего исследования интерес представляет не только максимально достоверное 
выявление изменений без пропусков, но и минимизация количества ложных срабатываний, так как каж-
дое ложное срабатывание будет приводить к увеличению времени работы оператора, осуществляющего 
визуальную заверку результатов обработки спутниковых данных.

Чтобы в процессе обучения одновременно максимизировать точность детектирования объектов и ми-
нимизировать количество ложных срабатываний, необходимо использовать метрику качества, которая 
будет учитывать оба этих параметра. К числу наиболее известных и широко применяемых метрик подоб-
ного рода принадлежит метрика F1 [10], которая является гармоническим средним точности и полноты 
и учитывает как точность алгоритма, так и количество ложных срабатываний.

Кроме того, метрика F1 используется для оценки качества работы алгоритмов в статье [6], что 
в дальнейшем позволит оценить качество работы нейронной сети, обученной на сформированном 
нами наборе данных. Для стандартных наборов данных LEVIR-CD и DSIFN-CD значение метрики F1 

составляет 0,904 и 0,866 7 соответственно. Так как эти наборы данных составлены из мультиспектраль-
ных спутниковых снимков с более высоким пространственным разрешением, чем панхроматические 
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снимки БКСДЗ, можно ожидать, что для рассматриваемого случая приемлемым значением метрики F1 

было бы значение ∼0,8.

Тестирование и предварительное обучение  
выбранной нейронной сети

Для первичной валидации полученных результатов на имеющихся снимках БКСДЗ визуально были 
выбраны несколько явных объектов, которые появились на позднем снимке. Ни один из этих объектов не 
был детектирован предобученной моделью, поэтому потребовалось дообучение модели с настройками, 
которые использовались для стандартного набора данных LEVIR-CD.

Обучение выбранной нейронной сети проводилось с расчетом, что в случае, если не возникнет про-
блем, можно будет выполнить аугментацию таким образом, чтобы сеть начала детектировать изменения 
и на сформированном наборе данных. Для решения именно задачи определения изменений было про-
ведено дообучение модели (т. е. без обучения самого трансформера). Однако такой подход не привел 
к улучшению результатов.

На основе анализа отрицательных результатов была выдвинута следующая гипотеза: предвари-
тельно обученная на стандартном наборе данных LEVIR-CD нейронная сеть не определяет изменения 
на снимках БКСДЗ, так как они существенно отличаются по разрешению от снимков, используемых 
в работе [6]. Кроме того, в наборе данных LEVIR-CD используются мультиспектральные снимки со 
спект раль ны ми каналами RGB. Для тестирования этой гипотезы была проведена следующая аугмен-
тация данных.

1. Снимки преобразовываются в оттенки серого (grayscale).
2. Применяется масштабирование снимков (пространственное разрешение изображений уменьшается 

в 4 –5 раз для получения разрешения 2 Мпк).
Результат обучения нейронной сети подтвердил выдвинутую гипотезу: нейронная сеть начала 

детектировать изменения на снимках БКСДЗ, которые не участвовали в обучении. Однако обучение 
на данных существующих датасетов не дает хороших результатов (значение метрики F1 не превы-
шало 0,16).

Исходя из вышесказанного, приходим к выводу, что выбранную нейронную сеть можно исполь-
зовать для детектирования новых антропогенных объектов на основе разновременных спутниковых 
изображений, но при этом необходимо проводить разметку собственных данных и дообучение сети на 
сформированной выборке.

Описание процесса обучения выбранной нейронной сети
На основе проведенного анализа для обнаружения новых антропогенных объектов на основе разно-

временных спутниковых изображений выбрана архитектура нейронной сети ChangeFormer (github.com/ 
wgcban/changeformer).

Архитектура нейронной сети ChangeFormer (рис. 1) построена на основе трансформера для обнару-
жения изменений посредством анализа разновременной пары изображений, покрывающих одну терри-
торию. В отличие от фреймворков, которые основаны на полностью сверточных сетях, предлагаемый 
метод объединяет иерархически структурированный преобразователь-кодировщик с декодером много-
слойного восприятия (MLP) для эффективного рендеринга многомасштабных деталей дальнего действия, 
необходимых для точного обнаружения изменений.

Для обучения выбранной нейронной сети использовался метод оптимизации AdamW [11] со следую-
щими настройками, которые обеспечили достижение наилучшего значения метрики качества обучения: 
weight_decay=0.4037599735608572; batch_size=32; lr=0.00001; policy=cosine; 

optimizer=adamw, loss=ce.
Каждый обучающий пример состоит из пары сегментов размером 256 × 256 пк, который на шаге обу-

чения готовится посредством итерации по объектам эталонной разметки следующим образом.
1. Первая вершина объекта эталонной разметки задает центр рассматриваемого региона размером 

1024 × 1024 пк.
2. Для рассматриваемого региона визуализируется маска объектов интереса.
3. Из снимков и маски объектов интереса случайно вырезаются области, размер которых соответ-

ству ет входному разрешению нейронной сети (256 × 256 пк).
На этапе тестирования рассматриваются регионы размером 256 × 256 пк, чтобы избежать случайного 

изменения валидационных примеров.
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Для уменьшения склонности нейронной сети к переобучению применяются следующие методы ауг-
ментации.

1. Методы, применяемые для более старого снимка:
 • случайное изменение яркости и контраста – A.RandomBrightnessContrast();
 • случайное изменение гаммы изображения – A.RandomGamma();
 • случайный сдвиг на 2 пк по горизонтали и 6 пк по вертикали – A.augmentations.geometric.

transforms.AfÏne(translate_px=dict(x=(-2,2),y=(-6,6))).
2. Методы, применяемые для обоих снимков и эталонной разметки совместно:
 • зеркальное отражение по вертикали и горизонтали – A.Flip();
 • случайное масштабирование снимка в интервале [0,75, 1,25] – A.RandomScale(scale_limit= 

=(0.2,103), p=1, interpolation=cv2.INTER_AREA);
 • случайное вырезание региона размером 256 × 256 пк – A.RandomCrop(256, 256, p=1);
 • случайное вращение с шагом 90° – A.RandomRotate90(p=0.9);
 • случайное транспонирование – A.Transpose(p=0.25);
 • случайное инвертирование изображения – A.InvertImg(p=0.1);
 • случайное масштабирование значения каждого пиксела в интервале [0,95, 1,05] – A.Multipli 

cativeNoise(elementwise=True);
 • случайное изменение яркости и контраста – A.RandomBrightnessContrast();
 • случайное изменение гаммы изображения – A.RandomGamma().

С использованием выбранной нейронной сети проведена автоматическая разметка всех имеющихся 
пар спутниковых снимков, по результатам которой выполнены следующие действия.

1. В обучающей выборке исправлены пропуски истинных объектов и добавлены наиболее часто 
встречающиеся ложные объекты.

2. В валидационной выборке добавлены истинные объекты (по несколько штук на пару снимков) 
и добавлено большее количество ложных объектов, поскольку на некоторых парах снимков было зна-
чительное количество ложных срабатываний.

Для проведения обучающей разметки использовано восемь пар снимков, которые покрывали разные 
регионы Беларуси или территории различной степени урбанизированности и техногенной освоенности 
либо были получены в разные сезоны года (период с марта по ноябрь), что увеличивало вариативность 
распознаваемых объектов. Всего в обучающей выборке размечено 4090 истинных объектов и 7300 лож-
ных объектов на территории площадью 32,2 тыс. км2.

Валидационная разметка была проведена на двух парах снимков по тем же принципам, что и обу-
чаю щая разметка. Всего в валидационной выборке размечено 460 истинных объектов и 780 ложных 
объектов на территории площадью 3,8 тыс. км2.

Для оценки точности полученного решения применялось среднее пересечение по объединению (ме-
трика mIoU ) с использованием процедуры скользящего контроля и разделением исходного набора данных 
на обучающий и валидационный наборы данных:

mIoU
N

P L

P L

i i

i ii

N

�
�

��

�
1

1

,

где Pi – множество пикселов, которые классифицированы нейронной сетью глубокого обучения как от-
носящиеся к i-му классу; Li – множество пикселов, относящихся к i-му классу из эталонной разметки; 
N = 2 – число классов.

В связи с тем что общее число пикселов фона значительно превышает число пикселов истинных 
объектов, была использована функция потерь (L) [12], в которой весовые коэффициенты для каждого 
класса определены экспериментальным путем:
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где W – ширина изображения; H – высота изображения; An – экспериментально подобранный для каждо-
го класса весовой коэффициент; Tijn – значение пиксела в оригинальной разметке; Oij – элемент выхода 
нейронной сети глубокого обучения.

Далее было проведено обучение выбранной нейронной сети для детектирования новых антропоген-
ных объектов на основе разновременных спутниковых изображений.
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Путем подбора гиперпараметров за 10 эпох обучения удалось добиться значения метрики F1, рав-
ного 0,62. Затем было проведено дальнейшее обучение модели в течение большего количества эпох 
с заменой метрики F1 на метрику mIoU. За 200 эпох обучения значение метрики mIoU достигло 75,76 %.

Примеры работы обученной нейронной сети приведены на рис. 2 и 3.

Рис. 2. Новая ферма в Слонимском районе
Fig. 2. New farm in Slonim District

Рис. 3. Новая ферма в Вороновском районе
Fig. 3. New farm in Voronovsky District

Заключение
При проведении настоящего исследования получены следующие результаты.
1. Разработана методика анализа и выбора моделей нейронных сетей глубокого обучения для детек-

тирования новых антропогенных объектов на основе разновременных спутниковых изображений.
2. Выполнен анализ моделей нейронных сетей глубокого обучения для детектирования новых антро-

погенных объектов на основе разновременных снимков БКСДЗ, и осуществлен выбор модели нейронной 
сети глубокого обучения для реализации данной задачи.

3. Проведено предварительное обучение выбранной модели нейронной сети глубокого обучения, 
которое показало, что эту модель нейронной сети можно использовать для детектирования новых ан-
тропогенных объектов на основе разновременных снимков БКСДЗ при условии создания собственного 
обучающего набора данных и проведения дообучения сети.
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4. Созданы обучающая и валидационная выборки на восьми парах разновременных снимков (в об-
щей сложности 4550 истинных объектов и 8080 ложных объектов), проведено обучение нейронной сети 
с оптимизацией настроек и подбором гиперпараметров.

5. Получены положительные результаты обнаружения новых антропогенных объектов на основе 
разновременных спутниковых изображений с метрикой mIoU, равной 75,76 %.

Таким образом, результаты исследования наглядно демонстрируют реальную возможность автомати-
зации контроля появления новых антропогенных объектов при проведении экологического мониторинга. 
Разработанная модель используется в комплексе программных средств обработки данных дистанционного 
зондирования Земли в рамках Информационно-аналитической системы контроля и анализа деятельнос ти 
в водоохранных зонах (ИАС «Водоохранные зоны») и уже на этом этапе эффективно справляется с пос тав-
лен ной задачей. Возможно дальнейшее повышение точности, однако для получения значимых с предметной 
точки зрения результатов потребуется наличие большого количества ресурсов, которые обеспечат кратное 
расширение обучающего набора данных.
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