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На примере микроминиатюрных преобразователей Холла 

из эпитаксиальных пленок А3В5 на полуизолирующем арсениде 

галлия, разработанных авторами, рассмотрены  датчики и 

устройства, которые были использованы в различных отраслях: 

космической, автомобильной, автоматике, приборостроении. 

 

В последнее десятилетие в результате синтеза 

современной микроэлектроники, точного машиностроения и 

микротехнологий возникло новое направление [1] – 

микромагнитоэлектроника. Развитие микромагнитоэлектроники 

позволяет разрабатывать и производить современные 

магнитоэлектронные устройства и приборы. 

В этом отношении представляют интерес наши работы в 

области создания прецизионных механоэлектрических 

преобразователей для контроля положения подвижных 

исполнительных механизмов сканирующих систем космической 

аппаратуры. Многолетний опыт сотрудничества с Институтом 

космических исследований РАН (Россия) показал высокую 

эффективность использования эффекта Холла для создания 

прецизионных механоэлектрических преобразователей. 
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Разработанные устройства хорошо себя зарекомендовали на 

стадии предполетных испытаний в космическом аппарате 

«Марс-96», в реальном полете «Марс Экспресс» и др. 

Уникальность механоэлектрических преобразователей 

проявилась в прецизионном соблюдении всех функциональных 

технических характеристик на протяжении длительной 

эксплуатации в сложных космических условиях. Изделия 

прошли опытную эксплуатацию в условиях космического 

вакуума и сверхнизких температур. 

Использование эффекта Холла дает возможность 

конструирования различного рода прецизионных 

преобразователей механических перемещений повышенной 

стабильности и надежности. В настоящее время разрабатаны 

прецизионные механоэлектрические преобразователи 

положения исполнительных механизмов для ряда приборов, 

которые могут быть установлены в космических аппаратах, а 

именно сенсоры положения сканирующих узлов для 

геостационарных спутников, датчиков положения 

исполнительных органов измерительных приборов для 

космических научных программ. На рис.1 и 2 представлены 

некоторые из таких устройств. 

 

    

Рис.1. Сенсор магнитного поля 

для космических аппаратов 

 

 

Рис. 2. Датчик угла поворота 

Для развития микромагнитоэлектронной техники 

требуется разработка, создание и обеспечение промышленного 
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производства микроминиатюрных магнитоэлектронных 

устройств. Эти устройства состоят из первичного 

магниточувствительного элемента, источника магнитного поля 

и схемы обработки электрического сигнала, которые 

объединены в едином корпусе и создаются с применением 

групповой (интегральной, гибридной или твердотельной) 

технологии. Анализ тенденций развития современных датчиков 

и устройств, использующих в качестве «рабочей среды» 

магнитное поле, показывает необходимость изготовления 

высокостабильных и микроминиатюрных преобразователей 

Холла (МПХ) на основе гетероструктур А3В5 - i - GaAs, из 

которых особенно перспективны n - InSb - i - GaAs (вследствие 

высокой подвижности носителей заряда), в том числе 

наноразмерные сэндвич-структуры типа InBi в эпитаксиальной 

пленке InSb, заменяющие технологически сложные процессы 

контролируемого легирования пленок InSb до необходимой 

концентрации электронов n такими элементами, как олово или 

теллур. Разработка микроминиатюрных преобразователей Холла 

из такого рода гетероструктур была выполнена авторами. 

Изготовление малодефектных гетероструктур n - InSb - i - 

GaAs с ориентацией (110) состояло в уменьшении толщины 

гетероэпитаксиальной пленки антимонида индия с 7–9 мкм до 

2–3 мкм за счет снижения толщины высокодефектного 

переходного слоя. Для этого в процессе напыления  на подложке 

применялось двухступенчатое термическое напыление в 

вакууме с принудительной очисткой поверхности 

адсорбированного поверхностного слоя атомов кислорода, азота 

и других примесей, образующихся при подготовке поверхности 

пластины полуизолирующего арсенида галлия для напыления. 

На первом этапе роста магниточувствительного слоя  

формируется гетероэпитаксиальная структура n-InSb-i-GaAs со 

сверхтонким магниточувствительным слоем InSb толщиной 

0,25–0,5 мкм. Температура подложки при этом превышает 

температуру плавления  InSb на 30 – 40 °С. Затем подложка 
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медленно охлаждается, дальнейший эпитаксиальный рост 

происходит из молекулярного пучка при температуре 520–

530 °С и формируется слой антимонида индия толщиной до 2–

3 мкм. При этом скорость осаждения не более 0,02 мкм/с. Затем 

проводится термический отжиг в течение 1 ч при температуре 

450 °С без вскрытия вакуумной камеры с последующим 

медленным охлаждением. 

Наноразмерные сэндвич-структуры типа InBi в 

эпитаксиальной пленке InSb получались следующим образом. 

Заготовки n-InSb-i-GaAs вакуумировались в кварцевой ампуле 

вместе с навеской висмута и подвергались термическому 

отжигу, при котором происходит процесс диффузионного 

насыщения висмутом и образуется пленочный сэндвич n-InSb1-xBiх – 

n-InSb-i-GaAs (пленочные образцы с неравномерным 

распределением висмута по глубине (рис. 3). 

 

Рис. 3. Профили распределения висмута по глубине при температурах 290, 

330, 370 и 400 ºС соответственно (снизу вверх). Время насыщения – 2 ч 

При этом использовался метод расчета спектров 

обратного резерфордофского рассеяния (RBS) ионов гелия с 

энергиями 1,4 МэВ. Съемка RBS-спектров неканалированного 

излучения проводилась в вакуумной камере при давлении 

5∙10-4 Па, диаметре пучка 1 мм, энергии 5,44 кэВ/канал. 

Детектор находился под углом 170º относительно первичного 

пучка. Технологический процесс изготовления МПХ показан на 

рис. 4. 
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Рис. 4. Технологический процесс изготовления МПХ 

Увеличение температуры насыщения приводит к росту 

концентрации висмута в приповерхностных слоях. В то же 

время наблюдается неравномерное распределение висмута по 

толщине пленки, причем максимальная глубина его 

проникновения не превышает 100–120 нм. 

Основные технические характеристики МПХ близки к 

приведенным в [2]. МПХ из n - InSb - i - GaAs успешно прошли 

испытания на следующие дозы и виды радиационных излучений  

при сроке активного существования в космосе 5 лет (электроны 

ЕРПЗ – не менее 2,0∙107, протоны ЕРПЗ, СКЛ и ГКЛ – не менее 

1,1∙104). Последние испытания в 2009 г. (стойкость к ВВФ – 

более 2,5 Мрад). Относительные изменения основных 

параметров МПХ, подвергнутого радиационному воздействию 

дозой облучения 500 крад. с энергией до 1,25 МэВ, не 

превышали 1,0 %. 
Облучение МПХ проводилось источником γ-лучей Со60  в 

γ-установке «Исследователь». Работа ее основана на 

использовании гамма-излучения радиоактивного изотопа Со60 со 

средней энергией квантов около 1,25 МэВ. Установка 

представляет собой свинцовый контейнер диаметром около 1 м 

и высотой 2 м. Расположенный на станине контейнер состоит из 

корпуса и крышки. В центре контейнера имеется облучатель в 
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виде кассеты с источником излучения Со60, в которой находятся 

36 источников излучения, общей активностью 30000 Кюри. 

Мощность экспозиционной дозы гамма- излучения в рабочей 

камере составляет 2,0∙106 рентген/ч. Объем рабочей камеры 

равен 4200 см3. 

Облучение электронами проводилось на линейном 

ускорителе электронов ЭЛУ-4. Быстрые электроны 

непосредственно из электропровода попадали на кассету с 

МПХ. Попадание пучка на МПХ и его точная фокусировка 

осуществлялась при помощи цилиндра Фарадея, который 

одновременно служил и для замера тока пучка.  

На рис. 5–8 показаны созданные авторами устройства  с 

МПХ, используемые в автомобилестроении.  

 

         
 

Рис. 5.  Датчик уровня топлива                Рис. 6. Электронная педаль 

        
 

Рис. 7. Датчик деформации                   Рис. 8. Датчик загрузки самосвала 
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On the example of microminiature converters Hall of epitaxial 

films A3B5 on semi-insulating gallium arsenide, developed by the 

authors, considered sensors and devices, that have been used in 

various industries: aerospace, automotive, automation, 

instrumentation. 


