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УДК 517.988

ОБОБЩЕННЫЙ МЕТОД НЬЮТОНА ‒ КАНТОРОВИЧА  
ПРИ МОДИФИЦИРОВАННОМ УСЛОВИИ  

РЕГУЛЯРНОЙ ГЛАДКОСТИ

А. Н. ТАНЫГИНА1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Рассматривается обобщенный метод Ньютона – Канторовича для решения в банаховых простран-
ствах нелинейных операторных уравнений вида f x g x� � � � � � 0, где  f  – регулярно гладкий оператор; g – недиффе-
рен цируемый оператор, удовлетворяющий условию Липшица. Приводится доказательство основной теоремы 
о схо ди мости метода при модифицированном условии регулярной гладкости, в записи которого приращения про-
изводной оператора  f  мажорируются приращениями скалярной функции.

Ключевые слова: обобщенный метод Ньютона – Канторовича; условие регулярной гладкости; нелинейное 
операторное уравнение.
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Вещественный, комплексный и функциональный анализ
Real, Complex and Functional Analysis

GENERALISED NEWTON ‒ KANTOROVICH METHOD  
UNDER THE MODIFIED REGULAR  

SMOOTHNESS CONDITION

A. N. TANYHINAa

aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. The article deals with the generalised Newton – Kantorovich method for solving non-linear operator equa-
tions of the form f x g x� � � � � � 0 in Banach spaces, where  f  is the operator  satisfying the regular smoothness condition; 
g is the non-differentiable operator satisfying Lipschitz condition. The main convergence theorem is proved under the 
modified regular smoothness condition in which increments of the operator  f  derivative are majorised by the increments 
of a scalar function.

Keywords: generalised Newton – Kantorovich method; regular smoothness condition; non-linear operator equation.

Introduction

Let X and Y  be Banach spaces,  f  and g be non-linear operators defined on the closed ball B x R X0,� ��  and 
taking values in Y, where the operator  f  is differentiable at every interior point of B x R0,� � and the operator g 

is non-differentiable. One of the most effective iterative methods for solving operator equations of the form
 f x g x� � � � � � 0  (1)
is the generalised Newton ‒ Kantorovich method with successive approximations

 x x f x f x g x nn n n n n�

�
� � �� ��� �� � � � � �� � � �1

1
0 1, , , ,  (2)

where x0 is given.
A thorough convergence analysis of the sequence (2) was carried out in the work [1] by means of the approach 

based on the application of majorant scalar equations and originating from L. V. Kantorovich’s investigations [2]. 
However, the hypotheses given there are difÏcult to verify and for this reason a more flexible approach for 
solving the equation (1) was proposed in the research [3].

In the case when g = 0, the most precise error estimates for the process (2) were obtained by A. Galperin 
and Z. Waksman in [4; 5]. These results were generalised in the article [6] under the assumption that the opera tor  f  
satisfies the regular smoothness condition introduced in the works [4; 5], and the operator g satisfies Lip schitz 
con dition from the paper [3]

 g x g x t x x x x B x t��� � � �� � � � � �� � � � � ��� � �� , , ,0  (3)

where ψ is non-decreasing function on 0, .R� �  However, the meaning of the regular smoothness concept from 
the works [4; 5] is quite complex and it was shown in the research [7] that it may be replaced by a simpler 
one in which increments of the derivative ′f  are majorised by increments of a scalar function. The aim of this 
article is to prove the main convergence theorem for the process (2) under the modification of Galperin – Waks-
man condition from the paper [7].

Main concepts and preliminary results
Let � : , ,0 0�� �� �� � is a continuous strictly increasing concave function that vanishes at zero: � 0 0� � � . 

Assume without loss of generality that �� � �f x I0 . Let

h f f x x B x R� � � �� � � � �� �inf : , .0

In accordance with the article [5] the operator  f  is ω-regularly smooth on B x R0,� � (or, equivalently, ω is a re-
gular smoothness modulus of  f  on B x R0, ),� �  if there exists h h f� � ��� ��0,  such that the inequality

 � �� �� ��� � � � ��� � � � �� �� � � � ��� �� � � ��� �1 1h x x f x f x h x x x xf f, , ,  (4)
where

h x x f x f x hf
� ��� � � � �� � � ��� �� � �, min , ,
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holds for all � ��� � �x x B x R, , .0  The operator  f  is called regularly smooth on B x R0, ,� �  if it is ω-regularly smooth 
on B x R0,� � for some ω with such properties.

It was shown in the paper [7] that the condition (4) may be replaced by a simpler condition

 � ��� � � � �� � � � � ��� �� � � ��� �� � � � � ��� �� �� �� �
f x f x r x x x x r x x� � � � ,  (5)

where � �� �� ��1
1 h ; r x x x x� � � �� �� �min , ;0 0  � �� � � �max , .0  This condition is clearer than the condi-

tion (4). Moreover, in the work [5] this condition is used in the proof of some auxiliary statements and the main 
theorem about the convergence of the classical Newton ‒ Kantorovich method. If χ increases, then the value 
of � � � ��� �� ��r x x  also increases and the right part of the condition (5) decreases. Therefore, the higher is 
the value of χ, the better is the estimate for � ��� � � � �� �f x f x , which leads to more accurate estimates for suc-
cessive approximations. In the paper [8] the comparative analysis of the regular smoothness and the Hölder 
continuity conditions for the equation (1) in the case, when g = 0, was carried out.

Let � t d

t

� � � � ��� � �
0

, � t d

t

� � � � ��� � �,
0

 a is a positive number such that a f x g x� � � � � �0 0 , � �� � ��
�

�
�

�
0 1

1
,  

is a constant. Let us define a function with numeric argument

 W t a t t t� � � � � � � �� � � � � �� � � � �� � �� � � �1 ,  (6)

and the numerical sequence t
n� � as follows:

 t t
W t

t
n

n n

n

n

� � �
� �

� � � � �� ��� ��
� �1

1
0 1

� � � �
, , , ,  (7)

where t0 = 0. 
Lemma 1. Let us suppose that the function (6) has a unique zero t�� � �0, �  and 

 a � � � � � � � � � �� �� �� � � � .  (8)
Then the sequence (7) is defined for all n, monotonically increases and converges to t∗.

P r o o f. The function W is positive on 0, ,t�� �  since t∗ is a unique zero of the equation W t� � � 0, W a0 0� � � �  

and W is continuous on 0, .�� �  Hence the function

u t
W t

t
� � � � �

� � � � �� ��� ��1 � � � �
is positive on 0, .t�� �

Let us show that the function t u t� � � is non-decreasing on 0, .t�� �  In fact,

t u t u t
W t

t

W t

� � �� �� � � �� � � �
� �

� � � � �� ��� ��

�

�
�
�

�

�
�
�

�
�

� �
��

1 1
1

1

� � � �

�� � �� � � � �� � � � � � �� �
� �� � � � �� �

�

�
�� � � �

1

1

1

2

� � � � � �

� � � �

� �

t W t t

t

t t
 �� � � � �� � � � � � �� �
� �� � � � �� �

�
� � � �

� � � �

W t t

t1
0

2

on 0, .t�� �  This implies that the sequence t
n� � monotonically increases and

t t u t t u t t
n n n� � � �� � � � � � � � �1

for t t
n
� �. Consequently, the sequence t

n� � converges to t t�� ��� �0,  and t t u t�� �� ��� � � �, hence W t��� � � 0. 
Since t∗ is a unique zero of W in 0, ,�� �  it follows that t t�� �� .

The sequence t
n� � is defined for all n. In fact, it is clear from the condition (8) that W a W�� � � � � � �0 0  and 

hence there exists � ��� �0,  such that W �� � � 0. Consequently, � � ��
� �

t t
n

n
lim  and t

n
� �� � for all n = 0, 1, … . 

Because of the monotonicity of ω, the inequality � � �� � �t
n

0 is true for all n = 0, 1, … . Lemma 1 is proved.
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Lemma 2. Let us suppose that there exists a constant � �� � ��
�

�
�

�
0 1

1
,  satisfying the condition (8), the ope­

rator f satisfies the condition (5) on B x R0,� � with such χ, the operator g satisfies the condition (3), and the func­
tion (6) has a unique zero t R� �  in 0, .�� �  Then the equation (1) has a unique solution in B x t0, .�� �

P r o o f. Let us prove the existence of a solution in B x t0, .�� �  We consider the sequence

u Du n u x
n n� � � � �1 0 00 1, , , ; ,

where D I f x f g I f g� � �� ��� �� �� � � � �� ��
0

1
, and the numerical sequence

� � �
n n

d n� � � � � � �1 00 1 0, , , ; ,

where d t t W t� � � � � �. Since
�� � � � �� � � � � � �� � � � � �d t W t t t1 0� � � � �

for all t�� �0, ,�  the function d is monotonically increasing on 0, .�� �
For all n = 0, 1, … the inequality

 �
n
t� �  (9)

holds. In fact, for n = 0 the inequality (9) is obvious: �0 0� �
�

t . Let us suppose that the inequality (9) holds 
for all n ≤ k. Then from �k t� �, because of the monotonicity of d, we obtain d d tk�� � � � �� , that is �k t� ��1 . 

Consequently, by the induction hypothesis, the inequality (9) is true for all n.
Let us prove by induction that the sequence �n� � is monotone. Clearly, 0 0 1� � �� � a. We suppose that 

� �k k� � 1. Then � � � �k k k kd d� � �� � � � � � �1 1 2. Thus, the sequence �n� � is monotonically increasing and boun-
ded from above. Consequently, it converges to some ��� ��0, .t  If n → ∞ in � � �

n n n
W� � � � �1 , we obtain 

W �� � � 0 and � � �t .
Let us show that for all n = 0, 1, … the inequality

 u u
n n n n� �� � �1 1� �  (10)

holds. For n = 0 the inequality (10) is obvious:

u u x f x g x x f x g x a W1 0 0 0 0 0 0 0 1 0= = = 0 = .� � � � � � �� � � � � � � � � � � �� �

We suppose that the inequality (10) holds for all n < k. Then

u u Du Du u u f u f u g u g uk k k k k k k k k k� � � � �� � � � � � � � � � �� � � � � � � �� � �1 1 1 1 1

� � � � � � � �� � � � � � � � �� � �u u f u f u g u g uk k k k k k1 1 1

� �� � � �� � � � � � � � � �� � �
0

1

0 1 1f u f x u u dt g u g ut k k k k

� � �� � � �� � � � �� �� �� � � � � � ��
� �

�
0

1

0 0 0 1� � � �u x u x u x u u dt g u g ut t t k k k k ��� �1 ,

where u u t u ut k k k� � �� �� �1 1 , 0 ≤ t ≤ 1. By the induction hypothesis,

u x u u u uk k

j

k

j j

j

k

j j k� � � � � � �� � �
�

�

�
�� �0 0

1

1

1

1� � � .

Consequently,

u x t u u t u u t u u t u u t
t k k k k k
� � �� � �� � � �� � � �� � � � � � �� �� � �0 1 0 0 1 0 01 1 1 � 11 � t k

� .

From the condition (3) and the proposition 1 in article [3] it follows that

 g x g x t x x t x B x t x x R t��� � � �� � � � �� � �� � � � � � �� � � �� � � � �� � 0, , .  (11)

Because of the concavity of ω and the inequality (11), we have
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u u u x u x u x u u dt
k k t t t k k�

� �
�� � � �� � � �� � � � �� �� �� � � ��1

0

1

0 0 0 1� � � �

� � �� � � � � �� � �� �� �k k k ku u1 1 1

� � � � � �� �� � �� � � � � � � � �� � �
0

1

0 1 1� � � � � � � �u x dt
t k k k k

� �

� � � � � �� � �� �� �� � �� � � � � � � � �� � � �
0

1

1 1 11� � � � � � � � � �t t dtk k k k k k� �

� � � � �� �� � � � � � � � � � � � � � � �
�

� � � �
�

�

� � � � � � � � � � � �
k

k

d d dk k k k k

1

1 1 1� � kk.

Thus, the inequality (10) holds for n = k.
It follows from the inequality (10) that for m > n

u u u u u um n m m n n m m n n m n� � � � � � � � � � � � � � �� � � �1 1 1 1� � � � � � .

Hence for all m and n
 u um n m n� � �� � .  (12)

Since the sequence �n� � converges to t∗, it follows from the inequality (12) that the sequence u
n� � also con-

verges to some x∗. Further
u u t n
n n
� � � � ��0 0 1� , , , ,

and, consequently, all un with x∗ belong to B x t0, .�� �  If n → ∞ in u Du
n n� �1 , we obtain that x D x� �� � �, or 

f x g x� �� � � � � � 0. Thus, x∗ is a solution of the equation (1) in B x t0, .�� �
To prove the uniqueness of the solution x∗ in B x t0, �� � let us consider the second solution x B x t�� �� � �0,  of 

the equation (1) and show that for all n = 0, 1, … the inequality

 x u t
n n�� �� � � �  (13)

holds. For n = 0 the inequality (13) is obvious:

x x t t�� � �� � � �0 0� .

We suppose that inequality (13) holds for all n ≤ k. Then

x u x Du x u f u g uk k k k k�� � �� ��� � � � � � � � � � � �1

� � � � � � � �� � � � � � � � ��� �� ��f u f x u x g u g xk k k

� � � � � � � �� � �� � � � � � � � ��� �� ��f u f x f x u x g x g uk k k0

� �� � � �� � � � � � � � � �� �� ��
0

1

0f u f x u x dt g x g ut k k

� � �� � � �� � � � �� �� �� � � � � � ��
� �

�� ��
0

1

0 0 0� � � �  u x u x u x u x dt g xt t t k gg uk� � ,

where u x t u xt k� � �� ��� �� , 0 ≤ t ≤ 1. Further

u x t x x t u x t x x t u x t t tt k k� � �� � �� � � �� � � �� � � � � � �� � ��� �� �0 0 0 0 01 1 1 ��k .

Because of the concavity of ω, the inequality (11) and the induction hypothesis, we have
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x u u x t dt x u
k t k k k k�� � � ��� � � � � � �� �� � �� � � � �� � � � ��1

0

1

0
� � � � � � � � � ��

� � � � � �� � �� �� �� � �� � � � � � � � �� � � �
0

1

1� � � � � � �t t t t dt tk k k� �

� � � � �� �� � � � � � � � � � � � � � � �
�

� � � ��
�

� � � � � � � � �
k

t

k k k
d t d t d t� � 1.

Hence the inequality (13) holds for n = k + 1. If n → ∞ in the inequality (13), we obtain that
x x t t�� � � �� � � � 0

and hence x x�� �� . Lemma 2 is proved.
Let us denote for all n = 1, 2, …

r f x f x f x x xn n n n n n� � � � � � � �� � �� �� � �1 1 1 .

Lemma 3. Let us suppose that there exists a constant � �� � ��
�

�
�

�
0 1

1
,  satisfying the condition (8), the ope rator  f 

satisfies the condition (5) on B x R0,� � with such χ , the operator g satisfies the condition (3), the function (6) 
has a unique zero t��� �0, � , and the sequence t

n� � is defined by the recurrence formula (7). If  for all 1 ≤ k ≤ n 

successive approximations xk are defined and satisfy the inequality

 x x t tk k k k� � �� �1 1,  (14)
then

 r a t t t
n n n n
� � � � � �� � � � � �� � � � ��� � �� � � �1 1 .  (15)

P r o o f. Let x x t x x
t n n n
� � �� �� �1 1 , 0 ≤ t ≤ 1. Then

r f x f x x x dt
n t n n n
� �� � � �� � � �� � �
0

1

1 1

� � � �� � � ��
�
�

�
�
� � � � �� ��

�
�

�
�
�

�

�
�� �

�

� �

�

0

1

1 1 1� � � �r x x x x r x x
t n t n t n

��

�
� � �x x dt

n n 1 ,

where r x x
n

� ��1 0 .

Since for all 1 ≤ k ≤ n the inequality (14) holds, it follows that

x x x x t t t
n

k

n

k k

k

n

k k n�

�

�

�

�

�

� �� � � � �� � �� �1 0

1

1

1

1

1

1 1

and

x x x t x x x t x x t t t
t n n n n n n n n n
� � � �� � � � � � �� �� � � � � �1 1 1 1 1 1 .

According to lemma 1, t
n
� � for all n = 0, 1, … . Hence

� � � �� � � � � � �� � � �� � � �� � �� � �� � � �r x x t t t t t t t t
t n n n n n n1 1 1 11 0

and, because of the concavity and the monotonicity of ω,

r t t t t t t t dt
n n n n n n n
� �� � � � � �� �� �� � �� � �� � � � �
0

1

1 1 1 1� � � �

� �� � �� � � � � �� �
�

�

�

�� � � � �

�

�

t t t d
n n n

t

t

n

n

1 1
1
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� �� � �� � � � � � � � �� �

� �

� �
�

� � � � � � � �
� �

t t t d d
n n n

t t
n n

1 1

0 0

1

� �� � �� � � �� � � �� �� � �� � � �t t t t t
n n n n n1 1 1� � .

Let us show that for all n = 0, 1, … the equality

 � � � � � ��� � �� � � �� � � � � �� � � � � � � � �� �t t t t t t a
n n n n n n1 1 1� � �  (16)

holds. In fact, by the definition of the sequence t
n� �

t t t a t t t
n n n n n n� �� � � � � � �� �� � � � � � � �� � � � � �� � � � �1 1 1� � � � � � � �� � �

and

t t t a t t
n n n n n
�� � � � � � �� �� � � � � � � �� � � � � �� � �� � � �1 1 1 11 1� � � � � � � �� � �� t

n �� �1 .
It follows from the first of these equalities that

a t t t t t tn n n n n n� � � � � � �� � � �� � �� � � �� � � � �� �� � �� � � � � �1 11
and from the second that

a t t t t t tn n n n n n� � � � � � �� � � �� � �� � � �� � � � �� � � �� � �� � � � � �1 1 1 1 1 .

Consequently,
� � � � ��� � �� � � �� � � � � �� � � � � �� �t t t t t t

n n n n n n1 1 1� �

� �� � �� � � �� � � � � �� � � � �� � � �� � � � �t t t t t t
n n n n n n1 1 1 11� �

for all n = 1, 2, … and
� � � � ��� � �� � � �� � � � � �� � � � � �� �t t t t t t

n n n n n n1 1 1� �

� �� � �� � � �� � � � � �� � � � � �� � � � �t t t t t t0 1 0 0 1 01� �

� � � � � � � � � �� � � � � �� � � � � �a a a� �1 .

Thus, the equality (16) holds for all n = 0, 1, … and the estimate for rn may be rewritten in the form of the ine-
quality (15). Lemma 3 is proved.

Convergence theorem
Theorem. Let us suppose that there exists a constant � �� � ��

�
�
�

�
0 1

1
,  satisfying the condition (8), the ope ra­

tor f satisfies the condition (5) on B x R0,� � with such χ , the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t R� �  in 0, .�� �  Then the  following conditions are met:
1) the equation (1) has a unique solution x∗ in B x t0, �� �;
2) the successive approximations (2) are defined for all n = 0, 1, … and belong to B x t0, �� �  as well as con­

verge to x∗;
3)  for all n = 0, 1, … the inequalities

 x x t tn n n n� �� � �1 1 ,  (17)

 x x t tn n� �� � �  (18)
hold, where the sequence t

n� � is defined by the recurrence  formula (7), monotonically increases and converges to t∗.
P r o o f. In order to prove the theorem it is sufÏcient to show that successive approximations (2) are defined 

for all n = 0, 1, … and belong to B x t0, �� � as well as satisfy the inequalities (17) and (18). The other assertions 
of the theorem follow from lemmas 1 and 2.
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Since the inequality (18) is a direct consequence of the inequality (17), it is sufÏcient to prove the inequa-
lity (17). For n = 0 the inequality (17) is obvious:

x x f x f x g x a t t1 0 0

1

0 0 1 0� � �� ��� �� � � � � �� � � � �
�

.

We suppose that the inequality (17) holds for all n < k. Let us show that the operator �� �f xk  is invertible. 
In fact,

�� ��� �� �� � � �� �� � � �� � � �� � �
�

f x f x f x f x f xk k0

1

0 0

� � �� � � �� � � � �� �� �� �
� � � �x x x x x xk k k0 0 0 .

By the induction hypothesis,

x x x x t t tk

j

k

j j

j

k

j j k� � � � �� � �
�

�

�
�� �0

1

1

1

1

and hence � �� � � � �x x tk k0 0 (tk � � for all k = 0, 1, … as it was shown in lemma 1). Because of the con-
cavity and the monotonicity of ω, we have 

� � � �� �� � � �� � � � �� �� � �� �
x x x x x xk k k0 0 0

� � �� � � �� � � � � � � � � � � �� � � � � � � � �t t tk k k 0 1.

Thus, �� ��� �� �� � � �� �� � �
�

f x f x f xk0

1

0 1 and, consequently, the operator

T I f x f x f xk� � �� ��� �� �� � � �� �� ��
0

1

0

is invertible. Since �� � � �� � �f x f x T T
k 0 , the operator �� �f xk  is also invertible and

�� ��� �� � �
� �

�
� � � � �� ��� ��

� �f x T
T I t

k

k

1 1 1

1

1

1 � � � �
.

Using the estimate for rk from lemma 3 and the inequality (11), we get

x x f x f x g x
k k k k k�

�
� � �� ��� �� � � � � �� � �1

1

� �� ��� �� � � � � � � �� � �� � � � � � � ��
� � � �f x f x f x f x x x g x g x

k k k k k k k k

1
1 1 1 1�� � �

� �� ��� �� � � � � � � �� � �� � � �� ��� ��
�

� � �
�

f x f x f x f x x x f x g
k k k k k k k

1
1 1 1

1
xx g x
k k� � � � � ��1

�
� � � � � �

� � � � �� ��� ��
�

� � � � �� � � � ��r t t

t

a t tk k k

k

k k
� � � �1

1

1

� � � �

� � � ���� � � � �
� � � � �� ��� ��

� ��

� t

t
t t

k

k

k k
1

1� � � �
.

Consequently, the inequality (17) holds for n = k.
Since for all n = 0, 1, … the operator �� �f xn  is invertible and x x t tn n� � � �0 , the successive approxima-

tions (2) are defined for all n = 0, 1, … and belong to B x t0, .�� �  The convergence of the successive approximations 
to x∗ follows from the inequality (18). The theorem is proved.

Conclusions
In this paper the generalised Newton – Kantorovich method for solving non-linear operator equations with 

non-differentiable operators in Banach spaces was considered. The regular smoothness condition of the ope-
rator involved, which was proposed by A. Galperin and Z. Waksman, was replaced by a simpler one in which 
increments of the operator derivative are majorised by increments of a scalar function. The convergence theo-
rem was proved by means of majorant scalar equations.
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It should be noted that each Lipschitz smooth operator is also regularly smooth but the opposite is not true. 
So the theorem is applicable to more wide class of non-linear operator equations of the form (1) than the cor-
responding convergence theorems from articles [1; 3].
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СЛАБОЕ РЕШЕНИЕ СМЕШАННОЙ ЗАДАЧИ  
ДЛЯ ПОЛУЛИНЕЙНОГО ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ  

ТРЕТЬЕГО ПОРЯДКА С ВОЛНОВЫМ ОПЕРАТОРОМ

В. И. КОРЗЮК1), 2), Я. В. РУДЬКО 2)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь 
2)Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

Аннотация. Для полулинейного гиперболического уравнения третьего порядка, заданного в первом квадранте, 
изучается слабое решение смешанной задачи, в которой начальные условия заданы на пространственной полупря-
мой, а смешанные условия – на временной полупрямой. Оператор в уравнении представляет собой композицию из 
волнового оператора и оператора переноса. Слабое решение определяется как решение системы связанных интег-
ральных уравнений, которым удовлетворяет классическое решение. Показывается, что при некоторых условиях 
гладкости начальных и граничных данных рассматриваемая задача допускает существование и единственность 
слабого решения. Устанавливается, что дважды непрерывно дифференцируемое слабое решение является пределом 
классических решений изучаемой задачи.
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MILD SOLUTION OF A MIXED PROBLEM  
FOR A THIRD - ORDER SEMILINEAR HYPERBOLIC EQUATION  
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Abstract. For a semilinear hyperbolic equation of the third-order given in the first quadrant we study a mild solution of 
a mixed problem in which the initial conditions are specified on the spatial half-line and the mixed conditions are specified 
on the time half-line. The operator in the equation is a composition of the wave operator and the transport operator. Mild 
solution is defined as a solution to coupled integral equations that are satisfied by a classical solution. It is shown that 
under some smoothness conditions on the initial and boundary data the problem under consideration admits the existence 
and uniqueness of the mild solution. It is established that the twice continuously differentiable mild solution is the limit 
of classical solutions to the problem under study.

Keywords: non-linear hyperbolic equation of the third-order; mixed problem; generalised solution; mild solution.
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Introduction and statement of the problem
Third-order differential equations arise in the description of certain physical phenomena. For example, we 

use such hyperbolic equations of the indicated order in modelling the propagation of linear acoustic waves in 
a medium with dispersion [1]. Mathematical models of such problems were considered in papers [2– 4].

In the domain Q � �� � � �� �0 0, ,  of two independent variables t x,� � we consider one dimensional non- 
linear equation of the third-order
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where a and b are positive (to be definite) real numbers, a ≠ b. On the lower part t = 0 of the boundary ∂Q we 
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In the article [8] a weak solution for an equation similar to equation (1) with power non-linearity is considered.

Mild solution
In our paper [9] it was proved the following statement. 
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where v is a function defined by the formula
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where ℑ is the integration operator acting by the formula �� �� � � � ��h x h z dz

x

0

, and 

Q t x x at x bt
1

0 0
� � � � � � � � � �� �, ,

Q Q Q Q
2 1 3� � � � � �
� �\ ,

Q t x x at x bt
3

0 0
� � � � � � � � � �� �, .

Representation of the function u in the form of equations (8) – (12) is well defined even if the functions 
u t x
j� � � �, , j = 1, 2, 3, are not differentiable, prompting a generalisation of the classical solution using a weak 

type of solution that has the same form as the classical solution and will be one, when certain smoothness con-
ditions and comparability conditions are fulfilled. This is roughly the same motivation that encourages looking 
for solutions in various Sobolev spaces [10; 11], in the form of power series (often formal or convergent in 
the sense of Cesàro) [12], or in the sense of generalised functions [13; 14]. Moreover, in many cases of linear 
abstract Cauchy problems, the concepts of mild and weak solutions (in the dual sense, in the sense of distribu-
tions) are equivalent1.

Based on sources [15; 16], we introduce the following definition.
Definition. We call the function u representable in the form of equations (8) – (13) a mild solution of prob-

lem (1) – (3).
Definition introduces the notion of mild solution [16]. However, in the literature such solutions are also 

called solutions in the broad sense [17; 18], weak solutions [19] and generalised solutions [20].
The results of the work [9] yield the following statements.
Remark 1. Any classical solution of problem (1) – (3) is also a mild solution of this problem.
Remark 2. If the additional smoothness conditions �0

3 0� �� �� �C , , �1
2
0� �� �� �C , ,  �2

1
0� �� �� �C , , �0� �C

3 0� �� �� �C , , �1
2
0� �� �� �C ,  and f C Q� �� �1  , and the matching conditions (4) – (7) are satisfied, then the 

mild solution of problem (1) – (3) is classical.
Denote Q Q t x x at x bt� � � � � � � �� �\ , .0 0  The following statement holds. 
Theorem 2. Let the conditions �0 0� �� �� �C , , �1

1
0� �� �� �Lloc , , �2

1 1
0� �� �� ��Wloc

,
, , �0 0� �� �� �C , , �1� �L

� 1
0� �� �� �Lloc ,  and f C Q� �� �  be satisfied, and let the function f satisfy the Lipschitz condition with a func-

tion L C Q� � � with respect to the third variable, i. e. for any pair t x Q,� ��  and any real numbers z1 and z2 

the inequality f t x z f t x z L t x z z, , , , ,1 2 1 2� � � � � � � � �  holds. Problem (1) – (3) has a unique mild solution 

u Q: � � in the class C Q� �.
P r o o f. The solvability of equations (9) – (13) in the class of continuous functions follows from the article [9].
For a mild solution, smoothness can be increased if the matching conditions (4) – (7) are partially satisfied, 

as it is done in the following theorem.
Theorem 3. Let the conditions �0 0� �� �� �C , , �1

1
0� �� �� �Lloc , , �2

1 1
0� �� �� ��Wloc

,
, , �0 0� �� �� �C , , �1� �L

�1
1

0� �� �� �Lloc ,  and f C Q� �� �  be satisfied, and let the function f satisfy the Lipschitz condition with a func-

tion L C Q� � � with respect to the third variable, i. e. for any pair t x Q,� ��  and any real numbers z1 and z2 

the inequality f t x z f t x z L t x z z, , , , ,1 2 1 2� � � � � � � � �  holds. Problem (1) – (3) has a unique mild solution 

u Q: � � in the class C Q� � if and only if the condition (4) is satisfied.

P r o o f. If � �0 00 0� � � � �, then a mild solution u of problem (1) – (3) is continuous on the set t x x at x,� � � �� �
x at x bt� � � � �� �0 0  due to the relations

1What «mild solution» means, and how to find it? // Mathoverflow : website. URL: https://mathoverflow.net/questions/320300/what- 
mild-solution-means-and-how-to-find-it (date of access: 21.07.2025) ; Is a mild solution the same thing as a weak solution? // Mathe-
matics : website. URL: https://math.stackexchange.com/questions/708407/is-a-mild-solution-the-same-thing-as-a-weak-solution (date 
of access: 21.07.2025).
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(15)

which follows from the equations (8) – (13). Here by u� ��  we have denoted the limit values of the function u 

calculated on different sides of the curve x r t� � �, where r is a real-valued function, i. e. u t x r t u� � � � �� � ��
, l

t u t r t� �� � � � � �� �
� �

, lim , .
�

�
0

 Thus, the solution not only satisfies u C Q� � �  but is also a continuous function on the 

closure Q u C Q, .� � �
However, if � �0 00 0� � � � �, then a mild solution u of problem (1) – (3) cannot be continuous on the set Q  by 

the relations (14) and (15). The proof of the theorem is complete.
Following the work [21] and assuming that �0

2
0� �� �� �C , , �1

1
0� �� �� �C , , �2 0� �� �� �C , , �0

2
0� �� �� �C , , 

�1
1
0� �� �� �C , , f C Q� �� � , we prove that a mild solution u of problem (1) – (3) from the class C Q2 � � is 

a limit of the classical solutions of problem (1) – (3).
Since the spaces C Q6 � � and C Q1 �� �  are dense in C Q2 � � and C Q �� � , respectively [22], there are se-

quences w C Q
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where � x x
X1 2,� �  is the distance between elements x X1∈  and x X2∈  in a metric space X. Additionally, we want 

to choose the sequence w n� � so that the condition
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is also satisfied. 
Let us consider on the closed ray 0,�� � a continuous function h x� � � with the parameter �� �� �0, :
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Let 
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It is easy to see that the function z t x
n� � � �,  belongs to the class C Q3� �. Let us denote

 �i
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i
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t
x i x
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Similarly to theorem 1 from the article [9], we derive the following matching conditions by differentiating «con-
ditions» (17) and (18) and taking into account the formula (16):
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where D is the Newton – Leibnitz operator. 
We consider the difference 
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Therefore, the value z t x w t x
n n� � � �� � � � �, ,  can be estimated as
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Let us introduce in the Fréchet space C Q� � a countable system of seminorms

pm
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max , exp , .
, , ,0 0
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If δ is small enough, then estimate of the expression (20) yields the inequality 
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From estimate of the inequality (21) it follows that p
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,  which converges 

to the function u Q: �� in the space C Q� �, and matching conditions (19) are satisfied.
In addition, we note that
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where the limits are understood in the spaces C i2
0
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Let us introduce the function v t x
n� � � �,  and the operator K C Q C Qn : :� � � �
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For the sake of notation we also set f f
�� � � . We note that the operator K C Q C Qn : � � � �  is well-defined and 

continuous, since the smoothness conditions
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and the matching conditions (19) are fulfilled. 
Now we construct a sequence un by the formula
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where the limits are understood in the spaces C i2
0

� �� �� �,  hold.
Thus, we have proven the following theorem.
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It turns out that the statement opposite to theorem 4 is also true.
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. Then the function u Q: � � is a mild solution of problem (1) – (3). 
P r o o f. It is easy to see that un is a classical solution of the mixed problem
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n C Q�� �� �� � �� � 0 0  In this case the matching condition (19), which can be deduced according to 
the scheme we outlined in the work [9], is satisfied. Then by theorem 1 from the article [9], the function un is 
a solution to the integral equation
 u K u v

n n

n

n
� � � � � �.  (25)

Taking into account lim ,
n

n C Q�� �� �� � �� � 0 0  and the continuity of the operator Kn and passing to the limit in 
the equation (25), we obtain

u u K u v K u v
n

n
n

n n

n
� � � � �� � � � � �

�� ��

� �
�lim lim .

The theorem is proved.

Conclusions
The sufÏcient conditions under which there exists a unique mild solution of a mixed problem for a third-or-

der non-linear strictly hyperbolic equation with the wave operator are presented.
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КОНФОРМНОЕ УРАВНЕНИЕ КИЛЛИНГА  
НА 2-СИММЕТРИЧЕСКОМ ШЕСТИМЕРНОМ  

НЕРАЗЛОЖИМОМ ЛОРЕНЦЕВОМ МНОГООБРАЗИИ  
С ТРИВИАЛЬНЫМ ТЕНЗОРОМ ВЕЙЛЯ

М. Е. ГНЕДКО1), О. П. ХРОМОВА1)

1)Алтайский государственный университет, пр. Ленина, 61, 656049, г. Барнаул, Россия

Аннотация. Исследован конформный аналог уравнения Киллинга на 2-симметрических шестимерных нераз-
ложимых лоренцевых многообразиях, а также изучены свойства конформного множителя данного уравнения. Для 
случая конформно-плоских метрик построены новые нетривиальные примеры конформно-киллинговых векторных 
полей с переменным конформным множителем.

Ключевые слова: конформно-киллингово векторное поле; лоренцево многообразие; k-симметрическое про-
странство; тензор Вейля.
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CONFORMAL KILLING EQUATION  
ON A 2-SYMMETRIC SIX-DIMENSIONAL INDECOMPOSABLE  

LORENTZIAN MANIFOLD WITH TRIVIAL WEYL TENSOR

M. E. GNEDKO a, O. P. KHROMOVAa

aAltai State University, 61 Lenina Avenue, Barnaul 656049, Russia
Corresponding author: O. P. Khromova (khromova.olesya@gmail.com)

Abstract. In this paper, we study the conformal analogue of the Killing equation on 2-symmetric six-dimensional in-
decomposable Lorentzian manifolds, and also study the properties of the conformal factor of this equation. For the case 
of conformally flat metrics, new non-trivial examples of conformal Killing vector fields with a variable conformal factor 
are constructed.

Keywords: conformal Killing vector field; Lorentzian manifold; k-symmetric space; Weyl tensor.

Введение
Конформно-киллинговы векторные поля являются естественным обобщением векторных полей Кил-

линга и играют важную роль в изучении группы конформных преобразований многообразия, потоков Рич-
чи на многообразии, теории солитонов Риччи. Псевдоримановы симметрические пространства порядка k, 
где k ≥ 2, возникают в исследованиях по псевдоримановой геометрии и в физике. В случаях, когда k = 2 
и k = 3, они изучены Д. В. Алексеевским и А. С. Галаевым [1]. При малых размерностях эти простран-
ства и векторные поля Киллинга на них исследовали Д. Н. Оскорбин, Е. Д. Родионов и И. В. Эрнст [2].

Солитоны Риччи являются обобщением метрик Эйнштейна на (псевдо)римановых многообразиях. 
Уравнение солитонов Риччи изучалось на различных классах многообразий многими математиками. 
В частности, Д. Н. Оскорбиным и Е. Д. Родионовым [3] найдено общее решение уравнения солитона 
Риччи на 2-симметрических лоренцевых многообразиях малой размерности, доказана локальная разре-
шимость этого уравнения в классе 3-симметрических лоренцевых многообразий. В случае постоянства 
константы Эйнштейна в уравнении солитона Риччи векторные поля Киллинга позволяют найти общее 
решение уравнения солитона Риччи, отвечающее данной константе. Однако для различных значений 
константы Эйнштейна роль векторных полей Киллинга играют конформно-киллинговы векторные поля, 
в связи с чем возникает потребность в их изучении.

В настоящей работе исследован конформный аналог уравнения Киллинга на 2-симметрических  
шестимерных неразложимых лоренцевых многообразиях, изучены свойства конформного множителя 
этого уравнения на них. Установлено, что конформный множитель конформного аналога уравнения 
Киллинга зависит от поведения тензора Вейля. Так, если тензор Вейля нетривиален, то конформный 
множитель постоянен (данный случай исследован ранее в работах [3; 4]). Если же тензор Вейля тривиален, 
то конформный множитель и общее решение конформного аналога уравнения Киллинга выражаются 
через функции Эйри. Кроме того, для случая равенства нулю тензора Вейля построены новые нетри-
виальные примеры конформно-киллинговых векторных полей с переменным конформным множителем.

Предварительные сведения
Псевдоримановым многообразием называется гладкое многообразие M, на котором задан гладкий не-

вырожденный симметричный метрический тензор g. Если метрический тензор имеет сигнатуру 1 1, ,n �� �  

то M g,� � называется лоренцевым многообразием.
Псевдориманово многообразие M g,� � называется симметрическим порядка k, или k­симметриче-

ским, если � �kR 0, � ��k R1 0, где k ≥ 1, R – тензор кривизны M g, ,� �  а ∇ – связность Леви-Чивиты.
В работах [5–7] М. Каэн и Н. Уоллах показали, что односвязное лоренцево симметрическое простран-

ство изометрично произведению риманова симметрического пространства и одного из следующих ло-
ренцевых многообразий: , ,dt

2� �  универсальной накрывающей k-мерного пространства де Ситтера или 
анти де Ситтера (k ≤ 2), пространства Каэна – Уоллаха, т. е. пространства CW A g

n n� �� � � � �2 2 ,  с мет-
рикой

g du dv A x x du x zij
i j

ij
i j� � �� � �2 � ,

где δij – символы Кронекера; Aij – матричные константы.
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Далее все рассматриваемые лоренцевы многообразия будем полагать локально неразложимыми, так 
как из теоремы Ву [8] вытекает, что любое лоренцево многообразие локально может быть представлено 
в виде прямого произведения некоторого риманова многообразия M g1 1,� � и локально неразложимого 
лоренцева многообразия M g2 2, .� �

Определение 1. Обобщенное пространство Каэна – Уоллаха CW gd
n �� �2
,  размерности n + 2 ≥ 4, по-

рядка d определяется как n + 2 с метрикой

g dudv dx a u x x du A a u H u
i

i

n

ij
i j

i j

n

ij i
i

i

� � � � � � � � � �� � �
� � �
� �2

2

1

2

1,

,
00

n

� ,

где Hi  – симметрические постоянные матрицы размера n × n.
Теорема 1 [1; 9]. Локально неразложимое лоренцево многообразие M g,� � размерности n + 2 ≥ 4 

является 2­симметрическим (3­симметрическим) в том и только в том случае, если оно локально изо-

метрично обобщенному пространству Каэна – Уоллаха CWd
n �� �2  порядка d = 1 (d = 2).

Определение 2. Гладкое полное векторное поле K на (псевдо)римановом многообразии M g,� � на-
зывается векторным полем Киллинга, если выполняется равенство L gK = 0, где L gK  – производная Ли 
метрического тензора вдоль поля K.

Определение 3. Гладкое полное векторное поле K на (псевдо)римановом многообразии M g,� � назы-
вается конформно-киллинговым векторным полем, если выполняется равенство L g f p gK � � � , где L gK  – 

производная Ли метрического тензора вдоль поля K, p ∈ M, а f p� � – гладкая вещественная функция на 
многообразии.

Пусть M g,� � – 2-симметрическое локально неразложимое лоренцево многообразие размерности n. 
Исходя из работы Д. В. Алексеевского и А. С. Галаева [1], выберем в M g,� � локальную систему коор-
динат v x x x un

, , , , ,
1 2 � � такую, что

 g dudv dx H x x uH x dui

i

n

ij
i j

i j

n

ii
i

i

n

� � � � � � � �
� � �
� � �2

2

1

0

1

1

2
2

1,

,  (1)

где H0 – симметрические постоянные матрицы размера n × n; H1 – невырожденная диагональная матрица.
В уравнении конформного аналога уравнения Киллинга L g f p gK � � �  вид конформного множителя 

f p� � зависит от того, является ли метрика g конформно-плоской. Путем прямых вычислений компо-
нент тензора Вейля метрики (1) доказывается следующая лемма.

Лемма. Равенство тензора Вейля метрики (1) нулю (W = 0) равносильно условиям, что все Hii1 рав-
ны между собой, все Hii0 равны между собой, а при i ≠ j имеем Hij0 0= .

Д о к а з а т е л ь с т в о. Тензор Вейля на многообразии с метрикой (1) принимает вид

W
n

n H u H H u Hii ii jj jj

j

n

�
�

�� � �� � � �� �
�

�
��

�

�
�� �

�

�
1

2
2 1 0 1 0

1
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�
� dudx dudx dx dudx du dudx dx du dx dududx

i i i i i i i i

i

n

1

� �� � � � �� �H dudx dx du dx dududx dudx dudx dx dudx duij ij
i j i j i j i j

i

0 1 �
,,

.
j

n

�
�

1

Заметим, что в случае, когда i ≠ j, компоненты тензора Вейля при dudx dx dui j , dx dududxi j, dudx dudxi j 

и dx dudx dui j  равны Hij0. Следовательно, если W = 0, то при i ≠ j имеем Hij0 0= .

Все компоненты тензора Вейля при dudx dudxi i, dx dudx dui i , dudx dx dui i  и dx dududxi i с точностью до 
знака имеют следующий вид:

� � �
�

�� �
�
�H u H

n
H u Hii ii jj jj

j

n

1 0 1 0

1

1

2
.

Приравняем к нулю коэффициент при u, а также свободный член данного выражения:

� �
�

�
�
�H

n
Hii jj

j

n

1 1

1

1

2
0,
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� �
�

�
�
�H

n
Hii jj

j

n

0 0

1

1

2
0.

Так как эти уравнения должны быть справедливы при любых 1 ≤ i ≤ n, то из них следует, что все Hii1 
равны между собой и все Hii0 также равны между собой. Лемма доказана.

Шестимерный случай
Перейдем к анализу уравнения конформно-киллингова векторного поля. Зафиксируем точку p ∈ M  

и рассмотрим уравнение L g fgK =  в локальных координатах (1) в окрестности этой точки. С уче-
том результатов работы [10] будем считать, что гладкая функция  f  зависит только от переменной u. 

Исходя из этого, можем принять, что f
dF u

du
�

� �  для некоторой функции F u� �. Для простоты изло-

жения будем полагать, что x1 = x, x2 = y, x3 = z, x4 = t. Обозначим координаты искомого векторного  
поля K через V V v x y z t u� � �, , , , , , X X v x y z t u� � �, , , , , , Y Y v x y z t u� � �, , , , , , Z Z v x y z t u� � �, , , , , ,  
T T v x y z t u� � �, , , , , , U U v x y z t u� � �, , , , ,  (V, X, Y, Z, T, U – гладкие функции), H H x H xy� � � �110

2

120
2 2

xy H xz H xt H y H yz H yt H� � � � � �
130 140 220

2

230 240 3
2 2 2 2 2

330

2

111

2

221

2

340 440

2
2z u H x H yH zt H t� � �� ��

� ��H z H t331

2

441

2
. В результате получим систему уравнений кон формно-киллинговых векторных по-

лей в локальных координатах:
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 (2)

Рассмотрим все уравнения, кроме последнего. Из них, следуя рассуждениям работ [4; 11; 12], полу-
чаем систему

 

U F u

X
dF u

du
x C y C z C t b u

Y C x
dF u

du
y C

� � �

�
� �

� � � � � �

� � �
� �

�

,

,
1

2

1

2

1 2 3 1

1 3zz C t b u

Z C x C y
dF u

du
z C t b u

T C x C y C

� � � �

� � � �
� �

� � � �

� � � �

4 2

2 3 5 3

3 4 5

1

2

,

,

zz
dF u

du
t b u

V
db u

du
x

db u

du
y

db u

du
z

db u

�
� �

� � �

� �
� �

�
� �

�
� �

�
�

1

2
4

1 2 3 4

,

��
�

� � � � �
�

�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

du
t
x y z t d F u

du
C

2 2 2 2 2

2 6
4

,

 (3)

где Ci – произвольные константы, а b ui � �  – гладкие функции, определяемые системой дифференциаль-
ных уравнений b u a u b ui ij j� � � � � � �. Эта система с заданными начальными условиями разрешима, и раз-
мерность пространства решений при большей размерности равна 2n (подробнее см. [3; 12]).

Подставляя полученные выражения в уравнение (2), имеем
dF u

du
u H x H y H z H x H xyH t

� �
� �� � � � �� �111

2

221

2

331

2

110

2

120441

2
2
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� � � � � � � �2 2 2 2 2
130 140 220

2

230 240 330

2

340 44
H xz H xt H y H yz H yt H z H zt H

00

2
t � �

�
� �

� � � � � �
�

�
�

�

�
� � � �

1

2
2 2 2 21 2 3 1 111 110 120

dF u

du
x C y C z C t b u H ux H x H y HH z H t130 1402�� � �

� � �
� �

� � � � �
�

�
�

�

�
� � � �C x

dF u

du
y C z C t b u H uy H x H y

1 3 4 2 221 120 220

1

2
2 2 2 22 2

230 240
H z H t�� � �

� � � �
� �

� � � �
�

�
�

�

�
� � � �C x C y

dF u

du
z C t b u H uz H x H y

2 3 5 3 331 130 230

1

2
2 2 2 22 2

330 340
H z H t�� � �

� � � � �
� �

� � �
�

�
�

�

�
� � � �C x C y C z

dF u

du
t b u H uz H x H y3 4 45 441 140 240

1

2
2 2 2 22 2

340 440
H z H t�� � �

�
� �

�
� �

�
� �

�
� �

�
�

2 2 2 2

2

1

2

2

2

2

2

2

2

2

2 2
3 4d b u

du
x

d b u

du
y

d b u

du
z

d b u

du
t
x y �� � �

�
�z d F u

du

t2 3

3

2

2

 � � � � �� � ��F u H x H y H z H t111

2

221

2

331

2

441

2
0.  (4)

Далее покажем, что в случае, когда тензор Вейля метрики (1) нетривиален, это равенство может вы-

полняться только для постоянной функции f
dF u

du
�

� � .
Теорема 2. Пусть M – 2­симметрическое шестимерное неразложимое лоренцево многообразие с ме-

трикой (1) и нетривиальным тензором Вейля. Тогда конформный множитель f p� � конформного ана-

лога уравнения Киллинга L g f p gX � � �  постоянен.
Д о к а з а т е л ь с т в о. Левая часть уравнения (4) является полиномом относительно переменных x, y,

x y z t, , , , его коэффициенты при x y z t
2 2 2 2
, , ,  должны обращаться в нуль:

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 111 110 1 120 2 130 3 140

d F u

du

dF u

du
uH H C H C H C H HH F u111 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 221 220 1 120 3 230 4 240

d F u

du

dF u

du
uH H C H C H C H HH F u221 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 331 330 2 130 3 230 5 340

d F u

du

dF u

du
uH H C H C H C H HH F u331 0� � � ,

�
� �

�
� �

�� � � � � �
1

2
2 2 2 2

3

3 441 440 3 140 4 240 5 340

d F u

du

dF u

du
uH H C H C H C H HH F u441 0� � � .

Рассмотрим почленные разности этих уравнений:

2 111 110 221 220 111 221

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �4 2 2 2 2 01 120 2 130 3 140 3 230 4 240C H C H C H C H C H ,  (5)

2 111 110 331 330 111 331

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �2 4 2 2 2 01 120 2 130 3 140 3 230 5 340C H C H C H C H C H ,  (6)

2 111 110 441 440 111 441

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

 � � � � � �2 2 4 2 2 01 120 2 130 3 140 4 240 5 340C H C H C H C H C H ,  (7)
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2 2
221 220 331 330 221 331 1 120

dF u

du
uH H uH H F u H H C H

� �
� � �� � � � � �� � � �

� � � � �2 4 2 2 02 130 3 230 4 240 5 340C H C H C H C H ,

2 2
221 220 441 440 221 441 1 120

dF u

du
uH H uH H F u H H C H

� �
� � �� � � � � �� � � �

� � � � �2 2 4 2 03 230 3 140 4 240 5 340C H C H C H C H ,

2
331 330 441 440 331 441

dF u

du
uH H uH H F u H H

� �
� � �� � � � � �� � �

� � � � � �2 2 2 2 4 02 130 3 230 3 140 4 240 5 340C H C H C H C H C H .

Далее рассмотрим полученные уравнения в разных случаях.
Случай 1. Если H H H H111 221 331 441= = = , то рассматриваемые уравнения принимают вид

2 4 2 2 2 2
110 220 1 120 2 130 3 140 3 230 4 24

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 4 2 2 2
110 330 1 120 2 130 3 140 3 230 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 4 2 2
110 440 1 120 2 130 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 4 2 2220 330 1 120 2 130 3 230 4 240 5 34

dF u

du
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� �
�� � � � � � � 00 0� ,

2 2 2 2 4 2220 440 1 120 3 230 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � � 00 0� ,

2 2 2 2 2 4330 440 2 130 3 230 3 140 4 240 5 34

dF u

du
H H C H C H C H C H C H

� �
�� � � � � � �

00
0� .

Следовательно, при H H H H111 221 331 441= = =  и H Hii jj0 0≠ , i =1 4, , j =1 4, , имеем 
dF u

du

� �
� const.

Случай 2. Если один из Hii1 не будет равен остальным (пусть для определенности H H jj111 1≠ , j = 2 4, ), 
поделив уравнение (5) на H H111 221− , уравнение (6) на H H111 331

−  и уравнение (7) на H H111 441− , полу-
чим

2
4 2 2
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� �
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Пусть D H H

H H
1
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2 2
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�

�
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H H
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2

110 330
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2 2
�

�

�
, D
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110 440
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2 2
�

�

�
,

E
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1
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�
� � � � �

�
,
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E
C H C H C H C H C H

H H
2

1 120 2 130 3 140 3 230 5 340

111 331

2 4 2 2 2
�
� � � � �

�
,

E
C H C H C H C H C H

H H
3

1 120 2 130 3 140 4 240 5 340

111 441

2 2 4 2 2
�
� � � � �

�
.

Тогда имеем
dF u

du
u D F u E

� �
�� � � � � � �2 01 1 ,

dF u

du
u D F u E

� �
�� � � � � � �2 02 2 ,

dF u

du
u D F u E

� �
�� � � � � � �2 03 3 .

Заметим, что если D D D1 2 3= =  и E E E1 2 3= = , то достаточно рассмотреть первые два полученных урав-
нения. Остальные уравнения рассматриваются аналогично.

Пусть D D1 2≠ . Вычтем из первого уравнения второе: 
dF u

du
D D E E

� �
�� � � � �1 2 1 2 0. Следовательно, 

при D D1 2≠  получаем постоянство 
dF u

du

� � .
Пусть D D1 2= . Вычтем из уравнения (5), умноженного на H

221
, уравнение (6), умноженное на H111:

 

d F u

du

H H dF u

du
H H H H C

3

3

111 221
110 221 220 111 1

2
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C H H C H H C H H C H

120 221 111

2 130 221 3 140 221 3 230 111 4
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� � � �
2240 111

0H � .

 

(8)

Выразим из уравнения (5) производную функции F u� � через функцию F u� �:

dF u

du

F u H H C H C H C H C H� �
�
� � � �� � � � � � �111 221 1 120 2 130 3 230 3 1404 2 2 2 2CC H

u H H H H

4 240

111 221 110 2202 2 2

� �
�� � � �

.

Вычислим из полученного выражения поочередно вторую и третью производные. Полагая, что S C� �
S C H C H C H C H C H� � � � �4 2 2 2 21 120 2 130 3 230 3 140 4 240, имеем

dF u

du

F u H H S

u H H H H

� �
� �

� � �� � �
�� � � �

111 221
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,

d F u
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111 221 1

3 3

2 2

� �
�

� � �� � � �� �
�� � � 110 220

2

2�� �H

,

d F u

du

F u H H S H H

u H H

3

3

111 221

3

111 221

2

111 221

15 15

2

� �
� �

� � �� � � �� �
�� � �� �� �2 2

110 220

3

H H

.

Подставим эти производные в уравнение (8). В результате получим следующее уравнение в общем виде: 
T u F u T u1 2 0� � � � � � � � , где T u1 � � и T u2 � � – некоторые постоянные многочлены, зависящие от u, коэффи-
циенты которых можно выразить через Hijk и Ci.

Заметим, что F u� � – рациональная функция. В то же время уравнение (8) с помощью линейной под-
становки сводится к однородному дифференциальному уравнению третьего порядка с постоянными ко-
эффициентами. В таком случае решением уравнения (8) не может быть рациональная функция. Следова-
тельно, F u� � – постоянная функция.

Конформно-плоский случай размерности 6
С учетом вышеприведенной леммы метрический тензор имеет вид

g dudv dx dy dz b x y z au x y z dudt t t� � � � � � �� � � � �� �� �� � �2
2 2 2 2 2 2 2 2 22 2 2 22

,
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где a H H H H= = = =111 221 331 441 и b H H H H= = = =110 220 330 440
 – произвольные постоянные. В таком слу-

чае получаем дифференциальное уравнение относительно функции F u� � следующего вида:

�
� �

�
� �

�� � � � � �1

2
2 0

3

3

d F u

du

dF u

du
au b aF u .

Из этого уравнения функция F u� � выражается как

 F u C AiryAi
au b

a

C AiryAi
au b
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3
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�� �
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�
�
�

�

�

AiryBi
au b

a

C AiryBi
au b

a
2

3

3 2

3

��
�
�

2

,  (9)

где AiryAi и AiryBi – частные решения дифференциального уравнения  ��� �y uy 0, называемые функция-
ми Эйри. Это дифференциальное уравнение имеет на действительной оси точку, в которой вид решения 
меняется с колеблющегося на экспоненциальный. Для действительных u функция Эйри первого рода 
определяется следующим несобственным интегралом:

AiryAi u
x

ux dx� � � �
�

�
�

�

�
�

��

�
1

3

3

0
� cos .

Другим линейно независимым частным решением данного уравнения является функция Эйри второ-
го рода, у которой при x → ∞ колебания имеют ту же амплитуду, что и у функции Эйри первого рода 
AiryAi u� �, но отличаются по фазе на π

2
. Для действительных u функция Эйри второго рода выражается 

следующим интегралом1:

AiryBi u
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ux dx� � � � �
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��



1

3 3

3 3

0
� exp sin ..

В данном случае имеем векторное поле вида (3), где 
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(10)
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являются решениями уравнения L g f p gK � � �  для системы (1), а конформный множитель принимает 
вид

f u

aC AiryAi
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1Федорюк М. В. Эйри функции // Математическая энциклопедия : в 5 т. Т. 5 / гл. ред. И. М. Виноградов. М. : Сов. энцикл., 
1985. С. 939–941.
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�� �a
.  (11)

Теорема 3. Пусть M – 2­симметрическое шестимерное неразложимое лоренцево многообразие 
с мет рикой (1), тензор Вейля которого равен нулю. Тогда решение конформного аналога уравнения 

Кил линга L g f p gK � � �  и конформный множитель f
dF u

du
�

� �  определяются в локальной системе ко-

ординат v x y z t u, , , , ,� � точки p из соотношений (3), (9) – (11).
Замечание. Доказанная теорема продолжает исследования, начатые в работе [4], и позволяет построить 

новые нетривиальные примеры конформно-киллинговых векторных полей с переменным конформным 
множителем на 2-симметрических неразложимых лоренцевых многообразиях. Кроме того, разработан-
ные методы дают возможность получить многомерный аналог доказанной теоремы.
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ПОЛНАЯ СХОДИМОСТЬ ЧАСТИЧНЫХ ВЗВЕШЕННЫХ СУММ  
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Аннотация. Отрицательная ортантная зависимость рассматривается как обобщение независимости случай-
ных величин, которое ввели К. Джоаг-Дев и Ф. Прошан. Многие исследователи изучали неравенства и законы 
больших чисел для таких последовательностей случайных величин. В частности, понятие полной сходимости, 
определенное П. Л. Хсу и Г. Роббинсом, привлекло значительное внимание. Устанавливается полная сходимость 
для частичных взвешенных сумм отрицательно ортантно зависимых случайных величин, над которыми домини-
рует случайная величина X. Приводятся достаточные условия такой сходимости при выполнении мягких предпо-
ложений относительно весов и моментов случайной величины X.

Ключевые слова: полная сходимость; отрицательная ортантная зависимость; взвешенные суммы; предельные 
теоремы; зависимые случайные величины. 
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COMPLETE CONVERGENCE FOR PARTIAL WEIGHTED SUMS  
OF NEGATIVELY ORTHANT DEPENDENT  

RANDOM VARIABLES

T. T. TU a

aThe University of Danang – University of Science and Education,  
459 Ton Duc Thang Street, Danang 550000, Vietnam

Abstract. Negatively orthant dependence is regarded as a generalisation of independence for random variables, intro-
duced by K. Joag-Dev and F. Proschan. Numerous researchers have investigated inequalities and laws of large numbers 
for such sequences of random variables. In particular, the concept of complete convergence, defined by P. L. Hsu and 
H. Robbins, has attracted significant attention. Complete convergence for partial weighted sums of negatively orthant de-
pendent random variables dominated by a random variable X is established. SufÏcient conditions for this type of conver-
gence are provided under mild assumptions on the weights and the moments of random variable X.

Keywords: complete convergence; negatively orthant dependence; weighted sums; limit theorems; dependent random 
variables.

Introduction and preliminaries
The concept of a complete convergence was introduced by P. L. Hsu and H. Robbins [1] while K. Joag-Dev 

and F. Proschan introduced the definition of negatively orthant dependent (NOD) sequences [2]. Since then a wide 
range of limit theorems for NOD random variables have been developed by numerous researchers. H. C. Kim 
established a Hájek – Rényi type inequality [3] while N. Asadian and his colleagues obtained a Rosenthal-type 
inequality [4]. In addition, A. Volodin presented the Kolmogorov exponential inequality [5]. Results concer-
ning almost sure convergence appear in the articles [6 – 8]. Complete convergence has been investigated by the 
authors of the works [9–15]. This paper aims to establish complete convergence for partial weighted sums of 
NOD random variables dominated by a random variable.

Definition 1. A sequence of random variables X nn , �� �1  is said to converge completely to a random vari-
able X if for all ε > 0

P X Xn

n

� �� � � �
�

�

� � .

1

Definition 2. A finite collection of random variables X X X n1 2, , ,…  is said to be NOD if

P X P Xx X x X x xn n i i

i

n

1 1 2 2

1

� � � � �� �� � �
�

�, , ,

and

P X P Xx X x X x xn n i i

i

n

1 1 2 2

1

� � � � �� �� � �
�
�, , ,

for all x x xn1 2, , , .� �  An infinite sequence X nn , �� �1  is said to be NOD if every finite subcollection is NOD.
Definition 3. An array of random variables X i n n

ni
, ,1 1� � �� � is said to be rowwise NOD random varia-

bles if for every n ≥ 1 X i n
ni
,1� �� � is a sequence of NOD random variables.

Definition 4. A sequence of random variables X nn , �� �1  is said to be stochastically dominated by a ran-
dom variable X if for any x ≥ 0

sup .
n

nP X P X xx
�

�� � � �� �
1

Let I A� � be the indicator function of the set A. The symbol C denotes a positive constant, which may be 
different in each appearance, and a O b

n n
� � � stands for a Cbn n≤ . The following lemmas are useful for the proof 

of the main results of the work.
Lemma 1 [16]. Let random variables X X X n1 2, , ,…  be NOD; f f fn1 2, , ,…  be all non­decreasing (or all 

non­increasing) functions. Then random variables f X f X f Xn n1 1 2 2� � � � � � �, , ,  are NOD.
Lemma 2 [16]. Let X X X n1 2, , ,…  be non­negative NOD random variables. Then
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E X E X
i

i

n

i

n

i

� �
� �
�

�
��

�

�
��
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1 1

.

Lemma 3 [4; 12]. Let p ≥ 2 and X nn , �� �1  be a sequence of NOD random variables with E X n� � � 0 and 
E X n

p� � � �  for every n ≥ 1. Then there exists a positive constant C depending only on p such that  for every 
n ≥ 1

E X C E X E Xi i i

i

n
p

p

i

p

i

n

p

� � �
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�

�
��

�

�
��

�

�

�
�
�

�

�

�
�
�1 1

2

1

2

,

E X C E X E Xn
j n

i

j
p

p

i

p

i

i

n

i
p

imax log
1

1 1

2

1

2
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�

�

�
�

�

�

�
�
� �

�

�
��� �

��

�
��

�

�

�
�
�

�

�

�
�
�

p

2

.

Lemma 4. For any x ∈  and r�� �1 2,  the following inequality holds:

e x
r
x ex r x

� � �1
1

.

P r o o f. Let us consider 2 cases.
1. Case x ≥ 0. Since e x e te dt

x x t

x

� � � �

�1

0

,  it is sufÏcient to show

f x
r
x te dt
r t

x

� � � � ��
�

1
0

0

 for all x ≥ 0.

This inequality holds because f 0 0� � � ,

x e x e r e e e
r x r x r r r r

x

2 2 2 2 2 2

0

2 1
� � � � � � � �

�
� � �� � � �sup ,

and f x x x e
r r x�� � � �� � �� � �1 2

1 0  for all x > 0. 
2. Case x < 0. From the case 1 we have

1
1 2 0

0
r
x e e te dt e x e e x x
r x x t

x

x x x� � � �� � � � �� � �� �� , .

Since e e x
x x� � � �2 0 for all x < 0, we obtain

1
1 0

r
x e e x x
r x x� � � �, .

Lemma is proved.
Lemma 5. Let p q, > 0 and X nn , �� �1  be a sequence of random variables, which is stochastically domina­

ted by a random variable X with E X
p� � � �. For all n ≥ 1 and x > 0 the following inequalities hold:

(i) E X I X x E X I X x x P X xn

q

n

q q�� �� � � �� �� � � �� �;

(ii) E X I X x E X I X xn

q

n

q
�� �� � � �� �� � , q ≤ p.

P r o o f. Let us prove the inequality (i). We have 

E X I X x t dP X t t dP X tn

q

n
q

n
q

n

xx

�� �� � � �� � � � �� � ���
00

� � �� � � �� � � �� � �� �x P X x P X t dt P X t dtq

n n

q

x

n

q

x

0 0
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� �� � � �� � � �� � � �� � �� �x P X x t dP X t x P X x t dP X tq q
x

q q
x

0 0

� �� � � �� �� �x P X x E X I X xq q .

Let us prove the inequality (ii). From the inequality (i) for q ≤ p and letting x → ∞ we obtain 

E X E Xn

q q
� �� for all n ≥ 1.

Similarly, for q ≤ p we have

E X I X x t dP X t t dP X tn

q

n
q

n

x

q
n

x
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�� ��

� �

� �� � � �� � �
��

�x P X x P X t dtq
n n

q

x

� �� � � �� � � �� �� �
��

�x P X x P X t dt E X I X xq q

x

q .

Lemma 6. Let X xn , �� �1  be a sequence of NOD random variables with mean zero and 0 2 2

1

� � � �
�
�B EX

n i

i

n

. 

Then for any x > 0 and y > 0

P S x P X y
x

y

x

y

xy

B
n k

k

n

n
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�

�
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�
�

�

�
��
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�
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�
1

2 1exp log ,

where S X
n k

k

n

�
�

�
1

.

P r o o f. For a fixed y > 0 and each n ≥ 1 put � � �� �X X I X yn n n  and � � �
�
�S Xn i

i

n

1

. Then we have

P S x P S x S S P S x S Sn n n n n n n�� � � � � �� � � � � �� � �, ,

� � �� � � � �� � � �� � � � �� �
�

�P S S P S x P X y P S xn n n k

k

n

n

1

.

Note that for a fixed h > 0 the function f u e hu

u

hu

� � � � �1
2

 is increasing for u. Since E X k� � � 0,  for any y > 0

tdP X t tdP X t kk

y

k

y
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��

��

� � 0 1, .

Therefore,
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By Markov inequality and lemma 2, for any h > 0

P S x e E e e Ee hx
e hy
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This implies that
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Replacing Xk with – Xk , we also have
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Combining the last two inequalities, we obtain the desired result. Lemma is proved.

Main results
The following theorem extends the result of lemma 2.3 from the article [11] to the case r�� �1 2, .

Theorem 1. Let X i n n
ni
, ,1 1� � �� � be an array of  rowwise NOD random variables with E X ni� � � 0 and 

let b nn , �� �1  be a sequence of  positive real numbers. We assume that there exists a positive constant r�� �1 2,  

such that
max
1� �
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i n

ni nX O b ,
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 for some α > 0.

Then X ni
i
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�

1
 converges completely to zero.

P r o o f. Applying lemma 4 for any t > 0, we have
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By Markov inequality and lemma 2, for any ε > 0
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Therefore, 
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Since � � � �� �X i n n
ni
, ,1 1  is still an array of rowwise NOD random variables, we can replace X ni with −X ni 

from the above statement. That is
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Theorem is proved.
Theorem 2. Let X i n n

ni
, ,1 1� � �� � be an array of rowwise NOD random variables such that E X ni� � � 0 

and X i n n
ni
, ,1 1� � �� � are stochastically dominated by a random variable X satisfying E X X
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log  
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Theorem is proved.
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Therefore, 
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Theorem is proved.
Without the assumption of stochastic domination of X i n nni , ,1 1� � �� � the proof of theorem 3 immedia-

tely yields the following result.
Theorem 5. Let X i n nni , ,1 1� � �� � be an array of rowwise NOD random variables with E X i n

ni� � � �0 1, ,

i n n� � � �0 1 1, , ; a i n nni , ,1 1� � �� � be an array of positive real numbers; b nn , �� �1  be a sequence of positive 

real numbers, bn � �. Let �n t n� � �� �, 1  be a sequence of non­negative even functions satisfying the following 
conditions:
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СПЕКТРАЛЬНЫЙ МЕТОД ЧЕБЫШЕВА  
ДЛЯ РЕШЕНИЯ ПОЛНОГО ОБОБЩЕННОГО  

УРАВНЕНИЯ ПРАНДТЛЯ

Г. А. РАСОЛЬКО1), В. М. ВОЛКОВ2), М. В. ИГНАТЕНКО1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь 
2)Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

Аннотация. Статья посвящена проблеме построения вычислительных схем для решения интегро-дифферен-
циальных уравнений Прандтля, возникающих во многих задачах механики. В ней разработаны приближенные 
численные алгоритмы для решения сингулярных интегро-дифференциальных уравнений вида обобщенного  
уравне ния Прандтля. Предлагаемые приближенные вычислительные схемы основаны на представлении реше-
ния уравнения в виде разложения по ортогональному базису полиномов Чебышева. Использование известных 
спект ральных соотношений позволило получить аналитическое выражение для сингулярной составляющей урав-
нения. Как следствие, разработанная методика демонстрирует высокую точность и экспоненциальную скорость 
сходимости приближенного решения относительно степени интерполяционных многочленов. Вычислительные 
качества данной методики продемонстрированы на тестовом примере. В частности, показано, что дискретная 
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модель, основанная на представлении решения в виде разложения по многочленам Чебышева, приводит к хо-
рошо обусловленной системе линейных алгебраических уравнений для коэффициентов разложения, а скорость 
сходимости погрешности приближенного решения может достигать линейной скорости относительно степени 
интерполяционного многочлена.

Ключевые слова: приближенный численный алгоритм; сингулярное уравнение; интегро-дифференциальное 
уравнение; ортогональный базис полиномов Чебышева; спектральный метод Чебышева; обобщенное уравнение 
Прандтля.
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CHEBYSHEV SPECTRAL METHOD  
FOR SOLVING COMPLETE GENERALISED  

PRANDTL EQUATION

G. A. RASOLKO  a, V. M. VOLKOV  b, M. V. IGNATENKO  a

aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus 
bInstitute of Mathematics, National Academy of Sciences of Belarus,  

11 Surganava Street, Minsk 220072, Belarus
Corresponding author: M. V. Ignatenko (ignatenkomv@bsu.by)

Abstract. This article is devoted to the problem of constructing computational schemes for solving Prandtl integro-dif-
ferential equations that arise in many problems in mechanics. An approximate numerical method for solving singular 
integro-differential equations of the generalised Prandtl equation type has been developed. The proposed approximate 
computational schemes are based on representing the solution of the equation as an expansion over an orthogonal basis 
of Chebyshev polynomials. The use of known spectral relations has made it possible to obtain an analytical expression 
for the singular component of the equation. As a consequence, the developed method demonstrates excellent accuracy 
and exponential rate of convergence of the approximate solution in relation to the degree of interpolation polynomials. 
The computational qualities of this method are demonstrated using a test example. In particular, it is shown that a discrete 
model based on the representation of the solution as a decomposition by Chebyshev polynomials leads to a well-condi-
tioned system of linear algebraic equations for the decomposition coefÏcients, and the convergence rate of the approximate 
solution error can reach a linear speed in relation to the degree of the interpolation polynomial.

Keywords: approximate numerical algorithm; singular equation; integro-differential equation; orthogonal basis of 
Chebyshev polynomials; Chebyshev spectral method; generalised Prandtl equation.
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Введение
В теории крыла конечного размаха, контактных задачах теории упругости и других задачах механики 

сплошной среды важную роль играет уравнение вида
� �x

B x

t

t x
dt f x x

� �
� �

�
�� �
�
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�
�

1
1 1

1

1

�
, ,

которое называется уравнением Прандтля1. Здесь B x� � и f x� � – известные функции из класса C �� �1 1, , 

а � x� � – искомая функция, удовлетворяющая краевым условиям на границе интервала � �� � �1 0.

Ядро уравнения Прандтля имеет сингулярность, что порождает существенные трудности при чис-
ленном решении вышеупомянутых задач с использованием традиционных подходов, основанных на 
непосред ст венной аппроксимации интеграла квадратурными формулами [1]. В связи с этим, как по-
казано в исследованиях ряда авторов (см., например, [2–7]), весьма эффективный способ обработки 
подобного рода сингулярностей состоит в представлении решения задачи и коэффициентов уравнения 
в виде интерполяционных полиномов с использованием полиномов Чебышева. Данный прием с учетом 
известных спектральных соотношений [8, с. 188]

1Голубев В. В. Лекции по теории крыла. М. : Гос. изд-во техн. теорет. лит., 1949. 480 с.
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где T x
n � � и U xn � � – многочлены Чебышева степени n первого и второго рода соответственно, позво-

ляет вычислить аналитически сингулярную составляющую интеграла и получить экспоненциальную 
скорость сходимости приближенного решения задачи [3]. Показавшие высокую эффективность спект-
ральные методы на основе полиномов Чебышева для некоторых частных случаев уравнения Прандтля 
построены в работах [4–6].

Постановка задачи
Рассмотрим сингулярное уравнение Прандтля общего вида2 [7]:
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Здесь B x s x t g x t� � � � � �, , , ,  и f x� � – известные функции (при этом функция s x t,� � удовлетворяет усло-
вию Гёль дера по обеим переменным), а � x� � – искомая функция.

Предварительно в уравнении (2) выполним преобразование сингулярного интеграла 
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в соответствии с работой [9, с. 315]:
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s x t s x x
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.

Далее будем рассматривать уравнение (2) в виде
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Здесь B x b x g x t v x t� � � � � � � �, , , , ,  и f x� � – известные функции, а � x� � – искомая функция, удовлетво-
ряющая краевым условиям
 � �� � �1 0.  (4)

Полагаем, что производная решения задачи принадлежит классу функций h 0� � по Мусхелишвили 
(класс функций с интегрируемой особенностью в окрестности точек x � �1 [9, с. 31]), т. е. � x h� �� � �0 , 
если на отрезке � � �� �1 11 2� �, , ε1 > 0, ε2 > 0, � x� �  удовлетворяет условию Гёльдера и в окрестности 
точек ±1 допускает интегрируемую особенность.

Приведение уравнения (3) к уравнению Фредгольма
Как и в работе [10], сведем уравнение (3) к уравнению Фредгольма второго рода с логарифмической 

особенностью. Пусть
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.  (5)

Применим формулу обращения сингулярного интеграла (5) в классе h 0� �:
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где c – произвольная постоянная. Отсюда с учетом краевых условий (4) имеем
2Голубев В. В. Лекции по теории крыла… 480 с.
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Таким образом, граничная задача (3), (4) сводится к операторному уравнению вида
 u x K u x f x� � � � � � � �; .  (9)

Для вывода достаточных условий разрешимости уравнения (9), как и в работе [10], оценим опера-
тор (8) в равномерной метрике. На основании предыдущих обозначений и оценки (6) имеем
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С учетом данных оценок окончательно получаем
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Относительно условий разрешимости задачи (3), (4) справедлива следующая теорема.
Теорема. Пусть функции B x b x v x t g x t� � � � � � � �, , , ,, ,  входящие в уравнение (3), удовлетворяют ус-
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Тогда граничная задача (3), (4) имеет единственное решение в классе функций �� �� � �� x h 0  для любой 

f x C� �� �� �1 1, .

Некоторые предварительные сведения
Для получения приближенных схем решения задачи (3), (4) будем использовать интерполяционный 

многочлен для функции f x� �, построенный по узлам Чебышева первого рода [11, с. 89], в виде
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На основании формулы (10) получим следующий вид интерполяционного многочлена:
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Здесь были использованы известные свойства полиномов Чебышева [11]: 
T x U x T x U x T x U x U x jj j j0 0 1 1 22 2 2� � � � � � � � � � � � � � � � � � ��, , , .

С учетом формул (10) и (11) интерполяционные многочлены для функции двух переменных будем 
рассматривать в виде разложения по многочленам Чебышева как первого, так и второго рода:
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Вычислительные схемы
Приближенное решение задачи (3), (4) будем искать как решение следующего уравнения:

u x K u x F xn n n� � � � � � � �; ,
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F xn � � – некоторая функция из класса C �� �1 1,  такая, что F x f xn j j� � � � �, x j

n
j nj �
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� �cos , , , , ,
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2
0 1   

а g x tn n, ,� � и v x tn n, ,� � – интерполяционные многочлены для функций g x t,� � и v x t,� � соответственно.
Схема 1. Пусть u xn � � – интерполяционный многочлен для функции u x� �, построенный по узлам 

Че бышева первого рода:
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где c k n
k
, , , , ,� �0 1  – пока неизвестные постоянные.
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Для функций g x t v x t, , ,� � � � выберем интерполяционные многочлены g x t v x tn n n n, ,, , ,� � � � вида (12). 
Вычислим последовательно оставшиеся интегралы в равенствах (15). Имеем
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Изменяя порядок суммирования, с учетом свойства ортогональности многочленов Чебышева по-
лучаем
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Далее, используя явное представление интерполяционного многочлена вида (12) для функции 

v x tn n, , ,� �  с учетом соотношений (1) и свойства многочленов Чебышева [11] 2U t T t U t U tk j k j� � � � � � � �� �

U t U tk j� � � � �� �  получаем
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Таким образом, имеем u x K u x F xn n n� � � � � � � �;  или
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На основании уравнения (18) получаем систему линейных алгебраических уравнений для вычисле-
ния c c cn0 1, , ,  путем последовательной подстановки в уравнение (18) вместо x нулей многочлена Чебы-

шева второго рода x i
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Совместность системы уравнений (19) позволяет вычислить коэффициенты c k n
k
, , , , .� �0 1  При-

ближенное решение задачи (3), (4) – функция �n x� � – вычисляется по формуле (17) для произвольной 
точки x� �� �1 1, .
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Схема 2. Если для функций g x t v x t, , ,� � � � выбрать интерполяционные многочлены g x tn n, , ,� �  v x tn n, ,� � 
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(20)

Как и выше, на основании равенства (20) получаем систему линейных алгебраических уравнений 
для вычисления c c cn0 1, , ,…  путем последовательной подстановки в равенство (20) вместо x нулей 
многочлена Чебышева второго рода x i
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(21)

Совместность системы уравнений (21) позволяет вычислить коэффициенты c k n
k
, , , , .� �0 1  При-

ближенное решение задачи (3), (4) – функция �n x� � – вычисляется по формуле (17) для произвольной 
точки x� �� �1 1, .

Результаты численного эксперимента
Приведем результаты численного эксперимента, проведенного согласно построенным вычислитель-

ным схемам. Рассмотрим интегро-дифференциальное уравнение 
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Известно, что решением задачи (4), (22) является функция

� x x x U xx x x� � � � � � � � �� � �1 132 32 6
2 2

5

5 3
.

Несложно убедиться в том, что производная данной функции �� �� � �� x h 0 .

Как показывают расчеты, уже при сравнительно небольших значениях n достигается предельная 
точность приближенного решения, погрешность которого ограничена снизу лишь с вычислительной 
погрешностью.

Решая систему уравнений (19) или (21) при n = 10 и n = 34, видим, что приближенные решения �n x� �, 
вычисленные по формуле (17), отличаются от точного решения � x� � в точках x � � � �0 99 0 98 0 99, , , , , ,  

не более чем на 5,6 ⋅ 10– 6 и 1,5 ⋅ 10–15 соответственно. Число обусловленности матриц систем (19) и (21) 
при размерности n = 10 и n = 34 составляет cond C

10
25� � �  и cond C34 142� � �  соответственно, что позво-

ляет грубо оценить зависимость числа обусловленности от размерности как cond C O n
n� � �

�

�
�
�

�

�
�
�

3

2 .

Заключение
Представленные результаты могут быть использованы как в теоретических научных исследованиях, 

так и в инженерных расчетах, а также в образовательных программах по вычислительной математике. 
Итоги работы создают основу для дальнейшего развития спектральных методов, их адаптации к новым 
постановкам и интеграции в современные вычислительные комплексы.
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РАЗНОРОДНЫЙ БЛОЧНЫЙ АЛГОРИТМ  
ПОИСКА КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ ВСЕМИ ПАРАМИ  
ВЕРШИН КЛАСТЕРИЗОВАННОГО ВЗВЕШЕННОГО ГРАФА

A. A. ПРИХОЖИЙ 1), О. Н. КАРАСИК 2)

1)Белорусский национальный технический университет, 
пр. Независимости, 65, 220013, г. Минск, Беларусь 

2)Иссофт Солюшенз, ул. Чапаева, 5, 220034, г. Минск, Беларусь

Аннотация. Предлагается новый гетерогенный блочный алгоритм поиска кратчайших путей между всеми 
парами вершин большого ориентированного взвешенного простого графа, состоящего из слабосвязанных плотных 
кластеров (подграфов) разных размеров. Алгоритм учитывает и активно использует входные и выходные граничные 
вершины и ребра каждого кластера для ускорения вычислений и локализации обращений к памяти. Он делит все 
блоки матрицы «стоимость – смежность» на четыре типа (квадратный диагональный, прямоугольный вертикальный 
на кресте, прямоугольный горизонтальный на кресте и прямоугольный периферийный) и использует отдельную 
процедуру расчета для них, учитывает конструктивные особенности самого блока и способ его расчета через 
другие блоки. Приводится теоретическое обоснование преимуществ предлагаемых алгоритмов, сокращающих 
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время выполнения при поиске кратчайших путей. Достоверность сформулированных положений подтверждается 
результатами проведенных вычислительных экспериментов. Разрабатываются однопоточные реализации и много-
поточные OpenMP реализации предлагаемого гетерогенного алгоритма и двух известных гомогенных блочных ал-
горитмов для поиска кратчайших путей. Вычислительные эксперименты на многоядерных процессорах проводятся 
на случайных ориентированных взвешенных графах, декомпозированных на слабосвязанные плотные кластеры 
разных размеров. Описываются результаты для четырех кластеризованных графов, два из которых имеют 4800 вер-
шин (20 и 41 кластер соответственно) и два из которых имеют 9600 вершин (40 и 80 кластеров соответственно). 
На компьютере MacBook M1 Max в случае с однопоточностью предложенный гетерогенный блочный алгоритм 
для кластеризованных графов с граничными вершинами превзошел известный гомогенный блочный алгоритм для 
таких же графов в 1,62–1,94 раза; в случае с OpenMP-многопоточностью ускорение составило 1,87–1,97. На сервере 
из двух процессоров Intel Xeon E5-2620v4 гетерогенный алгоритм превзошел гомогенный алгоритм в 1,58 –1,66 раза 
для однопоточности и в 1,29–1,64 раза для многопоточности. Сравнение предложенного алгоритма с классиче-
ским блочным алгоритмом Флойда – Уоршелла, в котором блоки имеют одинаковый размер, показало ускорение 
в 4,17– 8,18 раза в случае с однопоточностью и ускорение в 3,91– 6,36 раза в случае с OpenMP-многопоточностью.

Ключевые слова: кластеризованный взвешенный большой граф; кратчайшие пути между всеми парами вер-
шин; блочный алгоритм; гетерогенные вычисления; ускорение.
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Abstract. New heterogeneous blocked algorithm of finding all-pairs shortest paths in a large directed weighted simple 
graph consisting of weakly connected dense clusters (subgraphs) of different sizes is proposed. The algorithm considers 
and actively exploits the input and output bridge-vertices and edges of each cluster to speed up computation and localise 
memory accesses. It divides all blocks of the cost adjacent matrix into four types (square diagonal, rectangular vertical 
cross, rectangular horizontal cross and rectangular peripheral) and uses a separate computation procedure for each type, 
considering the design features of the block itself and the way it is computed through other blocks. A theoretical justifica-
tion of the advantages of the proposed algorithms, which reduce the execution time when searching for the shortest paths, is 
given. The validity of the formulated statements is also confirmed by the results of computational experiments. We have de-
veloped single-threaded implementations and multi-threaded OpenMP implementations of the proposed hetero geneous algo-
rithm and two known homogeneous blocked algorithms of finding shortest paths. Computational experiments on multi core 
processors were performed on directed weighted random sparse graphs decomposed into weakly connected dense clusters of 
different sizes. The results are described for four clustered graphs, two of which have 4800 vertices (20 and 41 clus ters, 
res pectively) and two of which have 9600 vertices (40 and 80 clusters, respectively). On the MacBook M1 Max computer 
in the case of single-threaded implementations proposed heterogeneous blocked algorithm for clustered graph with bridge- 
vertices outperformed the known homogeneous blocked algorithm for the same graphs by a factor of 1.62–1.94; in the case 
of multi-threaded OpenMP implementations the speedup was 1.87–1.97. On a server with Intel Xeon E5-2620v4 processors 
heterogeneous algorithm outperformed the known homogeneous algorithm by a factor of 1.58 –1.66 for single- threaded 
implementations and by a factor of 1.29–1.64 for multi-threaded implementations. A comparison of proposed algorithm 
with the classical blocked Floyd – Warshall algorithm in which all blocks are of the same size showed a speedup of 
4.17– 8.18 times in the case of single-threaded implementations and a speedup of 3.91– 6.36 times in the case of multi- 
threaded OpenMP implementations.

Keywords: clustered weighted large graph; all-pairs shortest paths; blocked algorithm; heterogeneous computations; 
speedup.

Introduction

The problem of all-pairs shortest paths (APSP) is fundamental in many domains including social networks, 
bioinformatics, transportation networks, synthesis of quantum logic circuits, etc. [1; 2]. The classical Floyd – 
Warshall algorithm (further FW ) [3; 4] solves this problem. The blocked FW (further BFW ) [5–7], which is 
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homogeneous, performs a partitioning of the graph into subgraphs of equal size and uses the same block cal-
culation procedure for all blocks of the distance matrix. New APSP algorithms for large clustered graphs were 
proposed in the works [8; 9]. They combine the classical FW and Dijkstra algorithm and utilise bridge-vertices 
of the clusters to improve performance. The heterogeneous blocked APSP algorithm [10; 11] for non-clustered 
dense graphs distinguishes four types of blocks, each computed by a separate procedure, but all blocks are 
of the same size. The homogeneous BFW, which can handle subgraphs and blocks of different sizes [12; 13], 
uses the same universal procedure to calculate the blocks of all types. The blocked APSP algorithm for clus-
tered graphs and unequally sized blocks [14], which uses bridge-vertices to reduce runtime, is homogeneous 
because it uses a single block calculation procedure. The works [15–22] improve BFW while considering as-
pects such as efÏcient utilisation of graphics processing units, tuning to optimal block size, using cooperative 
thread sche duler, reducing power consumption, establishing dataflow networks of actors, etc. In this paper, we 
present a new heterogeneous blocked algorithm for solving the problem of APSP on large clustered graphs 
considering bridge-vertices and bridge-edges, unequally sized blocks, separate computation procedures for 
each block type and algorithm transformation for localising data references.

Homogeneous BFW
Let G V E� � �,  be a directed simple graph with real edge-weights composed of a set V of N vertices and 

a set E of edges. A cost adjacency matrix W of G has wi, i = 0, 1 ≤ i ≤ N, where wi, i is equal to the weight of 
edge i j E, ,� ��  and wi,  j = ∞ if i ≠ j and i j E, .� ��  When G has no negative-weight cycle, the dynamic prog-
ramming FW [3; 4] computes a sequence of distance matrices D0 = W, …, D k, …, D N such that in matrix D k the 
shortest path from i to  j is composed of the vertex subset 1, , .�� �k  FW calculates the elements of matrix D using 
the formula
 d d d di j

k

i j
k

i k
k

k j
k

, , , ,min ,� �� �� � ��1  (1)
and assuming that d wi j i j, , .

0 =
Claim 1 [6]. We suppose that d k Ni j

k
, , , , ,� �1  is computed with the formula (1) for � �� � �k k k, 1 and 

� ���k k N, , then upon termination FW correctly computes APSP.
Algorithm 1 (homogeneous BFW ) [5; 6; 10 –14] divides set V into subsets of equal size S and splits the mat-

rix D into blocks leading to matrix B M M�� �. Initially each block has a zero level of calculation, B v u W
0
, ,� � �

u W v u, , .� � � � �
Algorithm 1. Homogeneous BFW
for m ← 1, …, M do 

 B m m BCal B m m B m m B m m
m m m m

, , , , , ,� �� � � � � � �� �� � �1 1 1  // D0 block 
 for v M� �� �1, ,  and v ≠ m do

 B v m BCal B v m B v m B m m
m m m m
, , , , , ,� �� � � � � � �� �� �1 1  // C1 block 

 B m v BCal B m v B m m B m v
m m m m

, , , , , ,� �� � � � � � �� �� �1 1  // C2 block
 for v u M, , ,� �� �1  and v ≠ m and u ≠ m do

 B v u BCal B v u B v m B m u
m m m m
, , , , , ,� �� � � � � � �� ��1  // P3 block

return B M.

In each of M iterations of the loop along m, homogeneous BFW computes one diagonal D0 block B m m
m ,� � 

to level m of calculation, computes M – 1 vertical C1 cross-blocks B v m
m ,� � to level m, computes M – 1 hori-

zontal C 2 cross-blocks B m v
m ,� � to level m and computes M �� �1 2 peripheral P3 blocks B v u

m ,� � to level m. 
All cross-blocks can be calculated mutually in parallel. All peripheral blocks can be calculated in parallel as 
well. The following claim holds for all the blocks of type P3 [19; 20].

Claim 2. We suppose that the P3 block B v u
m , ,� �  m = 1, …, M, is computed with the formula

B v u BCal B v u B v m B m u
m m m m
, , , , , ,� � � � � � � � �� �� � ��1

for � �� �m m m,  and � ���m m M, . Upon termination BFW correctly computes APSP in graph G.
At each iteration BFW increments the calculation level of each block and fulfills the requirement of claim 2 

for the P3 blocks. Therefore, BFW computes APSP correctly.



65

Теоретические основы информатики 
Theoretical Foundations of Computer Science

The block calculation algorithm 2 (BCal ) implements the classical FW and can compute D0, C1, C 2 and P3 
blocks in three loops along k, i and  j (loops along i and j can be reordered). Its three input blocks are denoted 
B10, B20 and B30, respectively. Every execution of the assignment in the nest of loops increases the calculation 
level of element B1ij from k – 1 to k. The assignment fulfills the requirement of claim 1; therefore, BCal cor-
rectly computes B1 block over itself, B2 and B3 blocks. But if we reorder the loop along k with the loop along i 
or  j, the requirement is not fulfilled, and the algorithm becomes incorrect. 

Algorithm 2. BCal (single calculation of all blocks)
for k ← 1, …, S do 

 for i j S, , ,� �� �1  do

 B B B Bi j
k

i j
k

i k
k

k j
k

1 1 2 3
1

, , , ,min ,� �� �� � ��

return B, P.

Directed weighted sparse graphs consisting  
of unequally sized clusters

In the paper we call a graph clustered if it can be partitioned into dense subgraphs that are interconnected 
by a few edges. We call a subgraph dense if its density (the actual number divided by the maximum number 
of directed edges) is over 0.5. We call a graph sparse if its density is less than 0.3. Figure 1 shows an example 
directed clustered graph that consists of 17 vertices, 69 edges and 3 clusters including 5, 5 and 7 inner vertices, 
respectively, and 14, 15 and 31 one-direction-edges, respectively. The clusters have densities of 0.70, 0.75 and 
0.74, respectively, and are interconnected by 9 one-direction-edges. The density of the entire graph is 0.25. Let 
C be the set of all clusters, C c� �.vert be the set of vertices of cluster c and C c� �.size or size c� � be the vertex 
set size. All vertices are numbered within the cluster, so C c v C c� � � � � � � �� �. . , , .vert index 1 size  is assigned to 
each v C c� � �. .vert

The algorithms we have developed exploit the concept of cluster bridge-vertices. A vertex is a bridge in 
cluster c ∈ C if it is incident to an edge, which connects the vertex with a vertex of other cluster e� � �C c\ . Let 
C c� �.bridge be the set of  bridge-vertices of cluster c such as C c C c� � � � �. . .bridge vert  A vertex v is an input bridge 
in cluster c if it has an incoming incident edge connecting v with other clusters’ vertices. Let C c� �.bridge.inall 
be the set of input bridge-vertices of cluster c such as C c C c� � � � �.bridge.inall .bridge. A vertex v is an out-
put bridge in cluster c if it has an outgoing incident edge connecting v with other clusters’ vertices. Let 

Fig. 1. An example graph consisting of weakly connected clusters
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C c� �.bridge.outall be the set of output bridge-vertices of cluster c such as C c C c� � � � �. . .bridge.outall bridge  

The set C c� �.bridge.inout  includes the vertices of cluster c, which are input and output bridges simultaneously: 
C c C c C c� � � � � � � �. . .bridge.inout bridge.inall bridge.outall. The set C c� �.bridge.in includes the purely input 
bridge-vertices of cluster c: C c C c c� � � � � � �. . \ . .bridge.in bridge.inall bridge.outall  The set C c� �.bridge.out  in-
cludes purely output bridge-vertices of c: C c c C c� � � � � � �. \ .bridge.out .bridge.outall bridge.inall. In fig. 1 clus-
ter 1 has two input bridges (vertices 1 and 2) and one output bridge (vertex 3), vertices 4 and 5 are inner. Cluster 2 
has three input and output bridges (vertices 6, 7 and 8), vertices 9 and 10 are inner. Cluster 3 has one input and 
output bridge (vertex 10) and two output bridges (vertices 11 and 12), vertices 13–16 are inner.

Having a partitioning C of graph G into clusters, we create matrix B of blocks of the shortest path distances 
between the vertices (fig. 2). A block B m m,� � (below denoted B m� �) of dimension C m C m� � � � �. .size size lies 
on the principal diagonal of matrix B and describes the shortest path distances between the vertices of clus-
ter m. A block B c e,� � of dimension C c C e� � � � �. .size size lies out of the principal diagonal and describes the 
shortest path distance between the vertices of cluster c and the vertices of cluster e. 

A block element B c e
i j

, ,� �  is identified with indices i C c� � � �� �1, , .size  and j C e� � � �� �1, , .size  of ver-
tices in clusters c and e, respectively. Within each block the vertices are placed in the following order: input 
bridges, input and output bridges, output bridges and other inner vertices of the cluster. This allows us to lo-
calise and assign the vertices of the same group in the same memory lines, and to speed up computations with 
the algorithms we propose.

Heterogeneous blocked APSP algorithm for clustered graphs
In developing the heterogeneous blocked APSP algorithm for clustered graphs upon unequal block sizes and 

bridge-vertices (algorithm 3 (HBSPCG)) we combined the following techniques: handling blocks of unequal 
sizes, using input and output bridge-vertices of clusters to speed up computation, using a heterogeneous approach 
to compute four types of blocks and considering all the features of each block type. Its input is a matrix W 
describing the graph. Its output is matrix B of the shortest path distances between all pairs of vertices. Algo-
rithm 3 describes HBSPCG at the level of block computation sub-algorithms. Algorithm 4 (D0CG) calculates 
the shortest path segments between the vertices of one subgraph, algorithm 7 (C1CG) and algorithm 8 (C 2CG) – 
between the vertices of two subgraphs, and algorithm 9 (P3CG) – between the vertices of two subgraphs, provided 
that the path passes through the vertices of the third subgraph. HBSPCG organises the correct recalculation 
of the shortest path segments, when searching for APSP in the entire graph. At the block level the same control 
flow scheme is used as in BFW. The key difference between the algorithms is that HBSPCG uses four separate 
sub-algorithms for calculating D0, C1, C 2 and P3 blocks with different parameter profiles. The structure of 
matrix B in HBSPCG is different from that in BFW.

Algorithm 3. HBSPCG
B M M W N N

0
�� �� �� �

for m ← 1, …, M do 

 B m D CG C m B m
m m� �� � �� ��

0
1

, ,  // D0 block
 for c M� �� �1, ,  and v ≠ m do

Fig. 2. Layout of distance-adjacency matrix in memory
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 B c m C CG B c m B m C c m
m m m
, , , , , ,� �� � � � �� ��

1
1  // C1 block

 B m c C CG B m c B m C m c
m m m

, , , , , ,� �� � � � �� ��
2

1  // C 2 block
 for c e M, , ,� �� �1  and c ≠ m and e ≠ m do

 B c e P CG B c e B c m B m e C c m em m m m
, , , , , , , , , ,� �� � � � � � �� ��3 1  // P3 block

return B M.

At the control flow level the correctness of HBSPCG is ensured in the same way as BFW. The computation 
level of each block, regardless of type, increases at each iteration of the loop along m. The main difference 
between HBSPCG and homogeneous BFW is that the former is aimed at saving central processing unit and 
memory resources, when calculating diagonal, vertical, horizontal and peripheral blocks.

New algorithm for calculating diagonal blocks
All blocks are square on the principal diagonal of B. When recalculating a diagonal block over itself, the bridge- 

vertices are not considered. D0CG, which we propose as a sub-algorithm of HBSPCG, uses one cluster m and 
computes one square block B m m,� �

0 (which will also be denoted B m� �
0
) of dimension C m C m� � � � �. .size size 

from computation level 0 to S. Since the block is computed over itself, the order of computing the elements 
B m

i j

k
� � ,  through elements B m

i k

k
� �

�

,  and B m
k j

k
� �

��

,  along k is crucial. It must satisfy the formula (1). The block 
describes APSP between the vertices of cluster m, which may pass through the vertices of other clusters. We in-
terpret block B m

0� � as a matrix of edge weights between the vertices of cluster m.
D0CG consists of two nests of loops. The first nest includes three loops along variables k, i and j and three 

assignments with the min operation. The first two loops along i and  j cover k – 1 vertex of the subgraph of clus-
ter m. The loop along k is repeated over the indices of vertices C m� �.vert of cluster m. In D0CG three assign-
ments are aimed at updating APSP between vertices i and  j, between vertices i and k, and between vertices k 
and  j over new paths of shorter length. The second nest consists of two loops along i and  j. Finally, it computes 
the shortest path between vertices 1, …, S – 1 through the row and column labeled by S in the mat rix B m� �. 
We developed D0CG as a competing alternative to BCal.

Algorithm 4. D0CG (calculation of the diagonal square block B m� �)
S C m� � �.size
for k ← 2, …, S do
 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� �� �

�

�

�

�

, , , ,
min ,

1 2

1

1

1

1
 // Ωk – 1

 B m B m B m B m
i k

j

i k

j

i j

k

j k
� � � � � � � � � �� �� �

, , , ,
min ,

1 1 0
 // Λ k

 B m B m B m B m
k j

i

k j

i

k i i j

k
� � � � � � � � � �� �� �

, , , ,
min ,

1 0 1
 // Λ k

for i ← 1, …, S – 1 do
 for  j ← 1, …, S – 1 do
 B m B m B m B m

i j

S

i j

S

i S

S

S j

S
� � � � � � � � � �� ��

, , , ,
min ,

1
 // ΩS

return B m
S

� � .

Theorem 1. Upon termination D0CG correctly computes the diagonal block B m S
� �  over B m� �

0
, which repre-

sents the shortest path lengths between all vertices of cluster m, possibly passing through vertices of other clusters 
of graph G.

P r o o f. D0CG does not consider the bridge-vertices of cluster m because it computes the block B m� � over 
itself. The competitive algorithm BCal recomputes each element of the block B m� � at each iteration of the 
loop along k. Unlike BCal, D0CG starts with a one-vertex graph and a block B m� �

1 of dimension 1 × 1. It then 
iteratively adds one row k and one column k to block B m k

� �
�1 and obtains block B m k

� � . The procedure is 
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illustrated in fig. 3, a. In this figure B m� �
0 denotes input block B m� � of dimension S × S before executing D0CG. 

Variable bij denotes an element of the matrix B m� �.
Two operations Λ k and Ωk are used to accomplish the procedure. The first operation Λk computes APSP that 

are represented by column k and row k of block B m k
� �  and are computed over APSP of subblock B m k

� �
�1
. 

Column k is computes by the following equation:

 B m B m B m B m
ik

j

ik

j

ij

k

jk
� � � � � � � � � �� �� �1 1 0

min ,  for i j k, , , .� � �1 1  (2)

Row k is computes according to equation

 B m B m B m B m
kj

i

kj

i

ki ij

k
� � � � � � � � � �� �� �1 0 1

min ,  for i j k, , , .� � �1 1  (3)

It should be noted that claim 1 does not apply to items (2) and (3). The second operation Ωk calculates all 
elements of subblock B m k

� �
�1 over row k and column k of computation level k, obtaining a block B m k

� �  of 
APSP in the subgraph on k vertices of cluster m. It uses the following formula to perform the calculation:

B m B m B m B m
ij

k

ij

k

ik

k

kj

k
� � � � � � � � � �� ��

min ,
1  for i j k, , , .� � �1 1

We can describe the behaviour of D0CG as the sequence of pairs � �k k,� � of operations:

 � � � � � � � �1 1 2 2, , , , , , , , , .� � � � � � � � � �k k S S  (4)

Algorithm 5 displays the corresponding pseudocode. The loop along k represents sequence (4), in its body 
the first nest of loops along i and  j is the operation Λ k , and the second nest of loops over i and  j is the opera-
tion Ωk . The operations Λ1 and Ω1 do not change the block B m� �

1 compared to B m� �
0
, so they are omitted, and 

we start with k = 2. The calculation levels of elements B m
i j

� � , , B m
i k

� � ,  and B m
k j

� � ,  in the operation Ωk of 
algorithm 5 satisfy claim 2, so the elements B m

i j
� � ,  are calculated correctly. The operation Λ k correctly com-

putes the elements B m
i k

� � ,  and B m
k j

� � ,  from level 0 to level k. We can conclude that algorithm 5 is correct.

Algorithm 5. Recurrent procedure D0CG for calculating diagonal block
S C m� � �.size
for k ← 2 to S do

 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i k

j

i k

j

i j

k

j k
� � � � � � � � � �� �� �

, , , ,
min ,

1 1 0
 // Λ k

 B m B m B m B m
k j

i

k j

i

k i i j

k
� � � � � � � � � �� �� �

, , , ,
min ,

1 0 1
 // Λ k

 for i ← 1, …, k – 1 do
 for j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� ��

, , , ,
min ,

1
 // Ωk

return B m
S

� � .

Two nests of loops along i and  j cannot be combined into a single nest of loops due to data dependencies: 
element B m

i j
� � ,  cannot be modified while it is used to modify all elements B m

i k
� � ,  and B m

k j
� �

,
. To overcome 

this obstacle, we resynchronise (fig. 3, b) sequence (4) with the following sequence of pairs � �k k�� �1, :

� � � � � � � � � �1 1 2 2 3 1 1, , , , , , , , , , , .� � � � � � � � � �� �k k S S S

Now we can rewrite algorithm 5 to algorithm 6. The loop along k includes two nests of loops along i and  j, 
which have the same iteration schemes. The first nest performs the operation �k �1, and recalculates all ele-
ments of the subblock B m k

� �
�1
. The second nest performs the operation Λ k and calculates column k and row k 

in the block B m k
� � . The two nests of loops can be merged, since B m

i j

k
� �

�

,

1 will not change due to the calculation 
of B m

i k

k
� � ,  and B m

k j

k
� � , , and vice versa. As a result, we have obtained D0CG. The theorem is proved.
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Competitive BCal and D0CG have different iteration schemes. The total number of iterations 
of the innermost loop of BCal is S 3. The total number of iterations of the innermost loop of D0CG is 

6

2 3
1 2

1

� � �� � � � �� �� �

size sizem m
 times smaller than that of BCal. It tends to be 3, when size m� ���. BCal has 

size m� �2 element accesses at each iteration of the loop along k. D0CG has k 2 accesses for k size m� � � �1, , . 

Moreover, the element B m
i j

� � ,  is common to three assignments. In terms of data reference locality, D0CG out-
performs BCal by up to 3 times. We further transform D0CG to incorporate vectorisation and parallelisation 
mechanisms.

Algorithm 6. Resynchronised D0CG

S C m� � �.size
for k ← 2 to S do
 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m

i j

k

i j

k

i k

k

k j

k
� � � � � � � � � �� �� �

�

�

�

�

, , , ,
min ,

1 2

1

1

1

1
 // Ωk – 1

 for i ← 1, …, k – 1 do
 for  j ← 1, …, k – 1 do
 B m B m B m B m
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return B m� �.

New algorithm for calculating vertical cross-blocks
C1CG computes APSP from the nodes of cluster c to the nodes of cluster m and changes the vertical 

cross-block B B c m1� � �,  of dimension size sizec m� � � � � through diagonal block B B m3 � � � of dimension 
size sizem m� � � � �. In this paper we assume that the block sizes are not equal and use the bridge-vertices of 
cluster m to speed up the computation of APSP. C1CG is a generalisation of BCal for vertical cross-blocks 
describing APSP in clustered directed graphs. It considers two clusters c and m and has two entries: a vertical 
crossing block B c m,� � and a diagonal block B m� �. It returns the modified block B c m, .� �

Fig. 3. Iterating the diagonal block B m� � along calculation level k in D0CG: 
a – adding vertex k to cluster m; b – resynchronised process of adding vertices
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Theorem 2. Upon termination C1CG correctly computes the vertical cross­block B c m,� � over the diago-

nal block B m� �, which describes APSP distances from the vertices of cluster c to the vertices of cluster m that 
pass through the input bridge­vertices of m.

P r o o f. The blocks B c m,� � and B m� � have different dimensions: size sizec m� � � � � and size sizem m� � � � �, 
respectively. The differences do not affect the fundamentals [12] of the shortest path calculation method (BCal ) 
and the execution of min-plus operations on matrices. Therefore, C1CG is valid with respect to unequal block 
sizes.

The algorithm recalculates only one of the two blocks, i. e. B c m,� � and thus relaxes the requirements of 
claim 1 to the ordering of the calculation levels of its elements. Therefore, it satisfies claim 1 in advance and is 
correct from this point of view. As a result, three loops along k, i and  j can be reordered arbitrarily.

Algorithm 7. C1CG (сalculation of vertical cross-block upon bridges and unequal block sizes)
for i ← 1 to C c� �.size do
 for v C m� � �.bridge.inall and k C m v� � � � �.vert .index do

 for  j ← 1 to C m� �.size do

 B c m B c m B c m B m
i j i j i k k j

, min , , ,
, , , ,

� � � � � � � � � �� �
return B c m, .� �

Now we prove that any shortest path from vertex i of cluster c to vertex j of cluster m passes through an 
input bridge-vertex k of cluster m. We assume that APSP between the inner vertices of cluster m have been 
already calculated. For the shortest path between i and  j 2 cases are possible (fig. 4).

1. The path p i k j� � �� �, , , ,  passes through vertices of the cluster c, then passes through the input bridge- 
vertex k and other vertices of cluster m, and finally reaches vertex  j.

2. The path p i w k j� � � �� �, , , , , ,  passes through vertices of cluster c, then passes through vertices w 

of cluster x and possibly through other vertices of other clusters, then through an input bridge-vertex k of clus-
ter m, and finally reaches the vertex  j.

In both cases any shortest path between i and  j passes through one of the input bridge-vertices of cluster m. That 
is why for loop along k in C1CG it is sufÏcient to traverse only the input bridge-vertices of cluster m. The theo-
rem is proved.

Fig. 4. Calculation of vertical cross-block  
through diagonal block  

(illustration of proof of theorem 2)
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Corollary 1. If cluster m has no input bridge­vertices, C1CG does not change the vertical cross­blocks 
B c m,� � in column m of matrix B and hence is not applied to the column.

C1CG gives a speedup in the computation of the vertical cross-blocks compared to the homogeneous blocked 
algorithm [14] depending on the share of the input bridge-vertices in the total number of bridge-vertices in cluster m.

New algorithm for calculating horizontal cross-blocks
C2CG computes APSP connecting vertices of cluster m with vertices of cluster c. It modifies a horizontal 

rectangular cross-block B m c,� � of dimension size sizem c� � � � �  through the diagonal square block B m� �  of 
dimension size sizem m� � � � �. C 2CG is a generalisation of BCal for horizontal cross-blocks describing shortest 
path segments in clustered directed graphs. It uses the output bridge-vertices of cluster m to speed up the shor-
test path computation.

Algorithm 8. C 2CG (calculation of horizontal cross-block upon bridges and unequal block sizes)
for i ← 1 to C m� �.size do
 for v C m� � �.bridge.outall and k C m v� � � � �. .vert index do

 for  j ← 1 to C c� �.size  do

 B m c B m c B m B m c
i j i j i k k j

, min , , ,
, , , ,

� � � � � � � � � �� �
return B m c, .� �

Theorem 3. Upon termination C 2CG correctly computes horizontal cross­block B m c,� � through diago-

nal block B m� �, which describes APSP distances from vertices of cluster m to vertices of cluster c that pass 
through the output bridge­vertices of  m.

P r o o f. Although the blocks B m c,� � and B m� � have different sizes [12], these differences do not affect the 
correctness of the shortest path calculation method and min-plus operations on matrices as it is done for BCal. 
Therefore, C 2CG is correct from this point of view.

The algorithm relaxes the requirements of claim 1 for the order of the matrix element calculation levels, 
since it recalculates only one block B c m,� � and does not change other block B m� � at the same time. Therefore, 
it correctly computes B c m,� � for any order of three loops along variables i, k and  j.

Now we suppose that APSP between the inner vertices of cluster c and between the inner vertices of clus ter m 
have been already calculated. At this assumption, we prove that any shortest path from vertex i of cluster m to 
vertex  j of cluster c passes through an output bridge-vertex k of cluster m. For the shortest path between i and  j 
2 cases are possible (fig. 5).

1. The path p i k j� � �� �, , , ,  passes through vertices of cluster m including an output bridge-vertex k, 
then passes through vertices of cluster c, and finally reaches vertex  j of the cluster.

2. The path p i k w j� � � �� �, , , , , ,  passes through vertices of cluster m including the output bridge-ver-
tex k, then passes through one or more vertices w of cluster x and may be other vertices of other clusters, then 
passes through vertices of cluster c, and finally reaches vertex  j of the cluster.

Fig. 5. Calculation of horizontal cross-block through diagonal block  
(illustration of proof of theorem 3)



72

Журнал Белорусского государственного университета. Математика. Информатика. 2025;3:62–75
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:62–75 

In both cases any shortest path between i and  j passes through one of the output bridge-vertices of clus-
ter m. This is why for the iteration scheme of the loop along k in C 2CG it is sufÏcient to traverse only the 
output bridge-vertices of cluster m. The theorem is proved.

Corollary 2. If a cluster m has no output bridge­vertices, C 2CG does not change the horizontal cross­blocks 
B m c,� � in row m of matrix B and hence is not applied to the row.

C 2CG provides the speedup in computation of the horizontal cross-blocks in comparison to the homo-
geneous blocked algorithm [14] depending on the share of the output bridge-vertices in the total number of 
bridge-vertices in cluster m.

New algorithm for calculating peripheral blocks
P3CG computes shortest-path segments. The segments connect vertices of cluster c with vertices of clus-

ter e, passing through vertices of cluster m. The algorithm modifies a rectangular block B c e,� � of dimension 
size sizec e� � � � � using two rectangular blocks B c m,� � and B m e,� � of the dimension C c C m� � � � �. .size size 

and C m C e� � � � �.size size,.  respectively. P3CG is a generalisation of FW for clustered directed graphs. It uses 
the input or output bridge-vertices of cluster m to speed up the computations. 

The algorithm consists of three nested loops along variables i, k and  j and includes one assignment state-
ment. The loops along i and  j traverse all vertices of clusters c and e, respectively. The loop along k traver-
ses the vertices of cluster m that belong to the subset C m� �.bridge.best.  The subset is one of two vertex subsets 
that has the minimum size: C m C m� � � � �. .bridge.best bridge.inall  if C m C m� � � � �. . ,bridge.inall bridge.outall  

and C m C c� � � � �. .bridge.best bridge.outall, otherwise.

Algorithm 9. P3CG (calculation of peripheral rectangular block upon bridges and unequal block sizes)
for i ← 1 to C c� �.size do
 for v C m� � �.bridge.best and k C m v� � � � �. .vert index do

 for  j ← 1 to C e� �.size do
 B c e B c e B c m B m e

i j i j i k k j
, min , , , ,

, , , ,
� � � � � � � � � �� �

return B c e, .� �

Theorem 4. Upon termination P3CG correctly computes block B c e,� � over blocks B c m,� � and B m e,� �, 
which describe the shortest path segments from the vertices of cluster c to the vertices of cluster e that pass 
through the best bridge­vertices of cluster m.

P r o o f. Although, unlike BCal, the input blocks B c e, ,� �  B c m,� � and B m e,� � have different sizes in P3CG, 
the differences do not affect the shortest path calculation technique [12] and min-plus operations on matrices as 
is done in BCal. Therefore, P3CG is correct regarding different block sizes, since BCal is proven to be correct.

The algorithm relaxes the requirements of claim 1 for the order of the calculation levels of the distance mat-
rix elements, since it recalculates only the elements of one block B c e,� � and does not simultaneously change 
the elements of the other two blocks B c m,� � and B m e, .� �  Therefore, it correctly computes the block B c e,� � 
with respect to the calculation levels for any reordering of three loops along variables i, k and  j.

Now we prove that any shortest path p i k j� � �� �, , , , , where i C c� � �.vert, k C m� � �.vert and j C e� � �.vert, 
includes the input bridge-vertex of cluster m. As shown in fig. 6, there are 4 cases of the shortest path passing 
through three clusters.

1. The strait path through clusters c, m and e is p i k j� � �� �, , , , . This means that the path starting from 
i passes through the vertices of cluster c, enters cluster m through the input bridge-vertex k, exits cluster m 
through one of the output bridge-vertices, and finally goes to vertex  j of cluster e.

2. The path is p i w k j� � � �� �, , , , , , , where w C x� � �. ,vert  and x is a cluster other than c, m and e. 
The path goes from i through vertices of cluster c, goes through vertices w of cluster x (might be several clus-
ters), enters cluster m through vertex k, exits it through an output bridge-vertex, and finally passes through 
vertices of cluster e to vertex  j.

3. The path is p i k z j� � � �� �, , , , , , , where z C y� � �.vert, and y is a cluster other than c, m and e. The path 
goes from i through vertices of cluster c, enters cluster m through vertex k, exits it through an output bridge-ver-
tex, passes through vertices z of cluster y (there may be several clusters), and finally goes through vertices of 
cluster e to vertex  j.

4. The path is p i w k z j� � � � �� �, , , , , , , , , where w and z are vertices of clusters other than c, m and e. 
The path goes from i through vertices of cluster c, passes through vertices w of cluster x (there may be several 
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clusters), enters cluster m through vertex k, exits it through an output bridge-vertex, passes through vertices z 
of cluster y (there may be several clusters), and finally passes through vertices of cluster e to vertex  j.

Having considered these 4 cases, we can conclude that no path from i to j that does not pass through an 
input bridge-vertex of cluster m. Therefore, all iterations of loop along k in P3CG may correspond to the input 
bridge-vertices of cluster m.

Similarly (fig. 7), it can be proved that any shortest path p i k j� � �� �, , , , , where i C c� � �.vert,  k C m� � �.vert 
and j C e� � �.vert, includes an output bridge-vertex of cluster m. This means that the iterations of loop along k 

in P3CG can correspond to the output bridge-vertices of cluster m. We have two alternatives for the loop ite-
ration scheme. To speed up the computations, we choose the subset C m� �.bridge.best that has the smallest size. 
The theorem is proven.

Corollary 3. If cluster m has no input or output bridge­vertices, P3CG does not change the peripheral blocks 
B c e M, , ,� � � �� �, c, e ,1  c ≠ m and e ≠ m, of matrix B and therefore is not applied to all the peripheral blocks.

The smaller the number of bridge-vertices in C m� �.bridge.best than the less central processing unit time 
the P3CG consumes.

Experimental results and comparison  
of algorithms and their implementations

We developed in C++ language and used two versions (single-threaded and multi-threaded OpenMP (ver-
sion 4.5)) of implementations of the proposed HBSPCG and, for comparison, implementations of previously known 
algorithms. The source code was compiled by GNU Compiler Collection (version 14.2.0) with auto-vectorisation 

Fig. 6. Calculation of peripheral block over two cross-blocks  
through input bridge-vertices of cluster m (illustration of proof of theorem 4)

Fig. 7. Calculation of peripheral block over two cross-blocks  
through output bridge-vertices of cluster m (illustration of proof of theorem 4)
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enabled. The paper presents the results of experiments performed on two computers: MacBook M1 Max and 
server consisting of two Intel Xeon E5-2620v4 processors (each has 8 cores and 16 physical threads).

The article describes experiments conducted on four random directed simple weighted graphs decomposed 
into dense weakly connected clusters of different sizes (table 1). Judging by the number of edges in the graphs and 
the number of edges between clusters, all clusters are dense subgraphs. The edge density in all four graphs was  
in the range of 0.003 55– 0.012 51, meaning that all graphs were sparse. 

Ta b l e  1
A sample of four random sparse graphs consisting of tens of dense clusters

Number  
of graph Vertices Clusters Edges Density Bridge-vertices Bridge-edges

1 4800 20 288 245 0.012 51 567 621
2 4800 41 153 858 0.006 68 620 687
3 9600 40 644 198 0.006 99 3452 2374
4 9600 80 326 779 0.003 55 3550 2505

Table 2 shows results obtained on MacBook M1 Max. In case of single-threaded implementations the speedup 
of the proposed heterogeneous blocked algorithm HBSPCG (clustered graph, bridge-vertices) compared to the 
known homogeneous blocked algorithm BSPCG [14] (clustered graph, bridge-vertices) is of 1.62–1.94 times. 
In case multi-threaded OpenMP implementations the speedup is 1.87–1.97 times.

Ta b l e  2
Runtimes of algorithms BSPCG and HBSPCG on MacBook M1 Max

Number  
of graph

Single-threaded implementations Multi-threaded OpenMP implementations

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

1 3.21 1.65 1.94 0.69 0.35 1.97
2 2.70 1.66 1.62 0.48 0.26 1.88
3 37.30 19.52 1.91 5.54 2.87 1.93
4 34.84 21.15 1.65 5.31 2.84 1.87

The results obtained on the server are shown in the table 3. HBSPCG outperformed BSPCG by 1.58–1.66 
times for single-threaded implementations and by 1.29–1.64 times for multi-threaded OpenMP implementations. 
Table 3 also provides a comparison of HBSPCG with the classical BFW with equal block sizes. The speedup 
of HBSPCG over BFW was in the range of 4.17–8.18 for single-threaded implementations and 3.91–6.36 for 
multi-threaded OpenMP implementations.

Ta b l e  3
Comparison of BSPCG, HBSPCG and BFW  

on server with two Intel Xeon E5-2620v4 processors

Number  
of graph

Single-threaded implementations Multi-threaded OpenMP implementations

BSPCG, s HBSPCG, s
Speedup  

of HBSPCG over 
BSPCG, times

Speedup  
of HBSPCG over 

BFW, times 
BSPCG, s HBSPCG, s

Speedup  
of HBSPCG over 

BSPCG, times

Speedup  
of HBSPCG over 

BFW, times

1 11.07 6.28 1.76 8.18 0.91 0.57 1.59 6.36
2 11.18 6.82 1.64 7.24 1.05 0.82 1.29 4.13
3 148.08 89.06 1.66 4.59 9.62 5.86 1.64 4.52
4 149.95 94.90 1.58 4.17 10.50 6.48 1.62 3.91

Conclusions
The FW family of algorithms, which solve the problem of APSP has cubic time complexity and quadratic 

memory complexity regardless of the number of edges in the graph that creates obstacles for processing real 
large graphs on multi-processor systems. The goal of the BFW is to provide parallelism and efÏcient use of 
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the hierarchical processor memory. It is most efÏcient on dense graphs and has losses on sparse graphs. Many 
works and publications are devoted to achievements in the field of reducing the computational resources con-
sumed by the blocked algorithm. In the paper we propose a heterogeneous version of such an algorithm that 
considers the features of large clustered directed weighted graphs, which are divided into dense clusters of 
different sizes, weakly connected by bridge-vertices and bridge-edges. The algorithm distinguishes four types 
of blocks and exploits their unique features in a separate procedure for each block to speed up the computa - 
tion of APSP and improve the locality of references to data. This allowed us to reduce the runtime by approxi-
mately twice on the MacBook M1 Max computer compared to the well-known homogeneous BFW on the 
clustered graphs and to reduce the runtime up to eight times on the server compared to the classical BFW with 
equal block sizes.
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Аннотация. Приводится методология анализа угроз информационной безопасности киберфизических систем 
на основе цифровых двойников. Предлагаемый подход предусматривает формализацию системы и пространства 
угроз через многосрезовую структуру, включающую технический, процессный, функциональный, организационный 
и отраслевой срезы. Далее осуществляется динамическое моделирование угроз в безопасной виртуальной среде 
цифрового двойника, что позволяет воспроизводить сценарии атак и получать синтетические данные для обучения 
алгоритмов обнаружения индикаторов угроз. Для выявления аномалий применяются методы частотного анализа, 
машинного обучения и кластеризации, обеспечивающие адаптивное и точное обнаружение как известных, так 
и ранее неизвестных атак. Верификация методологии проводится на примере умной энергосети, где показывается 
эффективность обучения и тестирования алгоритмов на синтетических данных, отражающих реальные и аварий-
ные режимы. Результаты демонстрируют возможность создания самонастраивающихся систем информационной 
безопасности с высокой степенью адаптивности и точности обнаружения угроз. Представлен ная методология обе-
спечивает итеративную обратную связь между этапами, что повышает качество моделирования и обнаружения угроз.
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Abstract. This paper presents a methodology for analysing information security threats in cyber-physical systems based 
on digital twins. The proposed approach involves formalising the system and threat space through a multi-layered struc-
ture, including technical, process, functional, organisational and sectoral layers. Next, dynamic threat modelling is con-
ducted in a secure virtual environment of the digital twin, enabling the reproduction of attack scenarios and generation of 
synthetic data to train threat indicator detection algorithms. To identify anomalies, frequency analysis, machine learning 
and clustering methods are applied, ensuring adaptive and accurate detection of both known and previously unknown at-
tacks. The methodology is verified using a smart grid example, demonstrating the effectiveness of training and testing 
algorithms on synthetic data that reflect normal and emergency operating modes. The results show the potential for 
crea ting self-adjusting information security systems with a high degree of adaptability and threat detection accuracy. 
The presented methodology provides iterative feedback between stages, enhancing the quality of threat modelling and 
detection.

Keywords: cyber-physical system; digital twin; information security; threat modelling; anomaly detection; machine 
learning; synthetic data; adaptive system; smart grid; threat analysis.
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Введение
Современные информационные системы (ИС) представляют собой высокосложные распределенные 

киберфизические комплексы со множеством взаимосвязанных компонентов, функционирующих в усло-
виях высокой неопределенности. Эта неопределенность обусловлена не только возрастанием внутренней 
архитектурной и поведенческой сложности систем, но и постоянной эволюцией угроз информационной 
безопасности (ИБ), включая появление ранее не наблюдаемых (zero­day) и трудноидентифицируемых 
атак. В таких условиях особую значимость приобретает задача своевременного выявления индикаторов 
угроз (косвенных признаков наступления нежелательных событий) до их реализации в виде полномас-
штабных инцидентов. Эффективное решение данной задачи при ограниченном объеме достоверных 
эмпирических данных требует построения воспроизводимых моделей поведения защищаемых систем 
и потенциальных сценариев деструктивного воздействия. Одним из наиболее перспективных инстру-
ментов в этом контексте выступает технология цифровых двойников (ЦД) – цифровых репрезентаций 
объектов и процессов, позволяющих моделировать как нормальное функционирование системы, так 
и ее реакцию на внешние воздействия, включая реализацию сценариев атак.

Технология ЦД в настоящее время формализована в ряде отечественных и международных стандартов, 
таких как ГОСТ Р 57700.37-2021, ISO/IEC 30173:2023 и ISO/IEC 20924:2024. Однако следует отметить, 
что в указанных нормативных документах объектом цифрового моделирования преимущественно вы-
ступают физические изделия или технические устройства, в то время как вопросы применения ЦД для 
решения задач ИБ, в особенности динамического моделирования угроз и генерации данных для построе-
ния систем обнаружения аномалий, остаются практически неисследованными.

Кроме того, в современной научной и прикладной деятельности отсутствует единая методология, 
обеспечивающая логически непрерывный переход от формализованного описания архитектуры и по-
ведения защищаемой системы через моделирование сценариев атак к обучению и верификации средств 
обнаружения индикаторов нарушений. Данный разрыв между моделированием угроз и последующим по-
строением механизмов их выявления в реальных системах существенно ограничивает воспроизводимость, 
обоснованность и прикладную значимость разрабатываемых решений в области обеспечения ИБ.

Настоящее исследование направлено на преодоление обозначенного методологического дефицита. 
Его целью является разработка и экспериментальная верификация методологии анализа угроз ИБ на 
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основе ЦД, обеспечивающей замкнутый контур перехода от формализации структуры и поведения за-
щищаемой системы и пространства угроз к синтезу ЦД, воспроизведению сценариев атак, генерации 
синтетических данных и обучению алгоритмов обнаружения аномалий.

Ключевая гипотеза исследования заключается в следующем: алгоритмы детектирования аномалий, 
обученные исключительно на синтетических данных, полученных в результате моделирования типовых 
сценариев атак в ЦД, способны эффективно выявлять ранее неизвестные угрозы за счет выделения устой-
чивых поведенческих паттернов, характерных для соответствующего класса воздействий. Для проверки 
этой гипотезы реализована экспериментальная установка на основе модели умной энергосети (smart grid ), 
подверженной различным типам атак. Экспериментальные результаты демонстрируют применимость 
и эффективность предложенного подхода, подтверждая его научную новизну и практическую значимость.

Состояние исследований
В настоящем разделе дан аналитический обзор современных научных исследований, посвященных 

применению ЦД в контексте обеспечения ИБ киберфизических систем (КФС). Основное внимание 
уделено работам, касающимся моделирования угроз, генерации синтетических данных и обнаруже-
ния аномалий.

ЦД представляют собой виртуальные аналоги физических систем, применяемые для мониторинга, про-
гнозирования и оптимизации процессов в самых разных отраслях – от интеллектуального производства 
и КФС до строительной сферы и аэрокосмической промышленности [1; 2]. Вместе с тем расширение ис-
пользования ЦД в распределенных информационно-технических и производственных системах выявляет 
значительные вызовы в области ИБ [3; 4]. Одним из центральных рисков становится высокая степень 
интеграции ЦД с информационными и операционными системами, что открывает новые векторы атак, 
такие как атаки типа «человек посередине», отказ в обслуживании, компрометация данных и несанк-
ционированный доступ, комплексные распределенные атаки [5; 6]. В литературе выделены следующие 
ключевые направления анализа и защиты ЦД [4 –7]: анализ угроз в распределенных промышленных 
ЦД, разработка защищенных платформ и протоколов, а также превентивное моделирование поведения 
злоумышленников (human digital twins, HDT).

По мнению исследователей [8], для эффективного обеспечения безопасности ЦД должны обладать 
аналитической предсказуемостью, интегрироваться с физическим объектом и обеспечивать динами-
ческую синхронизацию. Ряд авторов [9] отмечают переход ЦД от оптимизационных функций к роли 
инструмента проактивной ИБ, что связано с возможностями безопасного моделирования атак, тести-
рования защиты, прогнозирования последствий инцидентов и автоматизации обнаружения аномалий, 
визуализации информации [10].

В литературе выделяются два основных режима функционирования ЦД в процессе моделирования 
кибератак [11]: режим репликации, при котором модель синхронизируется с физической системой в ре-
альном времени, и режим изолированного моделирования, позволяющий безопасно выполнять сцена-
рии атак. Количественная оценка рисков и моделирование влияния атак, основанные на динамических 
байесовских сетях и марковских процессах, подробно рассмотрены в ряде работ (см., например, [12]). 
Параллельно развиваются игровые среды для обучения ИБ-специалистов реализации сценариев атак 
и защиты [11].

Отдельное место в исследованиях занимают задачи обнаружения аномалий с использованием ЦД: 
сравнение прогнозируемого и фактического поведения системы позволяет выявлять вторжения 
и сбои [13]. HDT-технологии расширяют аналитику, добавляя в моделирование поведенческие пат-
терны человека [14].

Тем не менее использование синтетических данных, полученных из ЦД, для обучения алгоритмов 
обнаружения аномалий сопряжено с рядом проблем. Во-первых, ограниченная обобщающая способ-
ность упрощенных моделей ЦД снижает реализм выборок [1]. Во-вторых, доменный разрыв между син-
тетическими и реальными данными, включая распределительные смещения, шум и неопределенность, 
существенно снижает переносимость моделей [15]. Кроме того, отмечаются структурные и норматив ные 
уязвимости ЦД, отсутствие единых архитектур и дополнительные векторы атак, компрометирующие на-
дежность синтетических данных [16; 17]. В статье [18] предложено структурированное моделирование 
угроз на основе графовых и таксономических моделей, интегрирующих кибернетические и физические 
аспекты атак. В настоящей работе представлено развитие данного подхода путем его адаптации к много-
срезовому моделированию в ЦД, что позволяет охватить не только технические, но и организационные, 
процессные и отраслевые аспекты системы.

Онтологические и агентно-ориентированные модели, такие как концептуальная структура «Cybonto» 
(Cybonto conceptual  framework) [14], дополняют этот подход когнитивным компонентом, позволяя модели-
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ровать поведение потенциальных нарушителей. Технические обзоры (см., например, [19]) подчеркивают 
важность формализации сценариев атак в мультисистемных ЦД-архитектурах и адаптивных системах 
реагирования, способных обобщать результаты с учетом междисциплинарных связей [18].

Еще один значимый вызов – это обеспечение интероперабельности и стандартизации платформ 
ЦД, особенно в контексте ИБ. Разнородность форматов, протоколов и семантических моделей мешает 
унификации взаимодействия. Усложнение возникает из-за потребности в семантическом согласовании, 
защите и контроле конфиденциальности, а также в управлении жизненным циклом ЦД с учетом от-
раслевых особенностей [20 –22]. Среди стратегий решения обозначенной проблемы можно выделить 
стандарты ISO/IEC JTC 1/SC 41, ISO 23247, документ NIST IR 8356, а также рекомендации Консорциума 
цифровых двойников (Digital Twin Consortium).

Несмотря на значительный прогресс в указанных направлениях, в научной литературе отсутствует 
единая методология, обеспечивающая сквозной цикл от формализации системы и пространства угроз до 
генерации синтетических данных в ЦД, обучения алгоритмов обнаружения аномалий и их верификации. 
В настоящей работе авторы предлагают такую методологию, она представлена в следующих разделах.

Концептуальная схема методологии
Предлагаемый подход базируется на логически выстроенной последовательности этапов, объеди-

ненных одной целью – обеспечить переход от формализации КФС и пространства угроз к выявлению 
индикаторов реализации этих угроз на основе данных, полученных в ходе безопасного динамического 
моделирования угроз в ЦД. Рассматриваемая методология носит сквозной и итеративный характер, 
обеспечивая замкнутый контур анализа, в котором каждая последующая фаза уточняется на основе 
результатов предыдущей фазы.

В структурном виде методология включает четыре взаимосвязанных этапа.
Этап 1: формализация системы и пространства угроз. Создается формализованная многосрезовая мо-

дель ключевых аспектов КФС, отражающая ее архитектуру, функции, процессы и отраслевую специфику. 
Угрозы соотносятся с компонентами модели с учетом требований к конфиденциальности, целостности 
и доступности. Полученная модель служит основой для построения ЦД.

Этап 2: моделирование угроз в ЦД. На основе формализованной модели в виртуальной среде реа-
лизуются сценарии атак с учетом их динамики и последствий. ЦД синхронизируется с параметрами  
реальной системы. Результатом этапа является набор синтетических данных, отражающих как нормаль-
ное поведение системы, так и ее реакции на реализованные угрозы.

Этап 3: выделение индикаторов угроз. Данные, полученные при моделировании угроз в ЦД, исполь-
зуются для обучения алгоритмов обнаружения индикаторов угроз. Применяются методы частотного 
анализа и машинного обучения. Извлекаются устойчивые поведенческие паттерны, которые служат 
основой для построения адаптивных систем ИБ.

Этап 4: верификация подхода. Обученные алгоритмы проходят тестирование на новых сценариях 
атак и прототипе системы. Оценивается их способность выявлять как известные, так и ранее неиз-
вестные угрозы. Полученные результаты используются для уточнения модели, сценариев и параметров 
моделирования угроз.

Методология предусматривает обратные связи, обеспечивающие адаптивность и настройку всех ком-
понентов системы. Результаты этапа 3 (выделение индикаторов угроз) и этапа 4 (верификация подхода) 
используются:

  • для пересмотра и уточнения формализованной модели системы и пространства угроз (этап 1);
  • актуализации сценариев и параметров моделирования угроз (этап 2);
  • совершенствования архитектуры ЦД за счет повышения качества моделирования и генерации 

данных.
Схематично рассматриваемая методология представлена на рис. 1.
ЦД выступает ядром методологии, обеспечивая интеграцию всех этапов в единый итеративный 

процесс. Он представляет собой безопасную виртуальную среду для динамического моделирования 
сценариев атак, генерации синтетических данных и тестирования алгоритмов обнаружения аномалий. 
Благодаря двунаправленной синхронизации с реальной системой ЦД поддерживает актуальность модели 
и позволяет адаптировать сценарии атак с учетом результатов анализа.

Результатом применения методологии является комплекс моделей и инструментов: формализованная 
многосрезовая модель системы и пространства угроз, синтетические данные, обученные алгоритмы 
обнаружения аномалий и выделенные индикаторы угроз. Методологический каркас объединяет направ-
ления моделирования угроз, анализа данных, обеспечивает основу для построения самообучающихся 
адаптивных систем ИБ.
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Формализация системы и пространства угроз
Формализация КФС и пространства угроз является ключевым этапом методологии анализа угроз ИБ 

с использованием ЦД. На этом этапе формируется воспроизводимая модель, объединяющая архитектуру 
системы, ее поведенческие особенности и потенциальные векторы атак, что закладывает основу для 
цифрового моделирования и генерации синтетических данных.

Полученная модель описывает защищаемую систему через пять взаимосвязанных срезов:
  • технический срез (ST), включающий аппаратные средства, встроенные устройства, сети передачи 

данных, программное обеспечение и средства защиты;
  • процессный срез (SP), охватывающий эксплуатационные процедуры, сценарии функционирования, 

мониторинг и реагирование на инциденты;
  • функциональный срез (SF), отражающий назначение компонентов, их взаимодействие и участие 

в реализации функций управления и безопасности;
  • организационный срез (SO ), включающий роли, ответственность, внутренние регламенты и меха-

низмы управленческого контроля;
  • отраслевой срез (SI ), учитывающий особенности применения системы в конкретной предметной 

области, включая нормативные требования и характерные угрозы.
Каждому компоненту системы c S k T P F O I

i k
� �� �, , , , , , сопоставляется множество угроз U c Ui� �� , 

где U – общее множество рассматриваемых угроз, сформированное на основе авторитетных классифи-
каций (например, Банка данных угроз безопасности информации Федеральной службы по техническому 
и экспортному контролю (далее – БДУ ФСТЭК России)). Для удобства и формального анализа вводится 
бинарная матрица соответствия M n m

�� � �
0 1, , где n S

k

k

��  – общее количество компонентов во всех 

срезах, а m – количество учитываемых угроз. Значение Mij =1 указывает на наличие связи между ком-
понентом ci и угрозой uj, а значение Mij = 0 – на ее отсутствие.

Рис. 1. Схема методологии
Fig. 1. Methodology scheme
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В описанной модели каждый срез Sk представляет собой формализованное представление защищае-
мой КФС в пределах одного из структурных срезов – технического, процессного, функционального, 
организационного или отраслевого. Однако реальные угрозы ИБ часто затрагивают несколько сре зов од-
новременно. Например, реализация уязвимости в программном обеспечении может не только нарушить 
техническую целостность системы, но и повлиять на процессы эксплуатации и реагирования.

Для формализации взаимосвязей между срезами вводится матрица влияний V�� �
�

0 1
5 5

, , где каждый 
элемент Vab отражает долю угроз, которые одновременно затрагивают срезы Sa и Sb. Она вычисляется 
следующим образом:

V

u U c S c S M M

u U c S M
ab

a a b b c u c u

a a c u

a b

a

�
� � � � � � �� �

� � � �� �

, :

:
.

, ,

,

1 1

1

В числителе находится количество угроз u, которые одновременно воздействуют хотя бы на один компо-
нент из среза Sa и хотя бы на один компонент из среза Sb, а в знаменателе – количество угроз, воздейст-
вующих хотя бы на один компонент из среза Sa.

Матрица влияний V V
ab

� � � позволяет оценить, насколько реализация угрозы в одном аспекте системы 
(например, техническом) может повлиять на другой аспект системы (например, процессный). Практи-
ческое значение показателя Vab заключается в выявлении каскадных путей распространения угроз, что 
критически важно для построения многоуровневой защиты. Например, если значение VTP (технический 
срез → процессный срез) равно 0,7, это означает, что 70 % угроз, связанных с техническими компо-
нентами, также воздействуют на эксплуатационные процессы. Данная информация позволяет выявить 
потен циальные каскадные пути распространения атак и принять упреждающие меры на других уровнях 
системы. Таким образом, значение Vab отражает условную вероятность того, что угроза, влияющая на 
срез Sa, затрагивает и срез Sb. При обнаружении аномалии, например, в технической подсистеме это 
позволяет автоматически активировать мониторинг процессных и организационных процедур, предот-
вращая каскадный эффект.

Предложенная формализация обеспечивает основу для последующего динамического моделирова-
ния угроз в ЦД, где учет межсрезовых зависимостей критически важен для построения реалистичных 
сценариев атак и анализа поведения системы в различных условиях.

Моделирование угроз в ЦД
Следующим этапом методологии является динамическое моделирование угроз ИБ с использованием 

ЦД исследуемой КФС. На основе модели, сформированной на этапе формализации системы и про-
странства угроз, создается структура ЦД, включающая компоненты системы, связи между ними и соот-
ветствующие классы угроз.

Архитектура ЦД базируется на принципе двунаправленной синхронизации с реальной системой, что 
обеспечивает передачу актуальных данных о состоянии компонентов системы и получение результатов 
симуляций в режиме, максимально приближенном к реальному времени. Такая синхронизация гаранти-
рует актуальность и достоверность моделирования, повышая его практическую значимость.

Моделирование реализуется через формирование и проигрывание сценариев атак, соответствующих 
выявленным угрозам и отраслевой специфике. Сценарии атак строятся на основе следующих факторов:

  • таксономий угроз, сформированных в процессе формализации;
  • межсрезовых связей угроз, определенных с использованием матрицы влияний V;
  • информации о компонентах и процессах КФС.

Ключевым элементом предлагаемого подхода является расширенная динамическая модель угроз, 
формализуемая функцией

T F T DTextended base impact� � �, ,

где Tbase – базовая (статическая) модель угрозы, включающая описание атаки (вектор атаки, цель, экс-
плуа тируемые уязвимости, необходимые условия и технические характеристики); DTimpact – динамиче-
ский компонент, формализующий дополнительную информацию, полученную в результате симуляций 
и анализа данных в ЦД (динамика развития сценариев атак, реакции системы, поведение защитных ме-
ханизмов, а также последствия реализации угроз); F – функция интеграции, которая объединяет стати-
ческое описание атаки с результатами моделирования угроз в ЦД, формируя расширенную динамиче-
скую модель угрозы Textended.
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Базовая модель угрозы Tbase может быть формализована как следующий кортеж:
Tbase = 〈вектор атаки, цель, уязвимость, условия, технические характеристики〉.

Например, для атаки типа «ложные команды управления» в умной энергосети параметры кортежа 
могут быть следующими:

  • вектор атаки – MITM (man­in­the­middle);
  • цель – контроллер распределенного генератора;
  • уязвимость – отсутствие аутентификации команд;
  • условия – активность SCADA-сессии;
  • технические характеристики – протокол Modbus/TCP.

Динамический компонент DTimpact представляет собой временную траекторию развития инцидента, 
зафиксированную в ЦД, и включает:

  • временные метки начала и пика развития атаки;
  • реакцию защитных механизмов (например, срабатывание IDS);
  • каскадные эффекты (например, отключение смежных узлов);
  • изменение ключевых параметров системы (напряжение, частота, задержки).

Функция интеграции F реализуется как расширение статической модели Tbase с помощью вектора ди-
намических параметров DTimpact:

T T t t V t IDextended base start peak affected� � � �� �, , , ,�

где tstart – временная метка начала атаки; tpeak – временная метка пика развития атаки, указывающая на 
момент максимального воздействия угрозы на систему; �V t� � – функция изменения напряжения во вре-
мени (в контексте умной энергосети), отражающая динамику воздействия угрозы на параметры системы; 
ID
affected

 – идентификаторы затронутых компонентов системы, позволяющие определить, какие элементы 
инфраструктуры подверглись воздействию.

Практическая ценность такой модели заключается в генерации обогащенных сценариев атак для 
обу чения систем обнаружения индикаторов угроз, а также в количественной оценке эффективности мер 
защиты (например, время срабатывания защиты, глубина распространения угрозы).

Выделение индикаторов угроз
Следующим этапом методологии является разработка системы обнаружения индикаторов угроз – 

аномалий, свидетельствующих о реализации атак. Основная задача данного этапа состоит в обучении 
алгоритмов обнаружения характерных признаков угроз на основе синтетических данных, сгенериро-
ванных в ЦД.

В отличие от традиционных подходов, базирующихся преимущественно на реальных данных или 
экспертных оценках, предложенная методика использует синтетические, но достоверные и контролируе-
мые наборы данных, получаемые в безопасной виртуальной среде. Такой подход обеспечивает широкое 
разно образие обучающих примеров, включая редкие и ранее неизвестные сценарии атак, что значительно 
повышает универсальность и адаптивность алгоритмов обнаружения аномалий.

Для выявления аномалий используются взаимодополняющие методы трех типов:
1) анализ спектральных характеристик сигналов, который дает возможность обнаруживать нестан-

дартные изменения в параметрах работы системы;
2) обучение моделей распознавать нормальные паттерны поведения и выявлять отклонения, харак-

терные для атак;
3) кластеризация, позволяющая сгруппировать данные по типичным режимам функционирования 

и выделить элементы, не попадающие в эти группы, как потенциальные аномалии.
Архитектура системы обнаружения индикаторов угроз построена по принципу многокомпонентного 

анализа (рис. 2). Входной поток данных, поступающий как из реальной системы, так и из ЦД, проходит 
этап предобработки, после чего параллельно анализируется несколькими алгоритмами. Полученные 
результаты подвергаются агрегации и классификации. При классификации аномалий используется ин-
формация о видах угроз, сформированная на этапах формализации системы и пространства угроз и мо-
делирования угроз в ЦД, что обеспечивает точное сопоставление выявленных аномалий с конкретными 
классами атак.

Обучение на данных, сгенерированных в ЦД, существенно расширяет возможности системы по срав-
нению с традиционными методами обучения, обеспечивая адаптивность к редким и ранее неизвестным 
видам атак.
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Верификация подхода
Экспериментальная апробация предложенной методологии, направленная на ее верификацию, про-

водилась на примере умной энергосети. Цель этого этапа – подтвердить, что ЦД не только позволяет 
моделировать сценарии атак, но и генерирует данные, пригодные для обучения алгоритмов обнаружения 
аномалий, способных эффективно выявлять ранее неизвестные угрозы.

Современные угрозы ИБ, включая вредоносное программное обеспечение, фишинг, DDoS-атаки и целе-
направленные операции, представляют серьезную опасность для умной энергосети из-за высокой степени 
цифровизации и сетевой взаимосвязанности компонентов. Ключевая проблема состоит в том, что кибератаки 
могут маскироваться под естественные искажения, вызванные, например, нелинейными потребителями, 
погодными условиями или аппаратными сбоями. Это обстоятельство затрудняет их обнаружение и разгра-
ничение с неугрожающими отклонениями, создавая риски для устойчивости и безопасности системы [23].

В соответствии с предложенной методологией на первом этапе апробации подхода была построена 
формализованная многосрезовая модель умной энергосети, включавшая:

  • технический срез (аппаратные и программные компоненты – датчики, контроллеры, SCADA, ком-
муникационная инфраструктура и средства защиты);

  • процессный срез (процессы мониторинга, управления нагрузкой, автовосстановления и реагиро-
вания на инциденты);

  •функциональный срез (функции регулирования напряжения и частоты, балансировки нагрузки и пе-
редачи данных);

  • организационный срез (роли персонала, регламенты доступа и политики ИБ);
  • отраслевой срез (нормативные требования, включая ГОСТ Р ИСО/МЭК 27019-2021, и характер-

ные угрозы для энергетики).
Далее на основе этой модели была построена бинарная матрица соответствия между компонентами 

системы и угрозами из БДУ ФСТЭК России. Анализ показал, что 78 % угроз, связанных с подменой ко-
манд, искажением данных с датчиков и отказами в обслуживании, затрагивают компоненты, участвую щие 
в измерении и регулировании напряжения (в частности, датчики, контроллеры и каналы передачи данных 
в SCADA-системе). Исходя из этого, можно заключить, что реализация таких угроз с высокой вероятностью 
приведет к отклонению напряжения от нормы или к его некорректной регистрации. Следовательно, времен-
ной ряд напряжения становится чувствительным индикатором кибератак, поскольку в нем отражаются как 
прямые, так и косвенные (например, искаженные данные, используемые для управления) последствия атак.

На основе этой структуры был построен ЦД, реализованный в виде виртуальной имитационной 
среды на языке Python с использованием библиотек SimPy, Scapy, Pandas и NumPy. ЦД поддерживает 
двунаправленную синхронизацию с реальной системой и используется для моделирования сценариев 
кибератак и аварийных состояний.

Рис. 2. Архитектура системы обнаружения индикаторов угроз
Fig. 2. Architecture of the threat indicator detection system
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Для анализа поведения системы и выявления аномалий был разработан экспериментальный комплекс, 
интегрированный с ЦД и включающий:

  • сбор и предварительную обработку сигналов;
  • применение алгоритмов обнаружения аномалий;
  • агрегирование результатов и визуализацию;
  • автоматическое реагирование на события.

Такая архитектура позволила использовать ЦД в качестве безопасной тестовой платформы, обеспечи-
вающей гибкость и контролируемость эксперимента в условиях, приближенных к реальному времени, 
но без риска для физической инфраструктуры.

В основу подхода легли три ключевых направления анализа:
  • частотный анализ с вейвлет-преобразованием (используется на этапе предобработки для выявле-

ния характерных отклонений в сигналах);
  • анализ отклонений от штатного поведения (реализуется путем обучения моделей на данных нор-

мального функционирования системы);
  • кластеризация режимов работы (заключается в формировании устойчивых кластеров безопасных 

состояний, где все, что выходит за их пределы, рассматривается как потенциальная аномалия).
Представим поэтапную процедуру апробации предложенной методологии.
Этап 1: генерация в ЦД данных для обучения. На этом этапе эксперимента в ЦД была смоделирована 

работа энергосистемы в трех режимах:
  • нормальном режиме (напряжение сети описывалось синусоидальным сигналом с добавлением слу-

чайного шума, что отражало естественные колебания в системе при штатном функционировании);
  • режиме реализации угроз (кибератаки) (имитировались резкие скачки напряжения, характерные для 

кибератак, направленных на дестабилизацию сети; эти сценарии представляли собой сгенерированные 
паттерны аномалий – индикаторов угроз);

  • аварийном режиме (осуществлялось плавное, но устойчивое изменение амплитуды сигнала, что мо-
делировало сбои и технические неисправности, не связанные с вредоносными действиями).

На рис. 3 представлена иллюстрация одного из сгенерированных временных рядов напряжения с мар-
кировкой аномалий, соответствующих различным режимам работы системы.

Каждый режим моделировался многократно (100 раз) с варьированием параметров, что позволило 
сформировать датасет из нескольких наборов синтетических сигналов.

Рис. 3. Сгенерированный временной ряд напряжения с маркировкой аномалий (выделены 
красным цветом), соответствующих различным режимам работы системы:  

а – нормальный режим; б – режим кибератаки; в – аварийный режим
Fig. 3. Generated voltage time series with anomalies (highlighted in red)  

corresponding to different system operating modes:  
a – normal mode; b – cyberattack mode; c – emergency mode
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Этап 2: предобработка и фильтрация данных. После генерации исходных данных в ЦД все временные 
ряды проходили этап предобработки. Для этой цели применялось двухуровневое дискретное вейвлет- 
преобразование с использованием различных типов вейвлетов, что позволило выбрать оптимальный метод 
фильтрации для последующего обнаружения аномалий. В ходе экспериментов были протестированы 
несколько типов вейвлетов, включая вейвлеты Добеши (db), симлеты (sym) и коифлеты (coif ). Для ил-
люстрации результатов в статье выбран вейвлет Добеши 1 (db1), который показал хорошие результаты 
при обработке сигналов напряжения в энергосистеме. Вейвлет Добеши 1 особенно эффективен для об-
работки сигналов с резкими переходами и разрывами, что характерно для кибератак на умные энергосети.

Особое внимание уделялось аппроксимирующим коэффициентам второго уровня (A2 ), которые пред-
ставляют собой низкочастотную компоненту сигнала напряжения, содержащую информацию об основной 
тенденции работы энергосистемы. В отличие от исходного сигнала коэффициенты A2 представляют собой 
«сглаженную» версию напряжения, где удалены высокочастотные шумы и кратковременные колебания, 
что позволяет фокусироваться на устойчивых характеристиках системы. В контексте энергосети коэф-
фициент A2 отражает базовую форму напряжения при нормальной работе и является чувствительным 
индикатором системных изменений, так как кибератаки и аварии часто влияют именно на основные 
характеристики сигнала, а не только на высокочастотные шумы.

На рис. 4 показан результат обработки сигнала напряжения, представленного на рис. 3, методом 
дискретного вейвлет-преобразования с использованием вейвлета Добеши 1. Визуально форма преоб-
разованного сиг нала близка к исходной, поскольку фильтрация сохраняет низкочастотную компоненту 
(основную волну), но удаляет высокочастотные колебания и случайные возмущения. Эти изменения не 
всегда заметны невооруженным глазом, однако они влияют на частотную структуру сигнала, что критично 
для автоматической классификации: сглаженный ряд позволяет алгоритмам надежно выделять аномаль-
ные отклонения, характерные для кибератак и аварийных состояний, при минимальном влиянии шумов.

Для последующего анализа и визуализации работы алгоритмов обнаружения аномалий были сфор-
мированы признаковые пространства, где по одной оси откладывались значения коэффициента A2 в нор-
мальном режиме работы системы, а по другой оси – значения коэффициента A2 в аномальном состоянии 
(режим кибератаки или аварийный режим). Такой подход позволил четко визуализировать изменения 
в основных характеристиках сигнала и выявить моменты, когда поведение системы существенно от-
клонялось от нормы.

Рис. 4. Вейвлет-преобразование временного ряда напряжения, представленного на рис. 3: 
а – нормальный режим; б – режим кибератаки; в – аварийный режим.  

Синяя линия отражает исходный сигнал с шумами, оранжевая линия – сглаженное приближение (A2 ),  
полученное из коэффициентов вейвлет-разложения

Fig. 4. Wavelet transform of the voltage time series shown in fig. 3: 
a – normal mode; b – cyber attack mode; c – emergency mode.  

The blue line represents the original signal with noise, the orange line represents  
the smoothed approximation (A2 ) obtained from the wavelet decomposition coefficients
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Этап 3: обучение алгоритмов. На этом этапе апробации методологии были проведены настройка 
и обучение алгоритмов обнаружения аномалий на объединенном датасете, включающем данные нор-
мального режима и режима реализации угроз, смоделированных в ЦД. Алгоритмы обучались выявлять 
устойчивые поведенческие паттерны, характерные для системы при штатном функционировании, а также 
распознавать отклонения, возникающие в момент реализации угроз.

Аварийные режимы, отражающие непреднамеренные сбои и технические неисправности, на этапе 
обучения не использовались, они были зарезервированы для этапа тестирования, что позволило сфор-
мулировать более строгую задачу для алгоритмов: научиться отличать реализации угроз от других видов 
отклонений, не связанных с враждебным воздействием.

Для апробации методологии были использованы как классические, так и более устойчивые к выбросам 
алгоритмы обнаружения аномалий и кластеризации. Их выбор объясняется следующими причинами:

  • алгоритмы обнаружения аномалий Isolation forest, One­class SVM, Local outlier factor (LOF) хоро-
шо зарекомендовали себя при работе с аномалиями в многомерных временных рядах, они способны 
фиксировать точечные или локализованные выбросы;

  • алгоритмы кластеризации Density­based spatial clustering of applications with noise (DBSCAN), Or­
dering points to identify the clustering structure (OPTICS), Spectral clustering устойчивы к шуму и способ-
ны формировать сложные по форме кластеры, их применение оправдано тем, что аномалии в сложных 
системах могут проявляться не как отдельные выбросы, а как сдвиги между кластерами устойчивых 
режимов.

В качестве дополнительных методов использовались методы K­means и Gaussian mixture models 
(GMM).

Этап 4: генерация новых реализаций угроз и аварийных состояний. Для проведения тестирования 
в ЦД были сгенерированы новые данные, включающие:

  • новые реализации угроз, которые отличались от сценариев, использованных при обучении алго-
ритмов (устойчивые искажения формы сигнала, а также долговременные отклонения параметров энер-
го системы, моделирующие новые возможные способы реализации потенциальных угроз);

  • аварийные состояния, вызванные непреднамеренными факторами, такими как внутренние сбои, тех-
ни ческие неисправности и прочие незлонамеренные аномалии, не связанные с вредоносной актив ностью.

Сформированная тестовая выборка позволила проверить способность обученных алгоритмов не только 
выявлять аномалии – индикаторы ранее неизвестных угроз, но и эффективно отличать их от незлонаме-
ренных отклонений, связанных с аварийными состояниями.

Этап 5: тестирование. Обученные на данных этапа 1 алгоритмы были применены к тестовой вы-
борке, сформированной на этапе 4. Основными задачами этого этапа являлись:

  • обнаружение отклонений от нормального поведения в режиме, близком к реальному времени;
  • корректная классификация выявленных аномалий с разделением их на две категории – индикаторы 

реализации угроз (кибератаки) и неугрожающие аномалии (аварии и технические сбои).
Результаты тестирования оценивались с помощью метрик F1­score, Precision и False positive rate (FPR).
На рис. 5 и 6 представлены результаты сравнительного анализа работы шести алгоритмов обработки 

временных рядов, примененных в рамках эксперимента по обнаружению аномалий в умной энерго-
сети. Были рассмотрены три алгоритма обнаружения аномалий (Isolation forest, LOF и One­class SVM ) 
и три алгоритма кластеризации (DBSCAN, OPTICS и Spectral clustering), которые обрабатывали данные 
после дискретного вейвлет-преобразования сигнала напряжения. На рис. 5 приведены результаты для 
тестового сценария, имитирующего режим кибератаки, который характеризуется точечными аномалиями, 
резко отличающимися от нормального поведения системы. На рис. 6 показаны результаты для сценария, 
соот ветствующего аварийному режиму, при котором наблюдаются устойчивые отклонения, вызванные 
техническими сбоями или авариями в сети.

Для каждого алгоритма представлены два графика. Верхний график – визуализация точек в двумерном 
признаковом пространстве, сформированном на основе коэффициентов вейвлет-преобразования сигнала 
напряжения. По оси x отложено значение коэффициента A2 вейвлет-преобразования сигнала напряжения 
в нормальном режиме, а по оси  y – значение того же коэффициента, но в аномальном режиме (кибератака 
или авария). Таким образом, каждая точка соответствует одному временному окну и отражает изменение 
поведения сигнала по сравнению с нормой. Точки, расположенные вдоль диагонали, соответствуют участ-
кам сигнала без аномалий, тогда как отклонения от диагонали указывают на моменты, когда основные 
характеристики сигнала изменились, – это и есть потенциальные аномалии. Цвет и маркеры отражают 
результат классификации: нормальные точки (фоновая цветовая заливка) и аномалии (красные точки 
или контуры). Нижний график – тепловая карта уровня аномальности во времени. По горизонтали от-
ложено время, уровень аномальности визуализирован цветом – от синего (низкий уровень отклонения 
от нормы) до красного (высокий уровень отклонения от нормы).
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Такой подход позволяет не только оценить поведение алгоритмов в признаковом пространстве, но 
и сопоставить обнаруженные аномалии с их временным расположением, что критически важно для 
диагностики и классификации режимов работы энергосистемы. Аналогичная обработка и анализ вы-
полнялись для всего тестового датасета.

Оценка эффективности протестированных алгоритмов была проведена на тестовом датасете. В табл. 1 
и 2 приведены усредненные метрики качества работы алгоритмов, рассчитанные по всем обработанным 
данным в рамках эксперимента.

Т а б л и ц а  1
Метрики оценки эффективности алгоритмов (режим кибератаки)

Ta b l e  1
Algorithm evaluation metrics (cyberattack mode)

Алгоритм Precision, % F1­score FPR, % Время отклика, мс

Isolation forest 98 0,96 2 20

LOF 89 0,82 15 150
One­class SVM 92 0,88 5 80
DBSCAN 98 0,95 3 130
OPTICS 96 0,92 8 160
Spectral clustering 92 0,89 12 180
K­means 85 0,78 10 50

GMM 84 0,82 17 100

Т а б л и ц а  2
Метрики оценки эффективности алгоритмов (аварийный режим)

Ta b l e  2
Algorithm evaluation metrics (emergency mode)

Алгоритм Precision, % F1­score FPR, % Время отклика, мс

Isolation forest 93 0,88 5 20

LOF 82 0,80 20 150
One­class SVM 83 0,82 10 80
DBSCAN 95 0,86 8 130
OPTICS 90 0,83 11 160
Spectral clustering 86 0,80 18 180
K­means 93 0,88 5 20

GMM 82 0,80 20 150

Проведенная оценка эффективности алгоритмов по всему тестовому датасету выявила значительные 
различия в способах обнаружения аномалий для двух принципиально различных сценариев – режима 
кибератаки и аварийного режима. Главное отличие между ними заключается в динамике проявления 
аномалий: кибератаки сопровождаются резкими кратковременными скачками сигнала, тогда как ава-
рийные состояния характеризуются плавным, но устойчивым изменением параметров системы. Это 
отличие отражается в показателях эффективности примененных алгоритмов.

В сценарии кибератаки (см. табл. 1) алгоритм Isolation forest демонстрирует максимальную точ-
ность (98 %) и минимальный уровень ложных срабатываний (2 %), что объясняется его высокой чув-
ствительностью к точечным выбросам. В то же время при анализе аварийных режимов (см. табл. 2) 
наблюдается общее снижение эффективности большинства алгоритмов, особенно по метрикам F1­score 
и FPR, что связано с постепенным и менее выраженным характером изменений сигнала. Алгоритмы 
кластеризации при этом показывают более стабильные результаты в обоих сценариях, поскольку они 
ориентированы на выявление пространственно-временных кластеров аномалий, а не на детектирование 
отдельных выбросов. Следует отметить, что время отклика алгоритмов остается практически неизмен-
ным независимо от типа аномалий.
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По результатам апробации методологии можно сделать следующие основные выводы:
  • получены подтверждающие результаты, свидетельствующие о возможности применения синтети-

ческих данных, сгенерированных в ЦД, для обучения алгоритмов обнаружения аномалий, что отражается 
в стабильных значениях метрики F1­score при выявлении ранее неизвестных угроз;

  • установлена способность предложенной системы эффективно различать аномалии, связанные с реа-
лизацией угроз ИБ, и незлонамеренные отклонения, вызванные аварийными состояниями и техниче-
скими неисправностями, что обеспечивается относительно низким уровнем ложных срабатываний;

  • зафиксирована тенденция к снижению времени обнаружения аномалий по сравнению с традицион-
ными сигнатурными методами, что потенциально способствует повышению оперативности реагирова-
ния в условиях реального времени;

  • установлено, что ЦД показал себя как перспективная платформа для моделирования разнообраз-
ных сценариев атак и генерации репрезентативных обучающих и тестовых данных, обеспечивая бе-
зопасную среду для апробации алгоритмов;

  • получены результаты, указывающие на целесообразность применения комбинированного подхода, 
включающего методы детектирования точечных выбросов и кластерного анализа, для повышения на-
дежности выявления аномалий различной природы в умных энергосетях.

Вместе с тем можно отметить следующие допущения и ограничения методологии и ее апробации:
  • результаты основаны на синтетических данных, сгенерированных в ЦД, что накладывает ограни-

чения на прямую экстраполяцию выводов на реальные производственные условия из-за возможных 
от личий в характере и разнообразии реальных аномалий;

  • в ходе обучения алгоритмов не были использованы аварийные режимы, что создает определенное 
ограничение на обобщающую способность моделей при классификации неугрожающих отклонений;

  • тестирование проведено в контролируемой среде с ограниченным набором сценариев, что не исклю-
чает необходимости дополнительной валидации в условиях реального времени и на реальных данных;

  • используемые методы кластеризации и обнаружения выбросов предполагают определенные ста-
тистические свойства данных и могут требовать адаптации под специфику конкретных систем.

Заключение
Таким образом, в статье изложена методология анализа угроз ИБ на основе ЦД, включающая фор-

мализацию КФС и пространства угроз ИБ, безопасное моделирование атак, генерацию синтетических 
данных и обучение систем обнаружения аномалий – индикаторов реализации угроз. Экспериментальная 
проверка методологии, проведенная на модели умной энергосети, показала, что алгоритмы, обученные 
исключительно на данных, сгенерированных в ЦД, демонстрируют высокую точность (значение метрики 
F1­score достигает 0,96) в выявлении редких и ранее неизвестных угроз.

Ключевым преимуществом методологии является ее проактивный характер, позволяющий готовиться 
к угрозам до их фактического проявления в реальных системах за счет моделирования разнообразных 
сценариев в ЦД. Это обеспечивает безопасность (обучение без риска для инфраструктуры), эффективность 
(сокращение времени реакции, повышение полноты и точности детектирования) и универсальность (при-
менимость к объектам критической инфраструктуры, интернету вещей, облачным средам).

Перспективы дальнейших исследований включают интеграцию с SIEM/SOAR-платформами для авто-
матизации реагирования и использование генеративного искусственного интеллекта для создания более 
репрезентативных сценариев атак в ЦД. Таким образом, предложенная методология открывает путь 
к созданию адаптивных систем безопасности, способных противостоять эволюционирующим угрозам 
в сложных КФС.
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содержит тексты лекций, материалы для лабораторных занятий, перечень контрольных вопросов, списки 
рекомендованной литературы.
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