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GENERALISED NEWTON - KANTOROVICH METHOD
UNDER THE MODIFIED REGULAR
SMOOTHNESS CONDITION

A. N. TANYHINA®

*Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. The article deals with the generalised Newton — Kantorovich method for solving non-linear operator equa-
tions of the form f (x) +g (x) =0 in Banach spaces, where f'is the operator satisfying the regular smoothness condition;

g is the non-differentiable operator satisfying Lipschitz condition. The main convergence theorem is proved under the
modified regular smoothness condition in which increments of the operator f derivative are majorised by the increments
of a scalar function.

Keywords: generalised Newton — Kantorovich method; regular smoothness condition; non-linear operator equation.

Introduction
Let X'and Y be Banach spaces, f and g be non-linear operators defined on the closed ball B (xo, R) c X and

taking values in Y, where the operator f is differentiable at every interior point of B(xo, R) and the operator g
is non-differentiable. One of the most effective iterative methods for solving operator equations of the form

f(x)-i—g(x)zO (1)
is the generalised Newton — Kantorovich method with successive approximations
50=5, = [ (@) (1(x) g (x,))n=0.1 .. @

where x, is given.

A thorough convergence analysis of the sequence (2) was carried out in the work [ 1] by means of the approach
based on the application of majorant scalar equations and originating from L. V. Kantorovich’s investigations [2].
However, the hypotheses given there are difficult to verify and for this reason a more flexible approach for
solving the equation (1) was proposed in the research [3].

In the case when g = 0, the most precise error estimates for the process (2) were obtained by A. Galperin
and Z. Waksman in [4; 5]. These results were generalised in the article [6] under the assumption that the operator f
satisfies the regular smoothness condition introduced in the works [4; 5], and the operator g satisfies Lipschitz
condition from the paper [3]

||g(x") - g(x')” < \y(t)”x" - x'|| Vi, x"e B(xo, t), 3)

where  is non-decreasing function on [0, R]. However, the meaning of the regular smoothness concept from
the works [4; 5] is quite complex and it was shown in the research [7] that it may be replaced by a simpler
one in which increments of the derivative ' are majorised by increments of a scalar function. The aim of this
article is to prove the main convergence theorem for the process (2) under the modification of Galperin — Waks-
man condition from the paper [7].

Main concepts and preliminary results

Let ©:[0, 0) —[0, o) is a continuous strictly increasing concave function that vanishes at zero: (0)=0.
Assume without loss of generality that f"(x,)=1. Let

h()=int {[['(x)]: x € B(x, R}

In accordance with the article [5] the operator f is m-regularly smooth on B(xo, R) (or, equivalently, m is a re-
gular smoothness modulus of f on B(x,, R)), if there exists 4 e [0, h(f )} such that the inequality

mfl(hf(x’, x") + ||f'(x”) - f’(x')") - cofl(hf(x', x")) < ||x"— x'||, 4)

where

hf(x', x")= min{"f’(x')

AC I
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holds for all x', x" € B (xo, R). The operator f'is called regularly smooth on B (xo, R), if it is o-regularly smooth

on B(x,, R) for some ® with such properties.
It was shown in the paper [7] that the condition (4) may be replaced by a simpler condition

)= 7N < of (e r = r=21) =)= of G- = =) ) ©

}; A" =max {\, 0}. This condition is clearer than the condi-
tion (4). Moreover, in the work [5] this condition is used in the proof of some auxiliary statements and the main
theorem about the convergence of the classical Newton — Kantorovich method. If ¢ increases, then the value
of (x —-r— ||x”— x'||)+ also increases and the right part of the condition (5) decreases. Therefore, the higher is
the value of 7, the better is the estimate for || F'(x") =1 (x),

cessive approximations. In the paper [8] the comparative analysis of the regular smoothness and the Holder
continuity conditions for the equation (1) in the case, when g = 0, was carried out.
X € [0 0] l(1)]

where y =o' (1 - h); r=min{|| '

LetQ J(D d’t ‘I’ J.\V dr alsaposmvenumbersuchthata>||f X +g(x0)

is a constant. Let us define a functlon with numeric argument
W(t)=a-Q(x)+ Q(x—1)-t(1-o(x)) + ¥ (), (6)
and the numerical sequence {z, } as follows:
/4%
i)
1—[03 (x)—o(x-1, )]
where ¢, = 0.
Lemma 1. Let us suppose that the function (6) has a unique zero t, € [0 X] and

a<Q(x)—xo(x)+x—¥(x) @)

Then the sequence (7) is defined for all n, monotonically increases and converges to t,.

Proof. The function W is positive on [0, , ), since #, is a unique zero of the equation W (1) =0, W (0)=a >0
and W is continuous on [0, X]- Hence the function

u(r)=

=t n=0,1,..., (7

tn+

o 1-[o(x)-o(x-1)]
1s positive on [O, t, )
Let us show that the function # + u(t) is non-decreasing on [O, t, ) In fact,
(t + u(t))' =1+ u'(t) =1+ (1 - [Q(XI;V_(ZC)O(X_ t)]J -

W'(t)(l + oo(x— t) - co(x)) + W(t)co'(x— t) _
(1+0(x-1)- o))

‘I—"(t)(l + m(x— t) - m(x)) + W(t)oo'(x— t) 5
(1+ 0(z=1)~ o))’

on [0, #,). This implies that the sequence {z, } monotonically increases and

=1+

o=t +u(t,)<t,+u(t,)=t,

for ¢, < t,. Consequently, the sequence {tn} converges to ,, € [0, t*] and f,,=t,, + u( ) hence W( ) 0.
Since 7, is a unique zero of W in [0, x], it follows that 7,,=1,.

The sequence {tn} is defined for all n. In fact, it is clear from the condition (8) that W(x) <0<a= W(O) and
hence there exists 6 € (0, ) such that # (6) = 0. Consequently, 6 =7, = nlij;llo t andt <0<y foralln=0,1, ....

Because of the monotonicity of o, the inequality co(x - tn) >0istrue foralln=0,1, .... Lemma 1 is proved.

8
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Lemma 2. Let us suppose that there exists a constant y, € [0, o (1)] satisfying the condition (8), the ope-

rator f'satisfies the condition (5) on B ( Xo» R) with such y, the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t,< R in [O, x] Then the equation (1) has a unique solution in B(xo, t, )

Proof. Let us prove the existence of a solution in B(xo, t. ) We consider the sequence
u, . =Du,, n=0,1,...; u,=x,,

where D=1 — [f’(x0 )Tl(f+ g)=1—-(f+g), and the numerical sequence

Ppr1=d(p,), n=0,1,..;p,=0,
where d () =1+ W (t). Since

d'(t)=1+W'(t)=0(x)-o(x—1)+wv()=0

for all £ &[0, ], the function d is monotonically increasing on [0, ].

Forall n=0,1, ... the inequality
p, <1, Q)
holds. In fact, for n = 0 the inequality (9) is obvious: p,=0<t¢,. Let us suppose that the inequality (9) holds
for all n < k. Then from p, <1,, because of the monotonicity of d, we obtain d(p, )<d(z,), that is p, ,, <t,.
Consequently, by the induction hypothesis, the inequality (9) is true for all .
Let us prove by induction that the sequence {pn} is monotone. Clearly, 0 =p, < p, = a. We suppose that

Py <Pis1-Thenp,, =d(p,)<d ( O 41 ) =Py + - Thus, the sequence {p, } is monotonically increasing and boun-
ded from above. Consequently, it converges to some pe|0, 4, ]. If n > o0 in p, ,=p,+W(p,), we obtain
W(;S) =0and p=¢,.

Let us show that for all n = 0, 1, ... the inequality

u SPui1~ Py (10)

n+l " Uy

holds. For n = 0 the inequality (10) is obvious:
”“1 _“0” = on —(f(x0)+g(x0))—xou = ||f(xo)+g(xo)” <a= W(O) =P1~ Po-

We suppose that the inequality (10) holds for all n < k. Then
Up = U _(f(uk)_f(uk—l)) _(g(“k) _g(“k—l))uS
SHuk U1~ (f(“k) _f(uk—l))H + Hg(”k) ﬁé’(”kq)”S

-1 = | = D = D | =

1
<1177t ) = £ oo Wk = 0ot + [} (1) = 2 (e 1 )| <
0

< Ojl(co((x et = %))+l - x0||) - m((x e, = xo]) ))H“k —uy ||dt+ Hg(uk) - g(uk_l)H,

where u, =u, _, + t(uk —u, 71), 0 <t <1. By the induction hypothesis,

k k
et = 5o | = [l = o | < ZH%‘_ uj—lHS Z(pj— pj_1)=pk.
j=1 ]

Consequently, /=

||ut —x0||=H(l— t)(uk_1 - uo) + t(uk - uO)HS(l— t)Huk_1 —uOH + t||uk - u0||S(1— t)pk_1+ 1Py

From the condition (3) and the proposition 1 in article [3] it follows that

(") =g () < W (1 [x"= ) =¥ (1) V'€ B(x,. 1),

Because of the concavity of ® and the inequality (11), we have

xX"—x|<R-t (11)
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|
H”k 17 U H < I(w((X = |l - x0||)+ + o, - x0||) - (D((X = [l - x0||)+ ))Huk - ”k—ludt *
0
+ lP(Pk—l + H”k‘ uk—l”) _\P(Pk—l)S

sﬂmm—mu—M_%m@Vwbgm+w@”_T@hﬁg
j( ( ( 1-1)p, 1+tpk)))(pk—Pk_l)dt+‘P(pk)—\I’(pk_1):

Pk

= I (w(X)_m(X_e))de+\P(pk)_T(pkfl):d(pk)_d(pk—l):pkﬂ ~ P

Pr-1

Thus, the inequality (10) holds for n = £.
It follows from the inequality (10) that for m > n

||um—un||£“um—u H+...+ U, — U,

Spm_pm—l-I_"'_i_pn+l_pn:pm_pn‘

m—1
Hence for all m and n

”um_un”§|pm_ pn| (12)

Since the sequence {p, } converges to ¢, it follows from the inequality (12) that the sequence {u, } also con-

verges to some x,. Further
||un— u0||Spn <t,n=0,1,...,

and, consequently, all u#, with x, belong to B (xo, ) If n - oo in u, = Du,, we obtain that x, = D(x* ), or

f( ) + g( ): 0. Thus, x, is a solution of the equation (1) in B(xo, )

To prove the uniqueness of the solution x, in B (xo, ) let us consider the second solution x,, € B (xo, ) of
the equation (1) and show that for all n =0, 1, ... the inequality

x**—un”St*—pn (13)
holds. For n = 0 the inequality (13) is obvious:

x**—x0||$t*—p0:t*.

We suppose that inequality (13) holds for all #n < k. Then

Xpw — Duk” =

x**—ukn = x**_uk+f(uk)+g(uk)||:

=£ () = 1 () = (= %) + g (1) = g ()] <
S”f(”k) —f(x**) _f'(xo)(”k - x**)

+ e (%) — g )| <

< (1l ) - )

< floftc 15~ 15~ - oG-l s -

where @, = x,, + (4, — x,. ), 0 <7 <1. Further

dt+ g (x.) - g (),

||L7, — x0|| :”(1 — t)(x** — xo) + t(uk - X, )” < (1 — t) Xy — x0||+t||uk - x0|| < (1 — t)t* + 1p;..

Because of the concavity of w, the inequality (11) and the induction hypothesis, we have

10
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< Jl(w(X) - m(X ~ & - xo||))(’* —pi)dt + \P(Pk [ = 2 ||) =¥ (py)<

< j(co(x) —o(x— (1= 1)+ 10,)))(t.— py )t + W (1) =¥ (p, ) =

Ly

= [ (o)~ (1= 0))d0 +¥(t.) = ¥(p,)=d(t.) = d(p) =t.= prr

Hence the inequality (13) holds for n = k+ 1. If n — o in the inequality (13), we obtain that
||x** - x*” <t,—t,=0

and hence x,, = x,. Lemma 2 is proved.
Let us denote foralln=1, 2, ...

‘f(xl’l)_f(xnfl)_f,(xn—l)(xn_xnfl)“-

Lemma 3. Let us suppose that there exists a constant 'y € [O, o (1)] satisfying the condition (8), the operator f

v, =

satisfies the condition (5) on B (xo, R) with such y, the operator g satisfies the condition (3), the function (6)
has a unique zero t,e [O, X]: and the sequence {tn} is defined by the recurrence formula (7). If for all 1<k<n
successive approximations x, are defined and satisfy the inequality

ka—xk_luﬁtk—tk_l, (14)
then
r<a-Q(r)+ Q(x—1,) - t,(1- o(x)) + ¥(1,,)- (15)
Proof. Let xt:xn71+t(xn—xn71) 0<t<1.Then
|
’”nﬁ_[“f’(xr) f(xnfl) xn_xwl‘d’S
0
1
Sj(m((x—r—uxt—xnl ) + ‘xt—xnl‘)—m((x—r—uxt—xn1 ) )j xn—xnfl‘dt,
0
where r = xn_l—xOH.

Since for all 1 <k < n the inequality (14) holds, it follows that

n—1 n-1
Xn-1 _XOHS zuxk_xk—lug Z(tk_ tk—l)ztn—l
k=1 k=1

According to lemmall, ¢, <y foralln =0, 1, .... Hence

and

th—x xn_1+t(xn—xn_1)—xn_1‘=t

%, =%, | <t(t, =1, 1)

n-1

20—t —t(ty =1, )=t(x—1,)+ (1= 1)(x—1,1)>0

and, because of the concavity and the monotonicity of ®,

rnsjl(m(x—tnl)—m(x—tnl—t(tn—tnl)))(tn—tnl)dtz

0

X_F_H'xt_xnfl

=o(x=t, . )(t,~t1)= | "w(e)de=

11
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X—1t, X1

=o(x=t, 1 )(t,~t, 1)+ [ ©(0)d0- [ w(6)do=

0 0
:('O(X_tn—l)(tn_tn—l) + Q(X_tn)_ Q(X_tn—l)‘
Let us show that for all n =0, 1, ... the equality
(1=, by = 1,) = Qx—1,) + t (1= 0(x)) = ¥(1,)=a - Q(x) (16)
holds. In fact, by the definition of the sequence {tn}
(01—, ) (1= 0(x) + o(x—1,))=a = Qx) + Q(x—1,) = 1,(1- o(x)) + ¥ (1,)
and
(tn—tn_l)(l —o(yx) + w(x—tn_l))za— Q(x) + Q(X—tn_l) —t, (1= o(x)) +‘I’(tn_1).

It follows from the first of these equalities that

a-— Q(X):tn+1(1 - u)(x)) + m(x— tn)(tn+1 - tn) - Q(X— tn) - LP(tn)
and from the second that

a-— Q(x)ztn(l - co(x)) + (n(x— tn—l)(tn - tn—l) - Q(x— tn_l) —‘I’(tn_l).
Consequently,

(D(X_tn)(tn+1_tn) - Q(X_tn) + tn+1(1_ m(x)) _T(’n)z

Z(D(X_tn—l)(tn_tn—l) - Q(X_tn—1)+tn(1_ (1)) —‘P(tn_l)
foralln=1,2, ... and
w(x_tn)(tn+l_tn) - Q(X_tn) +tn+1(1_('0(X)) _T(tn):

=0t 1)(5— 1)~ Q1) + (1~ 0() - ¥ (1) =

=o(1)a=Q(x) + a(1-o(x))=a-Q(x).
Thus, the equality (16) holds for all n =0, 1, ... and the estimate for 7, may be rewritten in the form of the ine-
quality (15). Lemma 3 is proved.
Convergence theorem
Theorem. Let us suppose that there exists a constant y € [0, co_l(l)] satisfying the condition (8), the opera-
tor f satisfies the condition (5) on B(xo, R) with such y, the operator g satisfies the condition (3), and the func-

tion (6) has a unique zero t,< R in [O, X]- Then the following conditions are met:

1) the equation (1) has a unique solution x, in B(xo, z, )

2) the successive approximations (2) are defined for alln =0, 1, ... and belong to B(xo, t*) as well as con-
verge to x,;
3) foralln=0,1, ... the inequalities

X X

n+l1" *n

<t ., —t, (17)

x*—xn”St*—tn (18)
hold, where the sequence {tn} is defined by the recurrence formula (7), monotonically increases and converges to t,.
Proof. Inorder to prove the theorem it is sufficient to show that successive approximations (2) are defined

foralln=0,1, ... and belong to B(xo, t*) as well as satisfy the inequalities (17) and (18). The other assertions
of the theorem follow from lemmas 1 and 2.

12
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Since the inequality (18) is a direct consequence of the inequality (17), it is sufficient to prove the inequa-
lity (17). For n = 0 the inequality (17) is obvious:

b — x| = [f'(xo )]_l(f(xo) + g(xo))

We suppose that the inequality (17) holds for all n < k. Let us show that the operator f '(xk) is invertible.
In fact,
i -1 i i
o] (75 = (3)

<o (= b —xl) + s =l - o (e~ = wl))

By the induction hypothesis,

‘Saztl—to.

SCARAC E

k k
b=l < Xy =y < 2 (1=5-0) =
J= /=

and hence y — ||xk - x0|| 2y —t,>0(t, <y forallk=0,1, ... as it was shown in lemma 1). Because of the con-
cavity and the monotonicity of @, we have

o (= e = ol)"+ e = 30l = o (1= b= ) ) =
Sw(x—tk+tk)— u)(x—tk)<(n(x)— m(O)zw(x)Sl.

[0) ] (7 C0) = £(3%)

Thus,

‘< 1 and, consequently, the operator

' -1 ' ’
T=1+[f"(x)] (' ()= f"(x))
is invertible. Since f'(x; )= f"(x))T =T, the operator f"(x; ) is also invertible and

1

b e g wea

Using the estimate for 7, from lemma 3 and the inequality (11), we get
Jrer= s = LG0T (7 () + ) -
=L GOT (700 =7 () =G o) ) = ()
S EACAIN [ ESERIENREVECRREEEAN B FECAIN MENEFIENN E

_ +W (1) - (6 ) _a=9(x)+ Qx-4) — (1= o(x))+ ¥ (1)

_1—[m(x)—(o(x—tk)]_ 1—[m(x)—w(x—tk)] Tl Tl

Consequently, the inequality (17) holds for n = £.
Since for all n=0, 1, ... the operator f"(x, ) is invertible and ||xn - x0|| <t, <t,, the successive approxima-

<

tions (2) are defined for alln =0, 1, ... and belong to B (xo, t, ) The convergence of the successive approximations
to x, follows from the inequality (18). The theorem is proved.

Conclusions

In this paper the generalised Newton — Kantorovich method for solving non-linear operator equations with
non-differentiable operators in Banach spaces was considered. The regular smoothness condition of the ope-
rator involved, which was proposed by A. Galperin and Z. Waksman, was replaced by a simpler one in which
increments of the operator derivative are majorised by increments of a scalar function. The convergence theo-
rem was proved by means of majorant scalar equations.

13
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It should be noted that each Lipschitz smooth operator is also regularly smooth but the opposite is not true.
So the theorem is applicable to more wide class of non-linear operator equations of the form (1) than the cor-
responding convergence theorems from articles [1; 3].
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MILD SOLUTION OF A MIXED PROBLEM
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Abstract. For a semilinear hyperbolic equation of the third-order given in the first quadrant we study a mild solution of
amixed problem in which the initial conditions are specified on the spatial half-line and the mixed conditions are specified
on the time half-line. The operator in the equation is a composition of the wave operator and the transport operator. Mild
solution is defined as a solution to coupled integral equations that are satisfied by a classical solution. It is shown that
under some smoothness conditions on the initial and boundary data the problem under consideration admits the existence
and uniqueness of the mild solution. It is established that the twice continuously differentiable mild solution is the limit
of classical solutions to the problem under study.

Keywords: non-linear hyperbolic equation of the third-order; mixed problem; generalised solution; mild solution.
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Introduction and statement of the problem

Third-order differential equations arise in the description of certain physical phenomena. For example, we
use such hyperbolic equations of the indicated order in modelling the propagation of linear acoustic waves in
a medium with dispersion [1]. Mathematical models of such problems were considered in papers [2—4].

In the domain QO = (0, 00) X (O, 00) of two independent variables (t, x) we consider one dimensional non-
linear equation of the third-order

(5 +bﬁj[i Cﬁi},(;, x)=f(tx, u(t x)), (t,x)€Q, (1)

5 ox )\ or? - ox?

where a and b are positive (to be definite) real numbers, a # b. On the lower part ¢ = 0 of the boundary 6Q we
supplement equation (1) with the initial conditions
Ou

0
u(0,x)=00(x). (0, x)=a1(x), "
and on the lateral part of the boundary 00 we supplement it with the mixed conditions
0
u(t,0)=pq(2), a—Z(r 0)=p,(2), 1€[0, ). 3)

In the paper [5] a mild solution to the Cauchy problem for equation (1) is considered. The authors of the
work [6] obtained a mild solution to a similar equation

0’ o’ ? 0’ Ou
[Ty + Oty — czy — baxzat]u(t, x)=f(u(t, X), 5(f, X)j

in a Hilbert space H>(Q) N Hy(Q), where Q  R. As a result of the work [7] it was constructed a generalised
solution to the Jordan — Moore — Gibson — Thompson equation

i (0, x) =(p2(x), X e [0, oo), 2)
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& N, 10( (ou > (éu g
(Ta7+a7—(8+’[c )8)(;261‘ —-C y M(t, X):Ea K[E(t’ X)j +G(a(l‘, x)j .

In the article [8] a weak solution for an equation similar to equation (1) with power non-linearity is considered.

Mild solution

In our paper [9] it was proved the following statement.

Theorem 1. Let the conditions ¢,e C3([O, oo)) ¢ € Cz([O, oo)) 0, < CI([O, oo)) Wy € C3([0, oo)) TS
eC 2([O, oo)) and feC' (Q X R) be satisfied, and let the function f satisfy the Lipschitz condition with a func-
tion Le C (Q) with respect to the third variable, i. e. for any pair (t, x) € O and any real numbers z, and z, the
inequality |f(t, X, z, ) - f(t, X, Z, )| < L(t, x)|z1 - z2| holds. Problem (1) — (3) has a unique solution u : Q + R in
the class C3(Q) if and only if the matching conditions

Mo (0) =@, (0). @)
“6(0):@1(0)’ HI(O)Z(PE)(O)r (5)
15(0) =, (0). 1i(0)=¢}(0). ©6)
15 (0)= /(0 0, 0g(0)) = b} (0) + a’e{ (0) + a’bog (0). ui(0) =5(0) (7)
are satisfied. This solution is determined by the formulas
u(l, x) = u(j)(t, x), (t, x) € Q(j), j=1,2,3, (8)
fatt-9+x £(1, 2, uV(, o) 4y —
u(l)(t, x)=v(t, x) + I f(T o (T Z))(a( T) ’ Z)dz+
0 0 2a(a + b)

+xb‘(._’1)f(r, z, u(l)(r, z))(b(t— r) —x+ z)
0 (a—b)(a—i—b)

x-a(f—T)f(ﬂ:, z, u(l)(r, Z))(a(r—t) +x—z) —
. @
. e iz, (1, )< OO, 9)

dz +

x+a(f—7)(x— zZ+ a(t— ﬂ:))f(r, z, u(l)(r, Z))
2a(a+b)

dz +

x*b(f*T)(z—x+b(t— r))f(r, z, u(l)(r, z)) x*a(f*T)(x— z+a(t- t))f(r, z, u(l)(t, z))
2a(a —b)

dz ydt+

X

Ty x+j{(fT)(x— z+a(t- r))f(r, z, u(z)(r, z)) x*a(f**')(x— z+a(t- t))f(’t, z, u(z)(r, z))

" (‘!. 2a(a+b) et 6f 2a(a —b)

dz —

0

a(f”_f) z+alx+b(t—- 1.z u(z) Tz -
_ I (b ( ZEG _l‘b);zjg ;))a ( ’ )) dz pdt, a<b, (1, X)EQ(z)’ (10)
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, x+a'('.t‘r)(x_z+ a(;—r))f(r, z, u(l)(r, Z))

(3) _
u (1, x)=v(t, x) + _[x ) 2a(ar D) dz +
t77
b
x=b(-9)(z—x + b(t—1)) f (1, z, u(x, 2 s=a(t=9)(x -z + a(t—1)) £, 2z, uV(x, z
b (nzaez) Iz f(m O m ) |

(a—b)(a+b) Za(a—b)

S

+,jg J 2a(a+b) R 2a(a =) o
_a(tjgTj(bz+a(x+b(T—f)))f(T, falwa) |
: a(a—b)(a+b)
) J x+j(,_1)(x_ oy a(,_z :21 f+(z)z, WO, Z)) . +a(z -Or>-x(x+ Z+ a(r;;z)a f_(;,)z, WO, Z))dz .
o) or(ion) ’Ji{mjzr) (x—z+a(r —2 Z)af +(;,)z, Wz, 2)) .
+x—b<f—r>(_x+Z+b(t_r))f(r, 2 (x, z))dz+“(f—f)—x(x+z+a(r—t))f(r, 2 u9(x, z))dz o

0 a’- b’ 0 2a(a—b)

x+“(t—f)(x —z+a(t- 1))f(r, z, u(])(t, z)) x—b(’—f)(—er z+b(1- T))f(‘t, z, u(])(r, z))

2a(a +b) “ J (a—b)(a+b) “

t

+
(o X
a

0

+

x—a(f—f)(x—era(r—t))f(t, z, u(])(r, Z)) —
(2)
6[ 2a(a —b) dz +dt, b<a, (t, x)eQ , (12)

X

ta{x+a.(|.t‘c)(xz+ a(t—t))f(‘t, z, u(z)(r, Z))

dz +

u® (1, x)=v (1, x) + .[x 2a(a +b)

PR
b

0

. bef)(—x +z+b(1- t))f(r, z, u(z)(r, Z)) s a(t Jf)—x(x +z+a(t— t))f(r, z, u(2)(t, z))

dz vd
] a*— b2 : 2a(a—b) et

18
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x+“(f—r)(x —z+ a(l— 'c))f(t, z, u(l)(t, Z)) x*b(fff)(—er z+ b(t— r))f(‘c, z, u(l)(r, z))

]

dz + daz +
o (').‘ 2a(a+b) 5 (a—b)(a—i—b)
+x—ajjf)(x—z+a(r—t))f(t, z, u(l)(r, Z))d .
2a(a—b) 17

0

X

% x+j’_(f’~')(x —z+a(t- T))f(’t, z, u(3)(r, z)) “("T)—x(x+ z+a(t— t))f(r, z, u(s)(r, Z))

d. dz —
" 6‘- 2a(a+b) o 2a(a—b) -

0 0

a(hgfr) z+a(x+b(t- T, z, u(1, 2 o
| _— :Ea_2;2;£b) = ))dz dv b<a,(t,x)e0”, (13)

where v is a function defined by the formula
2 (—l)k((a +(=1)'p) 30 ]+ 39, + ab(po)(x F(0ar) (aoy- Fou])(x—b)
J’_
k=1 2a(a+ (—l)kb) a*-b*

o (1) {(a+ (18 ) 3o ] + o] + aboy )(x+ (-1far) |, o
v(t, x)ZkZ::l 2a(a+(—l)kb) + b gd[%](at—fj—

(2 x)eE,

v(t,x)=

- ax ax

_abS[ul](t—%) + D) + p— + a(p(O)—pr(

X
{— —

b) ,a<b, (t, x)eQ(z),

((a +b)3[ ] + 32[(p2] + ab(po)(x + at) (acho - 32[@2])(x —bt) 1

v(t, x): + _

2a(a+b) a’-b* Za(a—b) 8

. [((a +8)3{0]+ Foa] + aboy )t -x) - 203 1 2]+

+2a%¢,(0) - 2azu0(t - gn b<a (1,x)e 0",

V(e 1) = %3[@1](at - %) - abS[ul][t—%j e [%](at_ abx) . bz%("’_ CZJ i

a(a+b) a+b

x ((a+b)3[(p1]+32 [(p2]+ab(p0)(x+at)
_buo(t_Zj " 2a(a+b)

1
2a(a - b)

[((a +b)3[oy] + 3 [0,] + abe, )(at — x) - 2a2b3[u1](z_ g) _

“2h (" ED (t,x)e 0",
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where 3 is the integration operator acting by the formula S[h](x) = jh(z)dz, and
0

Q(l):{(t, X)|x—at>0Ax—bt> 0},

Q(z) =0\ Q(') U Q(3),
Q(S) = {(t, x)|x— at<0Ax—-bt< O}.

Representation of the function « in the form of equations (8)—(12) is well defined even if the functions
ut/ )(t, x), j=1,2,3, are not differentiable, prompting a generalisation of the classical solution using a weak

type of solution that has the same form as the classical solution and will be one, when certain smoothness con-
ditions and comparability conditions are fulfilled. This is roughly the same motivation that encourages looking
for solutions in various Sobolev spaces [10; 11], in the form of power series (often formal or convergent in
the sense of Cesaro) [12], or in the sense of generalised functions [13; 14]. Moreover, in many cases of linear
abstract Cauchy problems, the concepts of mild and weak solutions (in the dual sense, in the sense of distribu-
tions) are equivalent'.

Based on sources [15; 16], we introduce the following definition.

Definition. We call the function u representable in the form of equations (8)—(13) a mild solution of prob-
lem (1)—(3).

Definition introduces the notion of mild solution [16]. However, in the literature such solutions are also
called solutions in the broad sense [17; 18], weak solutions [19] and generalised solutions [20].

The results of the work [9] yield the following statements.

Remark 1. Any classical solution of problem (1)—(3) is also a mild solution of this problem.

Remark 2. 1f the additional smoothness conditions ¢, € C3([0, oo)), Q€ Cz([O, oo)), 0, € Cl([O, oo)), o€
eC? ([0, oo)), weC? ([0, oo)) and fe CI(Q x R), and the matching conditions (4)—(7) are satisfied, then the
mild solution of problem (1)—(3) is classical.

Denote O =0\ {(t, X)x—at=0vx—bt= 0}. The following statement holds.

Theorem 2. Let the conditions @, € C([O, oo)) o€ Llloc([O, oo)) @, ew ! ([0, oo)) W€ C([O, oo)) TS
el ([O, oo)) and fe C(Q X R) be satisfied, and let the function f satisfy the Lipschitz condition with a func-

loc
tion LeC (Q) with respect to the third variable, i. e. for any pair(t, x) € Q and any real numbers z, and z,
the inequality |f(t, X, Zl) —f(t, X, Z, )| SL(t, x)|z1 - zz| holds. Problem (1)—(3) has a unique mild solution
u:0 > Rin the class C(Q)

Proof. The solvability of equations (9)—(13) in the class of continuous functions follows from the article [9].
For a mild solution, smoothness can be increased if the matching conditions (4)—(7) are partially satisfied,
as it is done in the following theorem.

Theorem 3. Let the conditions ¢ C([O,oo)), o= Llloc([O,oo)), 0, € qu(;c"‘([o,oo)), [T= C([O,oo)), =
el ([O,oo)) and feC (Q X ]R) be satisfied, and let the function f satisfy the Lipschitz condition with a func-

loc

tion LeC (Q) with respect to the third variable, i. e. for any pair (t, x) € Q and any real numbers z, and z,
the inequality |f(t, X, z, ) —f(t, X, 2, )| < L(t, x)
u:0 > Rin the class C(Q) if and only if the condition (4) is satisfied.

Proof. If uy(0) = ¢,(0), then a mild solution u of problem (1)—(3) is continuous on the set {(t, X)|x—at=

zZ,— 22| holds. Problem (1)—(3) has a unique mild solution

=0vx->bt= 0} due to the relations

"What «mild solution» means, and how to find it? // Mathoverflow : website. URL: https://mathoverflow.net/questions/320300/what-
mild-solution-means-and-how-to-find-it (date of access: 21.07.2025) ; Is a mild solution the same thing as a weak solution? // Mathe-
matics : website. URL: https://math.stackexchange.com/questions/708407/is-a-mild-solution-the-same-thing-as-a-weak-solution (date
of access: 21.07.2025).
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[(u)+ B (u)_}(t, x=bi)= b((Po((;):buo(O))’ [(u)+ B (u)_J(t, x=bt)=

_a(@(0)-m(0) (14)

()~ () J(t=br)= b(“O(?_‘b“’"(o)), ()~ () |t =br)=

_ a(Ho(O) B (PO(O))

a—>b

,b<a, (15)

which follows from the equations (8)—(13). Here by (u)i we have denoted the limit values of the function u
calculated on different sides of the curve x = r(t), where r is a real-valued function, 1. e. (u)i(t, x= r(t)) =

= 8lirr(} u(t, r(t) + 6). Thus, the solution not only satisfies u € C (Q) but is also a continuous function on the
— 0+

closure O, u € C(Q)

However, if o (0) # ¢, (0), then a mild solution u of problem (1)—(3) cannot be continuous on the set O by
the relations (14) and (15). The proof of the theorem is complete.

Following the work [21] and assuming that ¢, € Cz([O, oo)), o€ Cl([O, oo)), 0, € C([O, oo)), o€ Cz([O, oo)),
TS Cl([O, oo)), fe C(Q X R), we prove that a mild solution u of problem (1)—(3) from the class Cz(é) is
a limit of the classical solutions of problem (1)—(3).

Since the spaces Cé(Q) and Cl(é X R) are dense in CZ(Q) and C(Q X ]R), respectively [22], there are se-

quences w'") e Cé(é) and /" e CI(Q X R) such that lim p(w("), u)CZ(Q) =0and lim p(f(”), f)C(Q ) =0,

where p(x;, x,)  1s the distance between elements x; € X and x, € X in a metric space X. Additionally, we want

to choose the sequence w" so that the condition

53W(") 5 a3w(”) 5 53W(")
t,x)+a t,x)+ab———(t, x
ot*ox otox® (1) o’ (5.%)

a3w(”)
or

(t,x)= f(")(t, X, w(")(t, x)) -b

is also satisfied.
Let us consider on the closed ray [O, oo) a continuous function hs(x) with the parameter 6 € (0, oo):

X
ha(x): B <o
1, x>98
There are obvious equalities
n n ow'”) 2 8*w" 1 2 G
W (1, x) = w0, x) + 1 —(0.0)+ > ——(0, x)+_0j 1= 1) (5 ),
" " ow™) x2 &2l 1¢ 2 8w
W (e, x) = (1, 0) + 2= (1, 0) + - S (1,0)+5 J (x=8f —5(r.8)de,
which imply
() () ow'” x2 32w 1 2 3w
w1, x) =" (0, 0) + x — (0, o)+7 — (0, 0)+—£(x— ) = (0, &)d& +
o™ £ ") 1 ot
+1t (0, X 3 o (O, x) + EJ(I_ ) pv: (r, x)dr.
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Let
. ow'™ 2 32 PG 2 52
(e, x)=w!"(0,0) + x = (o,o)+78x—2(o,o)+z > (0,x)+? (0.0
1x &) 1 aow”
E(Jx £) {hs(a) - (0,8)+a(l- hs(é))}d§+5(!‘(t—r) — = (v, x)dr,
where
1 [ o*w” R , Pwl”) () ()
=——|4———(0,0)+0 0,0) - 0,0 0, 0, 0,0)) |
* azbl or’ (0.0)+ 8t28x( )aazax( )f( W ))
It is easy to see that the function Z(")(t, x) belongs to the class C* (Q) Let us denote
i (n)
o) (x) = aazi (0, x),i=0,1,2, xe[0, ),
t
~(n) o'z :
" (1)=——(1,0),i=0,1,1€[0, ).

ox'

(16)

(17

(18)

Similarly to theorem 1 from the article [9], we derive the following matching conditions by differentiating «con-

ditions» (17) and (18) and taking into account the formula (16):
iy (0) =4 (0), DRy (0) =" (0), & (0) = D} (0),
D" (0)=41"(0), D" (0) = D" (0), D" (0) = D" (0),
Dl (0)= (0, 0, y(0)) - bDGY(0) + a* DG\ (0) + a*bD*3"(0),

where D is the Newton — Leibnitz operator.
We consider the difference

2(1, x) = " (1, x) = w(0, 0) = W) (1, x) + x ——(0,0)+
X
X2 o) owl") > 2w
= 0,0 0 —
2 ax2 2 )+t 5t ( 2 2 t2 2 x)+
17 2 &*wl" 1¢ 2 8*wl"
+5f(x— )| As(8)— 5 (0. &) +a(l-4(2)) dEﬂng(f—T) — 5 (mx)dt=
0 0

Oox

3,00
2| (@0 08 - i) -

- o + %j(x— ) (hs(8) —1)?(0, £)dE,

Therefore, the value

z(”)(t, x)— w(")(t, x)‘ can be estimated as

&e[O 8] ax
24 ‘

)
5(5”+ 6x* - 46x)(0t ~ max L(O, g)}‘

Z(")(t, x) — w(")(t, x)‘ <

22

(19)

(20)
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Let us introduce in the Fréchet space C (Q) a countable system of seminorms

P
(g)= (r.x)e [ [0 m]
If & is small enough, then estimate of the expression (20) yields the inequality

p, (2" =)< % 1)

|g (1, x|exp( x), meN.

Now let us consider the inequality
0< pm(z(") — u) <p, (z(") - W(")) +p,, (w(") - u)

From estimate of the inequality (21) it follows that p,, (z(") — )) 50 as n — 0. And since w!” Q — R con-
verges to u : O > R in the space C (Q), which obviously implies lim p,, (w(") - u) for any m € N. Then by the
n— o

squeeze theorem, we have that lim 2=y, Thus, we constructed a sequence e c? (Q), which converges

n—> o
to the function #: O — R in the space C(Q), and matching conditions (19) are satisfied.
In addition, we note that

N alu aiz(n)
= —- 0,21 - 0,'7. 051323
’ at’( ) no of (0.))1
and i_(n)
o'u o' z\"
h=—-1(,0)=1 —(-0),i=0,1,
l 6x’( ) n—>o QOx' (0.1

where the limits are understood in the spaces C* ™" ([O, oo))
Let us introduce the function v(")(t, x) and the operator K, :C (Q) —C (Q)

(—l)k((a # (=0 p)3[al" |+ 5[ @] + abd ) o+ (1) a)

:"Zzll 2a(a+(—1)kb) *
. (a2<pgn) . SZ[_@IE';)J)(x - bt), (1)e E
(1) = 22: (—l)k((a+(—1)kb)3[¢)£n)} +32[¢)({)J +ab®(0n))(x+(_1)kat) +
k=1 2a(a+(—1) b)
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dz +

(')[ Za(a +b)

dz +

ro|xtat-t)(x—z+a(t—1 f(") 1,z uV(x, z
Kn[”](t’x).[{ .[ ( ‘ 26)1)(a+£9) ! ))

PR
b

x*b(’”)(z—x+b(l—r))f(n)(r, z, u(l)(r, z)) x*“(’*)(x— z+a(t- t))f(n)(T, z, u(l)(r, z)) }
dz rdt+

+

) (a—b)(a+0) et Of 2a(a—b)

X

% x+a(t—1)(x— z+ a(t—t))f(")(r, z, u(z)(t, Z)) x—a(f—f)(x— z+a(t— t))f(")(r, z, u(z)(t, z))

" (')[ 2a(a+b) e+ J Za(a—b) -

0

a(hriﬂ bz+a(x+b(t— f(") T, Z, ul? T,z —
e ],

/ xﬂl(’*f)(x—z +a(r- r))f(")(‘c, z, u(l)(r, Z))

Kaleltex)= J.x ()[ 2a(a+Db) dz+
e b= 0) e 2w 2) e ez a(emn) /s 2 (s <))
' E)[ (a—b)(a+Db) dz+ 6[ 2a(a—b) dz pdt+
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'_% x+aJ(_t—T)(x— z+ a(l—r))f(”)(t, z, u(z)(t, z)) x*a(fff)(x— zZ+ a(t— t))f(n)(r, z, u(z)(r, z))

+ |

z 5 2a(a+b) dz ('!. 2a(a—b) -
a(lfgfrj (bz+ a(x+ b(r— t)))f(")(r, z, u(z)(r, z))
- a(a—b)(a+b) i

a x+a(t—f)(x— z+ a(t—r))f(")(r, z, u(3)(r, z)) a(,,r),x(x+ z+a(t- t))f(")(r, z, u(3)(r, z))

i o 0 2a(a+b) dt H 2a(a—b) d -

"("Z‘f)(bﬁ a(x+b(z=1)) /" x, 2,48z, 2)) —

_ a 3)

()[ a(a—b)(a+b) d. dr,a<b,(t,x)eQ ,

a XM(FT)(x— zZ+ a(l—t))f(")(r, z, u(z)(r, z))
K, [u](z, x)= 6[ { (')[ 2a(a+b) dz +
+x*b(f*1)(—x+ z +b(t—r))f(")(r, z, u(z)(r, Z))d +a(fj’j)x(x+ z+a(t- t))f(")(‘c, z, u(z)(r, Z))d .
0 a’- b’ - 0 2a(a—b) 1"
t | x+at-9)(x—z 4+ qt— (n) , Z, ) , x=b(t-1)(—x+ z+b(t— (n) ) 2, ® ,

N J_ J_ (x z a( r))f (T Z,u (r Z))dz+ ( X+ z ( ’E))f (r zZ,u (r Z))dz+

x 0 2a(a+b) o (a—b)(a+b)

J’_

xf(l(t*":) xX—z+alt—t f(n) T, 2z, u(l) T,z A2)
J' ( ( )) ( ( )) dz ydt, b<a, (t, x)EQ(z)’
; Za(a—b)

d.
o 2a(a+b) °t

tg{xﬂljff)(x zZ+ a(t— t))f(")(r, z, u(z)(r, z))

+

x*b(f*T)(—x+ z+b(t— r))f(n)(r, z, u(z)(r, z)) a(’*T)*X(x+ z+a(t- t))f(")(r, z, u(z)(t, z))
| E dz + J Ya(ah) dz ¢ dt +

) I mj,_ﬂ(x_“a(,_r)) 7O ez, Z))dz_'_x—b(’—f)(—x—i—z+b(t—t)) 7z 200z, 2)

) 2a(a+ ) ) (a—b)(a+2) “

t—

Q%

+

x—a(t-1) —z _ (n) , Z, (1) , Z
j (x=z+a(t=0)) /" z 2wz ))dz}dT+
0 2a(a—b)
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3 x*“(’”)(x— zZ+ a(t—r))f(”)(r, z, u(S)(r, z)) a(’*f)*x(x+ z+a(t- t))f(")(t, z, u(3)(r, z))
" 6[ (-!. 2a(a+b) d o Za(a—b) -

a(f—%—rj bz+a(x+b(t—t f(n) - Z,u(3) . o
- 6“ ( ( C(l(a _)2))((1 +(b) ( )) dzpdr,b<a,(t,x)e Q(3).

For the sake of notation we also set f (=) f. We note that the operator K, : C (Q) —C (Q) is well-defined and
continuous, since the smoothness conditions

e (0), fMec(0). 3" e ([0, »)), §" e C*([0, ),

(22)
3y e ([0, ), il e C3([0, ), i e C*([0, )
and the matching conditions (19) are fulfilled.
Now we construct a sequence u,, by the formula
u,=K, [z("q ) (23)

By virtue of conditions (19) and (22), the function u, belongs to the class C* (Q) Taking into account the re-
lations

. du 9" .
7= 5 (0= Jim = (0.). i=0.1.2
and ( )
o'u o'z
(1. = . 0)= 1 5 0 5 ] Oa la
o= (- 0)= lim —=-(. 0).

we pass to the limit in formula (23) and get

lim u,= lim (Kn [z(")} +) ) =K, [u]+v=u.

n—>® n—®

Direct verification proves that the function u,, is a solution to the problem

2 2
(5 * %] [57 ) ai}(t x)= /(12 2 (1, 2). (%) < 0,

aauin (0, x) = (pgn)(x), i=0,1,2 xe [0, oo),
¢

'u, ()

= (£,0)="(¢), i=0,1,¢€[0, ).

Due to the continuity of the Nemytskii operator,
. [(e o)\ @ 0’ : (. (n
nlgl})o{(a + baj{y ~d’ ax_zJu”() -7(- “n())] = lim (f( )('7 2t )()) -7 (- un())) =0

in the space C (Q) In addition, the relations

0= (0)= Jim (0 ) =01, 2
o'u o'u
= — ,0 :1‘ n ',O, _0717
l"l'l axl( ) nljgo axl ( ) !
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where the limits are understood in the spaces C? _i([O, oo)) hold.
Thus, we have proven the following theorem.

Theorem 4. Let the conditions @€ Cz([O, oo)) 0 € Cl([O, oo)) OIS C([O, oo)) ThN= Cz([O, oo)) TI=
€ C([O, oo)) and fe C(Q X R) be satisfied. Then a mild solution u : Q > R of problem (1)—(3) from the class

C? (Q) is the limit of classical solutions, i. e. there exists a sequence of functions u,, € C3(Q) such that

) 0 o\ & ) & =
nlgl’iop((a + ba}(a? —da ax_zjun()’ f(’ un('))JC(QXR) - 0;

lim p(u, u,) ) =0 im (@0, 14,(0:)) oy yy =0 i P(Ros 21,5 0)) oy = O

n— o ce

hm p((pl’ —-(0, j =0, ,,lif},op(““ aaﬁ(’ 0)] =0,
c'([0.=)) o c'([0,%))
2
lirriop((pz, oy l;" (O, )] =0.
" ot C([O,oo))

It turns out that the statement opposite to theorem 4 is also true.
Theorem 5. Let the conditions @€ C2([0, oo)) 0 € Cl([O, oo)) 0, € C([O, oo)) o€ Cz([O, oo)) W e
€ C([O, oo)) and fe C(Q x R) be satisfied, and let there exists a sequence of functions u, € C3(Q) such that

equalities (24) hold, where u € CZ(Q). Then the function u : Q +— R is a mild solution of problem (1)—(3).
Proof. Itis easy to see that u, is a classical solution of the mixed problem

[% + bg][a—z - a? i]un(z‘, x) = f(")(t, X, un(t, x)) = f(t, X, un(t, x)) + sn(t, x), (t, x) €0,
X

ot ox?

24)

(0, 2)={")(x). 1=0.1,2, ve [0, )

%y (1, 0)= i (1), i=0,1, 1[0, ),
x

where lim p(s,,, O) (o)™ 0. In this case the matching condition (19), which can be deduced according to

n—» 0
the scheme we outlined in the work [9], is satisfied. Then by theorem 1 from the article [9], the function u,, is
a solution to the integral equation

u, =K, [u,]+ ), (25)

Taking into account lim p(sn, O)C(Qx R)= 0 and the continuity of the operator K, and passing to the limit in
n—> 0

the equation (25), we obtain

u=lim u,= lim (Kn [u,] +v("))=Kw[u]+v.

n—® n—>®

The theorem is proved.

Conclusions

The sufficient conditions under which there exists a unique mild solution of a mixed problem for a third-or-
der non-linear strictly hyperbolic equation with the wave operator are presented.

References

1. Rudenko OV, Soluian SI. Theoretical foundations of nonlinear acoustics. New York: Consultants Bureau; 1984. VII, 274 p.

2. Varlamov VV. The problem of the propagation of nonstationary acoustic waves in a relaxing medium. USSR Computational Ma-
thematics and Mathematical Physics. 1990;30(1):241-245. DOI: 10.1016/0041-5553(90)90037-S.

3. Varlamov VV. The Cauchy problem for an equation that describes nonstationary waves in a medium with relaxation. Soviet Ma-
thematics. Doklady. 1989;39:145-148.

27



Kypnaa Besopycckoro rocyiapcTBeHHOro yuupepcurera. Maremaruka. Uadopmaruka. 2025;3:15-28
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:15-28

4. Varlamov VV. On a hyperbolic equation that describes wave processes in media with dispersion and absorption. Soviet Mathe-
matics. Doklady. 1991;42:256-259.

5. Rudzko JV. Global classical and mild solutions of the Cauchy problem for a semilinear hyperbolic equation in the case of two
independent variables. In: Gusakov VG, editor. Molodezh v nauke — 2023. Tezisy dokladov XX Mezhdunarodnoi nauchnoi konferentsii
molodykh uchenykh; 20-22 sentyabrya 2023 g.; Minsk, Belarus’ [Youth in science — 2023. Abstracts of the reports of the 20" International
scientific conference of young scientists; 2023 September 20—22; Minsk, Belarus]. Minsk: Belaruskaja navuka; 2023. p. 544—546. Russian.

6. Caixeta AH, Lasiecka I, Cavalcanti VND. Global attractors for a third order in time nonlinear dynamics. Journal of Differential
Equations. 2016;261(1):113—147. DOI: 10.1016/j.jde.2016.03.006.

7. Kaltenbacher B, Nikoli¢ V. The inviscid limit of third-order linear and nonlinear acoustic equations. SIAM Journal on Applied
Mathematics. 2021;81(4):1461-1482.

8. Buhrii O, Kholyavka O, Pukach P, Vovk M. Cauchy problem for hyperbolic equations of third order with variable exponent of
nonlinearity. Carpathian Mathematical Publications. 2020;12(2):419-433.

9. Korzyuk VI, Rudzko JV. Initial-boundary value problem for a third-order semilinear hyperbolic equation with the wave operator.
Lobachevskii Journal of Mathematics. 2024;45(11):5569-5580. DOI: 10.1134/S199508022460643X.

10. Demidenko GV. Quasielliptic operators and equations not solvable with respect to the higher order derivative. Journal of Ma-
thematical Sciences. 2018;230(1):25-35. DOI: 10.1007/s10958-018-3723-2.

11. I’in VA, Moiseev EI. Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions.
Differential Equations. 2000;36(5):728-733. DOI: 10.1007/BF02754231.

12. Gaiduk SI, Zayats GM. A problem in the wave theory of mechanical impact. Differential Equations. 1986;22:215-225.

13. Egorov YV. A contribution to the theory of generalized functions. Russian Mathematical Surveys. 1990;45(5):1-49. DOI:
10.1070/RM 1990v045n05ABEH002683.

14. Nualart M. Distributional solutions for damped wave equations. Electronic Journal of Differential Equations. 2020;2020:131.
DOI: 10.58997/¢jde.2020.131.

15. Korzyuk VI, Rudzko JV. Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential in
a curvilinear quadrant. Differential Equations. 2023;59(8):1075-1089. DOI: 10.1134/S0012266123080062.

16. Ahmed HM, el-Owaidy HM, al-Nahhas MA. Nonlinear hilfer fractional integro-partial differential system. Lobachevskii Jour-
nal of Mathematics. 2019;40(2):115-126. DOI: 10.1134/S1995080219020021.

17. Rozhdestvenskiy BL, Yanenko NN. Systems of quasilinear equations and their applications to gas dynamics. Providence:
[s.n.]; 1983. 676 p.

18. Friedrichs KO. Nonlinear hyperbolic differential equations for functions of two independent variables. American Journal of
Mathematics. 1948;70(3):555-589. DOI: 10.2307/2372200.

19. DiBenedetto E. Partial differential equations. Boston: Birkhduser Boston; 2009. 409 p.

20. Khromov AP. Divergent series and generalized mixed problem for a wave equation of the simplest type. Izvestiya of Saratov
University Mathematics Mechanics Informatics. 2022;22(3):322-331. DOI: 10.18500/1816-9791-2022-22-3-322-331.

21. Kharibegashvili SS, Jokhadze OM. Global and blowup solutions of a mixed problem with nonlinear boundary conditions for
a one-dimensional semilinear wave equation. Shornik: Mathematics. 2014;205(4):573-599. DOI: 10.1070/SM2014v205n04ABEH004388.

22. Narasimhan R. Analysis on real and complex manifolds. Amsterdam: North-Holland Publishing Company; 1968. X, 246 p.

Received 21.07.2025 / revised 25.11.2025 / accepted 25.11.2025.



rEOMETPI/I}I N TOITOJIOT'UA

GEOMETRY AND TOPOLOGY

VIIK 514.764.227

KOH®OPMHOE YPABHEHUE KNUAAUHTA
HA 2-CUMMETPUYECKOM HNIECTUMEPHOM
HEPA3AOXHNMOM AOPEHIIEBOM MHOI'OOBPA3V
C TPUBUAABHBIM TEH30POM BEUASA

M. E. THEJIKOV, O. I1. XPOMOBA"
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Annomauyus. ViccnenoBan KoH(GOPMHBIN aHaIOT ypaBHeHNs! KiimiHra Ha 2-CHMMETPHUYECKHX MIECTUMEPHBIX HEpas3-
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CONFORMAL KILLING EQUATION
ON A 2-SYMMETRIC SIX-DIMENSIONAL INDECOMPOSABLE
LORENTZIAN MANIFOLD WITH TRIVIAL WEYL TENSOR

M. E. GNEDKO?® O. . KHROMOVA*

*Altai State University, 61 Lenina Avenue, Barnaul 656049, Russia
Corresponding author: O. P. Khromova (khromova.olesya@gmail.com)

Abstract. In this paper, we study the conformal analogue of the Killing equation on 2-symmetric six-dimensional in-
decomposable Lorentzian manifolds, and also study the properties of the conformal factor of this equation. For the case
of conformally flat metrics, new non-trivial examples of conformal Killing vector fields with a variable conformal factor
are constructed.

Keywords: conformal Killing vector field; Lorentzian manifold; k-symmetric space; Weyl tensor.

BBenenune

KoHpopMHO-KWITMHTOBBI BEKTOPHBIE TTOJIS SIBJISIIOTCSI €CTECTBEHHBIM 00001IeHNEM BEKTOPHBIX nosei Ku-
JIMHTA ¥ MTPAIOT BAYKHYIO POJIb B U3YUEHUH IPYIIIBI KOH(GOPMHBIX IpeoOpa3oBaHUii MHOTOOOpa3us, TOTOKOB Puy-
Y1 HA MHOT000pa3uu, TEOPUHU COMUTOHOB Pruuum. [1ceBnopiMaHOBB CHMMETPUYECKUE TPOCTPAHCTBA MOPSIKA X,
r7e k > 2, BOZHUKAIOT B MCCIIE0OBAHUX IO TICEBIOPMMAHOBOM reoMeTpuu U B Gpu3uke. B ciydasx, korma k =2
u k =3, onm m3yuensl [. B. AnexceeBckum u A. C. I'amaeBbim [1]. TIpn Maasix pa3MepHOCTSIX 3TH MIPOCTPaH-
cTBa 1 BekTopHbIe noist Kumnara Ha Hux uccnenoBanu Jl. H. Ockop6wun, E. /1. Poguonos u W. B. DpHer [2].

Conuronsl Puyun siBistorcest 00001eHHEeM METPUK DUHINTEHHA Ha (TICEBI0)PUMAHOBBIX MHOTOOOPa3HsIX.
VYpaBHeHHE COIMTOHOB Puuum M3ydanoch Ha pa3lUyuHBIX Kjaccax MHOroOOpa3uii MHOTMMH MaTeMaTHKaMH.
B uactHoctu, /1. H. OckopOunsiM u E. JI. Poguonossim [3] HalifieHO o0liiee pelicHre YpaBHEHUS COJIMTOHA
Pruyun Ha 2-CUMMETPHUECKUX JIOPSHIICBBIX MHOTO00pA3HsIX MaJIOi pa3MepHOCTH, I0Ka3aHa JIOKaIbHAs pa3pe-
LIMMOCTB 3TOT0 YPaBHEHUs B KJlacce 3-CHMMETPUUECKUX JIOPEHLEBBIX MHOT00Opa3uil. B ciryuyae nocTtostHcTBa
KOHCTaHTHI DWHIITEHHA B YPaBHEHUHU CONMMTOHA Puyun BekTOpHBIE Mot KuyumiHTa mMo3BONSIOT HAWTH 001Iee
pelIeHne ypaBHEHUs COMTOHa Puyun, oTBeyaromiee qaHHOM KoHcTaHTe. OQHAKO ISl Pa3IMYHBIX 3HAYCHUH
KOHCTaHTBI DUHINTEHHA POJIb BEKTOPHBIX MoJieit KuuinHra urpatoT KoH(GOpMHO-KHIITUHIOBBI BEKTOPHBIE OIS,
B CBSI3U C Y€M BO3HHUKACT MOTPEOHOCTD B X M3yUCHHH.

B Hactosimield pabore uccienoBaH KOHQOPMHBIH aHANOr ypaBHeHUs KuinmnHra Ha 2-CHMMETPHYECKUX
LIECTUMEPHBIX HEPA3JI0KHUMBIX JIOPEHIIEBBIX MHOI000Pa3usiX, U3yueHbl CBOWCTBA KOH(GPOPMHOIO MHOKUTEIS
3TOr0 ypaBHEHMs Ha HUX. YCTaHOBJIEHO, YTO KOH(OPMHBII MHOXHTEIb KOH(GOPMHOIO aHAJIOTa YpaBHEHUS
Kunnuara 3aBucut oT moBeneHus TeH3opa Beins. Tak, eciau TeH3op Beiins HeTpuBHalieH, TO KOH()OPMHBIN
MHOYKHTEIb MOCTOSIHEH (IaHHBIN CTydaii nccienoBaH panee B padotax [3; 4]). Eciu sxe Tenzop Beiins rpusuanes,
TO KOH(QOPMHBIN MHOKUTEIH U 00IlIee pelieHne KOHPOPMHOTO aHaora ypaBHeHusi KuiinHra BeIpakatoTcst
yepe3 ¢pynkuuu Diipu. Kpome Toro, asis cioyyas paBeHCTBa HYJIIO TeH30pa Beliss mocTpoeHsl HOBbIE HETPH-
BUAJIbHBIE TIPUMEPHI KOH(POPMHO-KUIIIMHIOBBIX BEKTOPHBIX I10JIEH C IEPEMEHHBIM KOH(OPMHBIM MHOKUTEIIEM.

IIpenBapureiibHbIe CBeICHUS
[IceBnopuMaHOBEIM MHOTOOOpa3nueM Ha3bIBAETCS IIaKoe MHOrooOpasue M, Ha KOTOPOM 3ajaH IVIaJKUi He-
BBIPOXKJICHHBIN CUMMETPUYHBIN METPUUECKUI TEH30p g. ECii METpUYeCKHii TEH30p UMEET CUTHATY Py (1, n-— 1),
TO (M, g) Ha3bIBACTCS JIOPEHIIEBBIM MHOTO00Opa3nueM.
[ceBmoprManoBO MHOTOOOpasue (M, g) Ha3bIBaeTCAd CUMMETPHUYECKHUM MOpsKa k, HIU k-CHMMeTpHye-
CKUM, €CJIU ViR = 0, ViR # 0, tme £ > 1, R — TeH30p KPUBU3HBI (M, g), a 'V — cBsa3HOCTh JIeBU-UHUBUTEHI.

B paborax [5—7] M. Kasn u H. Yomnax moxasam, 9To OIHOCBS3HOE JIOPEHIIEBO CHMMETPUYIECKOE TIPOCTPaH-
CTBO M30METPUYHO MPOU3BEACHNUIO PUMAHOBA CHMMETPHYECKOTO IPOCTPAHCTBA M OIHOTO M3 CIEAYIOMNX JIO-

PEHIIEBBIX MHOTOOOPA3Nii: (R, dr’ ), YHHUBEPCAJILHOI HaKphIBAOIIEH A-MepHOTO pocTpaHcTBa ae CUTTepa mim

antu e Cuttepa (k < 2), nmpoctpanctsa Kasna — Yonnaxa, T. e. mpoctpancta CH"* 2 (A) = (R” 2 g) C MET-
UKo

g= —2du(dv + Aijxixjdu) + Sl].xizj,

rae 8, — cuMBOIIBI KpoHekepa; A;; — MaTpUYHbIC KOHCTAHTBL.
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Jlanee Bce paccmarpuBaeMble JIOPEHIIEBEI MHOT000pa3ust Oy/ieM rmoJiarath JOKaJIbHO Hepa3IoKUMbIMH, TaK
Kak 13 Teopembl By [8] BeITEKaeT, 4To J11000€ JIOPEHIIEBO MHOT000pa3He JIOKAIbHO MOXKET OBITh MPE/ICTaBICHO

B BHJIC MPSIMOTO MPOU3BEICHUSI HEKOTOPOTO PUMaHOBa MHOTO00pa3us (Ml, gl) 1 JIOKQJIBHO HEPa3I0KUMOTO
JIOpEeHIIeBa MHOTO00Opa3us (Mz, 2 )
2
Omnpenenenue 1. O6O6HIGHH20€ npoctpancTBo Kasna — Yommaxa (C Wi, g) pa3MepHOCTH 1 + 2 > 4, 110-
psanka d onpenensgercs kak R" % ¢ meTpukoii

g =2dudv + Zn:(dxi )2 + zn: aij(u)xixjduz, A =(al.j(u)) = i[—[iui,
i=0

i=1 ij=1
rae H, — cuMMeTpuyecKre OCTOSHHbBIE MaTPUILIBI Pa3Mepa 1 X 1.
Teopema 1 [1; 9]. Jlokanbro nepasznodxcumoe nopenyeso MHo2oodpasue (M , g) pazmeprocmu n + 2 > 4
ABIAEMCA 2-CUMMEMPUYECKUM (3-CUMMEMPUYECKUM) 8 MOM U MOIbKO 8 MOM ClyHae, ecii OHO JOKAIbHO U30-
MempuuHo 0bobwennomy npocmparcmey Kasua — Yonnaxa (C W 2) nopsiokad =1 (d=2).

Omnpenenenne 2. [71agKoe nonHoe BeKTOpHOE 1osie K Ha (TICEB10)pUMaHOBOM MHOTO00Opa3uu (M , g) Ha-
3bIBAETCSl BEKTOPHBIM TosieM KuiiinHra, eciiu BeIIONHSAETCS paBeHCTBO Ly g =0, rae L, g — npousBoaHas Jlu
METPUYECKOTO TeH30pa BAOJIb MoJs K.

Omnpenesenue 3. [TaaKoe MorHOE BEKTOpHOE moie K Ha (TICEBI0)pUMAaHOBOM MHOTOOOPA3HH (M , g) Ha3bI-
BaeTCsl KOH(OPMHO-KUIIIMHIOBBIM BEKTOPHBIM HOJIEM, €CIIH BBINOIHAIETCS PaBEHCTBO Ly g = f ( p) g, e Lyg—
npou3BoaHas JIn MeTpuueckoro TeH3opa Baojb noist K, p € M, a f ( p) — TIajikast BelecTBeHHast (PYHKIIMS Ha
MHOT000pa3uHu.

Ilycto (M , g) — 2-CHMMETPHUIECKOE JIOKATHLHO HEPa3IOKUMOE JIOPSHIICBO MHOTO00pa3ne pasMepHOCTH 7.

Ucxons u3 padotsr /1. B. AnexceeBckoro u A. C. I'anaesa [1], BeiOepem B (M , g) JIOKaJIbHYIO CUCTEMY KOOp-

1 .2
JIMHAT (v, X, X5 ., x" u) TaKyIo, 94T

U N2 & 2
g:2dudv+2(dx’) + Hjox'x! + ZuHiil(x’) du?, (1)
i=1 ij=1 i=1

rae H, — cuMMeTpHYeCKUe TOCTOSHHbIE MATPHILIBI pa3Mepa 71 X 1; | — HeBBIPOXKAECHHAs TUaroHaIbHas MaTPUIIA.

B ypaBHeHuu koHpopMHOro aHanora ypasHenus Kuminnra L, g = f ( p) g BUJA KOH()OPMHOTO MHOKUTEIS
f ( p) 3aBUCHUT OT TOTI'O, SIBJISIETCS JIM METPHUKA g KOH(QOPMHO-IIOCKOH. IlyTeM npsiMbIX BBIYMCIEHUH KOMIIO-
HEeHT TeH3opa Beiins merpuku (1) nokaspiBaeTcs cieayomas JieMmma.

Jlemma. Pagencmeo menzopa Betins mempuxu (1) nynto (W = 0) pasnocunvro ycrosuam, umo ece H,, pas-
Hbl Medicdy cobot, éce Hi;y pasrol medicdy cobou, a npu i # j umeem Hy, =0.

HoxazarenscTBo. Tenszop Beiinst Ha MHOrooOpasuu ¢ MeTpukoii (1) nmpuHIMaeT BU

1 n
W= (2= n)(Hyu + Hyg) + D (Hyu + Hyg ) | x

i Ji
n—2 i

X Z(a’udxidudxi + dx' dudx' du — dudx' dx'du — dx' dududyx’ ) +

i=1

+ Hyo(1-8;) D" (dud’d’du + dix' dududs’ ~ duc'duds’ - dix'duds’ du).
i j=1
3ameTHMm, 4TO B CITydae, KOrya i # j, KOMIOHEHThI TeH30pa Beiins mpu dudyx' dx’ du,, dx' dududyx’, dudx’ dudx’
u dx'dudx’du pasubl H ;. Cnenosarensro, ecinu W= 0, To npu i # j umeem H,=0.
Bce kommnonenTsl Ten3opa Beitnst nipu dudx’ dudx', dx' dudx'du, dudx'dx'du w dx' dududx' ¢ ToaHOCTBIO 10

3HaKa UMCIOT CJ'IGI[yIOHII/Iﬁ BU:

1 n
—Hyu—Hy, + _Z(Hjjl” +H )
n—-255

[IpupaBusiem K Hy110 K03((GHUIMEHT IIPU U, & TAKXKE CBOOOIHBIN WIECH JaHHOTO BBIPAsKCHMUS:

1 n
il n_2jzzl Jjl

31



Kypnaa Besopycckoro rocyrapcTBeHHOro yausepcurera. Maremaruka. Madopmaruxa. 2025;3:29-37
Journal of the Belarusian State University. Mathematics and Informatics. 2025;3:29-37

1 n
-H.,+—— ) H.,=0.
ii0 n_zjzﬂ Jjo

Tak Kak 5TH ypaBHEHHs JOJKHbI OBITh CIIPABEIMBBI IIPU TI00BIX 1 < i< 7, TO U3 HUX CIIEyeT, uTo Bce H
paBHBI MEXIy cOOO0M 1 Bce H ;) Takxke paBHbI Mex 1y co00il. JleMma noka3aHa.

HlecTumepHslii ciryyaii

[lepeiinem k aHaM3y ypaBHEHUs! KOH(OPMHO-KUIITMHIOBA BEKTOPHOTO Nos. 3aduKcupyeM Touky p € M
U pacCMOTPHUM ypaBHeHHE L, g = fg B JOKanbHbIX KoopauHarax (1) B okpectHocTH 3TOM Touku. C yde-
TOM pe3yabraroB padotsl [10] Oyaem cumTarh, 4yTO IIaakas (QyHKUUS [ 3aBUCUT TOJIBKO OT MEPEMEHHOH u.

dF(u)

Hcxonst U3 9TOr0, MOXEM IMPHHSATH, YTO [ = Il HeKoTopol (yHkmu F (u) s mpocToThl U3110-

4
3 =Z, X = t. 0603H8HI/IM KOOpAMHATBI MCKOMOI'0 BEKTOPHOI'O

JKEHHsT Oy/eM IoNararth, 9to X' =x, X’ =y, x
nona K depes V=V(v, X, Y, Z, t, u), X=X(v, X, Y, z, L, u), Y=Y(v, X, Y, z, t, u), Z=Z(v, X, ¥, Z, , u),
T=T(v, X, ¥, Z, t, u), U=U(v, X, V, zZ, t, u) V,X, Y, Z, T, U— tnankue ¢yHKImn), H =H110x2 +2H 5 xy +
+ 2H 30Xz + 2H o xt + Hopoy? + 2H vz + 2Hoyovt + Hyyg2° + 2Hyyo 2t + Hyyot” + u(me2 + Hypy* +
+ Hmz2 +H 44112 ) B pesynbrare moigyunM cucteMy ypaBHEHHH KOH(DOPMHO-KIJUTHHTOBBIX BEKTOPHBIX IT0-
JIeH B JIOKAJIbHBIX KOOPINHATAX:

U,=0,

U +X,=0,U,+Y,=0,U,+Z2,=0,U,+T,=0,

X, +Y,=0,X,+2,=0,Z,+Y,=0,X,+7,=0,Y,+7,=0,Z,+T,=0,
2X,=f,2Y,=1,2Z.= [, 2T, = [, )
Uu,+V,=f

HU +X,+V,=0,HU, +Y,+V,=0,HU, + Z,+ V. =0, HU, + T, + )] =0,
—-fH+2HU,+2V, + XH, +YH, +ZH, +TH,+ UH,=0.

Paccmotpum Bece ypaBHeHus1, Kpome nocienHero. M3 Hux, cienys paccyxkaeHusam pador [4; 11; 12], momy-
4aeM CUCTEMY

1 dF(u
X:E d1(/l )x+C1y+sz+C3t+b1(u),

1 dF (u)

v+ Gz + Cyt + by (u),

3
1dF(u)z+C5t+b3(u), )

2 du
1dF (u
T=—C3x—C4y—CSZ+E di )t+b4(u),
V:—dbl(u)x B dbz(”)y_ db3(u)Z B db4(u)t— PN d2F(u) iC,
du du du du 4 du*

rae C; — IpOU3BOJIbHBIE KOHCTAHTHL, a bl.(u) — magkue QpyHKIUM, onpeaensieMble CUCTeMOR TudQepeHnab-
HBIX YpaBHEHHUN bl(u) = al.j(u)bj(u). Orta cucreMa ¢ 3aJaHHBIMU Ha9aJIbHBIMU YCIOBHSMH pa3pernma, 1 pas-
MEpPHOCTB MPOCTPAHCTBA PELICHUI ITpH OOJbIIEH pa3MepHOCTH paBHa 2n (oxpobdHee cM. [3; 12]).
[loacrasnss nonydeHHbIE BEIpaKECHHS B ypaBHEHHE (2), ©MeeM
dF (u)
du

(”(mez + H221y2 + H33122+ H441t2) +H110x2+ 2H 5 xy +
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+ 2H 3gxz + 2H o xt + HopoV* + 2H 30 vz + 2H oy vt + Hyyg 2> + 2Hyyy 2t + H yyt ) +

1 dF (u)
ot Cy+ Cyz+ Gyt + by(u) |(2H, jux + 2H, g x + 2H 50y + 2H 30z + 2H 1) +

du
1 dF (u)
-Cix + Ed—y + Cyz+ Cyt + b, (u) (2H221uy +2H 50X + 2H 00y + 2H 30z + 2H24ot) +
u

1 dF (u)
+| -Cox—Cyy+ 3 2+ Cst + by (u) |(2Hs3uz + 2H 30X + 2H 30y + 2Hy30z + 2Hyt ) +
u

1 dF (u)
+| -Cix-C,y—Csz + Ed—t+ b, (u) (2H441uz +2H 40x + 2H 40y + 2H 0z + 2H440t) -
u

dzbl(u) dzbz(u) d2b3(u) d2b4(u) 2+ + 22+ d3F(u)
-2 —Xx—2 —y -2 —z—2 - T+
du du du du 2 du

+ F )y + Hopy 7+ Hg 2 + Hygt ) =0. (4)

Jlanee mokaxem, 4To B ciy4ae, Korjaa TeH3op Beiins merpuku (1) HeTpUBHANEH, 5TO PABEHCTBO MOXKET BBI-
dF (u

TIOJTHATHCS TOJBKO JIJISt TIOCTOSIHHOM (DYHKIMH f = d( )

u

Teopema 2. [lycmo M — 2-cummempuyeckoe wecmumepHoe HepazioHCUMoe JI0PEHYEe80 MHO2000pasue ¢ me-
mpuxoti (1) u nempusuanvrvim menzopom Beiins. Toeoa koughopmuoiii muodcumens f ( p) KoHghopmHo20 ana-
noea ypasuenus Kunnunea Ly g = f ( p) g NoCmosiHeH.

HoxazaTtenbcTBo. JleBas yacTh ypaBHeHUS (4) SIBISETCS MOTMHOMOM OTHOCHUTEIHHO MEPEMEHHBIX X, ),

z, 1, ero K03hGUIHEHTE Py X7, ¥°, z°, 1% TOKHBI 06PAIIATECS B HYIIb:

1 d3F(u) N 2dF(u)
d

(”Hm +H110)_ 2C H y = 2C,H 3y — 2C3H 4 +H11]F(u)=0,

2 dd
1 d3F(u) dF(u)
R +2 y (uHyyy + Hypy ) + 2C Hypg = 2CyH 3y — 2C,H g + Hop F (u) =0,
U '
1 d3F(u) dF(u)
T +2 y (uH 3y + Hysg ) + 2C,H 39+ 2C3H 30 — 2CsHyyg + Hig F (u) =0,
U u
1 d3F(u) dF(u)
R 2 (uH 4y + Hyyo) + 2C3H 4o + 2C,Hyyg + 2Cs Hoyg + H yy F (1) = 0.
du du
PaccMoTpuM nousieHHbIE PA3HOCTH TUX YPaBHEHUI:
dF (u
2 ( )(”Hm + Hyjg—uHyy, _szo) + F(”)(Hm _H221) -
—4CH ) — 2CH 30 — 2G3H 49 + 2C3Hy30 + 2C, Hpy = 0, (5)
dF (u
2 ( )(“Hm + Hyjo— uHyyy — Hyyg ) + F (u)(Hyyy — Hysy ) —
= 2CH ) —4C,H 30 — 2C3H 4 — 2C3H y30 + 2C5Hyy, =0, (6)
dF (u
2 ( )(qull + Hyyg—uH gy = Hyyo ) + F(u)(Hyy — Hyyy ) =

= 2CH y9 = 2C,H 30 = 4C3 Hygg = 2C4 H g = 2C5 Hyyg = 0, (7)
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dF (u
2 dfl )(”H221+H220_“H331—H330)+F(”)(H221_H331)+2C1H120_

- 2C'ZI_IBO - 4C3H230 - 2C'4[_[240 + 2C'SI—[340 = O’

2dF(u)

(”szl + Hypy —uH gy _H440) + F(”)(szl _H441) +2CHyy -

- 2C3H230 - 2C'31_1140 - 4C’4I_124() - 2C'SI_[340 = 0’

2a’F(u)

(uHyyy + Hyyg = uH 4y = Hygg ) + F (1) (Hyzy = Hyyy ) +

+2C,H 30+ 2G5 H g = 2C5H 49 = 2C4 H gy = 4C5H 340 = 0.

Jlanee pacCMOTPHUM IIOIy4E€HHbIE YPABHEHUS B PA3HBIX CIIydasix.
Cnyuau 1. Ecm H, = H,,, = Hy5, = H,,, TO paccMaTpuBaeMble ypaBHEHHs IPHHUMAIOT BUJL

dF(u)

2—(H110 - szo) —4C H 5y —2C,H 30 — 2G3H 49 + 2C3H 3 + 2C Hopyy =0,
dF(u)

2 » (Hllo - H330) —2C\H 5y —4C,H 3y — 2C3H 4 — 2C3H 30 + 2C5 Hyy = 0,
dF(u)

2 (Hno 440) 2C\H ) —2C,H 3y — 4G H 4y — 2C, Hyyg — 2C5Hyyy =0,
dF(u)

2 (szo - H330) +2CHypy = 2C H 3y — 4C3H 550 — 2Cy Hopyg + 2C5 Hoyyg = 0,
dF(u)

2 (szo - H440) +2C H = 2CH 3 — 2C3H 49 — 4Cy H oy yg — 2C5 Hoyyy = 0,
dF(u)

27(H330 - H440) +2C,Hy30 + 2C3H yy) — 2CH 4y — 2C, Hyyy — 4Cs H oy = 0.

dF(u)

du

Cryuaii 2. Ecin oqu 13 H ;) He OyeT paBeH OCTalbHbIM (IyCTh UL ONpesieneHHoctn Hyy = H;, j =2, 4),

nozenus ypasHenue (5) Ha H,,,— H,,,, ypaBHenue (6) Ha H,,, — H;;, n ypaBHenue (7) Ha H,,, — H ,,, nomy-
quM

CnenosarensHo, npu H,; = Hyy = Hyy = Hyyyu Hyy# H 0, i =1, 4, j =1, 4, unmeem = const.

JJO’

dF(”) Hy g — Hyy 4C\H py = 2C, H 30— 2C3H g + 2C3H p30 + 2C, Hoyyg
2 u+ =0,
du Hy\ — Hyy, Hy\ = Hy,
dF(“) Hyy— Hyy CiH\y —4CH 50— 2GH 4o — 2CH 350 + 2CsHyyy
2 u+ =0,
du Hy\ — Hyy Hy\ — Hyy
dF(“) Hyyg— Hyg —2CH ) = 2C H 30 — 4G H 40 — 2C, H g —2C5Hiyyy
2 u+ =0.
du Hyy — Hyy Hyy — Hyy
Mycts D1=2H”° 2H220’ Dz— H,y 2H33o, D3:2H110_2H440,
Hy\ — Hyy, Hy\ — Hyy Hy\ — Hyyy

—4C H 5y —2C,H 5y — 2C3H 4y + 2C3H 3 + 2C, Hyy

E=
Hyyy = Hyy
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—2C H = 4C, H 30 — 2C3H g — 2C3H 30 + 2C5Hyy

E,=
Hlll - H331

— _2C1H120 — 2C‘2[_[130 — 4C3H140 — 26141—1240 _ 2C'51—1340

Ey= :
Hlll _H441

Torma umeem

dF(”)(zu + D)+ F(u)+ E =0,

dF(u)

(2u +Dy) + F(u) + E, =0,

u
( )(2 +Dy)+ F(u)+ E;=0.
3ameTuM, uto eci Dy =D, =D, u E, = E2 = [E;, TO JOCTaTO4YHO PacCMOTPETH IIEPBBIE /1BA IIOJIyYEHHBIX YPaB-
HeHus. OcTaJbHbIE YPABHEHUS PACCMATPUBAIOTCS AaHAJIOTHYHO.
dF (u
Ilycte D, # D,. BerareM U3 1epBoro ypaBHEHHs BTOPOE: ( )
du

dF (u)

du
IIycts D, = D,. Berutem u3 ypaBHeHus (5), yMHOXKEHHOTO Ha H,,,, ypaBHeHHe (6), yMHOXKEHHOE Ha H | ;:

(D1 — D2) + E, — E, =0. CnegoBarensHo,

npu D, # D, nony4aeM NOCTOSHCTBO

d*F(u)(H, -H dF (u
dug )( 1112 221J+ dl(/l )(2H110H221_2H220H111)_4C1H120(H221+H111)_

=20, H 30H yy = 2C3H 4o H ) + 2C3H 30 Hyyy + 2C, Hoyo Hyy = 0. (8)
Boipasum u3 ypasrenust (5) mponssozyto dyHkumn F (u) depes dpyrkuuo F(u):
dF (u) _ —F () (Hyy — Hyt) = (4C Hypg + 2CyH 30 — 2C3Hogg + 2G5 H gy — 2C4 Hyyg )
du 2u(H,y — Hypy ) + 2H, 30 — 2H g

Brryrcnum U3 MOydeHHOTO BBIPAXKEHHUS MOOYEPETHO BTOPYIO M TPEThIO mpownsBoxankle. [lomaras, uto S =
=4C\H )+ 2C,H 5y — 2C3H 55 + 2CH 4 — 2C4 H 4y, 1MEEM

dr (u) _ F(u)(Hyy —Hy )+ S
du 2”(Hm_szl)"'2111110_2['1220

2

sz(“) (“)(Hlll_H221)2+3S(H111_H221)
du’ ( (Hlll_HZZI)+2H110_2H220)2
d°F(u) _ 1SF(u)(Hy, —Hy,, ) +158(Hy, —H221)2‘
du’ ( u(Hyy, ~ 221)"'2Hno_2szo)3

[loacraBum 511 TpoU3BOAHBIE B ypaBHEeHHE (8). B pesynbrare momyunm cienyromiee ypaBHeHHE B 00IIEM BUJIE:
T; (u)F ( ) + 7, ( )— 0, roe 7 ( ) n’l, ( ) HEKOTOpPBIE MOCTOSHHBIE MHOTOWICHBI, 3aBUCSIIIHE OT U, K03 du-
LIMCHTBI KOTOPBIX MOXHO BbIpasuTh yepes Hy u C,.

3ameTuM, uto F ( ) paumoHanbHas GyHKuUs. B To ke Bpemst ypaBHeHHE (8) ¢ TIOMOIIBIO JTMHEHHOW MO/~
CTaHOBKH CBOJUTCS K OTHOPOAHOMY M depeHInaTbHOMY YPaBHEHHIO TPETHETO MOPSAKA C TOCTOSHHBIMU KO-
a¢duirenTamu. B TakoM ciydae perieHreM ypaBHeHus (8) He MOXKET ObITh palMoHasnbHas pyHkims. Cienosa-
TeNbHO, [ (u) — TMOCTOSTHHAS (PYHKIIHS.

Kondgopmuo-niockuii ciryyaii pasmepHoctu 6
C yueToM BBIIHGHpPIBCI[GHHOfI JIEMMBbI MeTpI/I‘-IeCKI/Iﬁ TEH30p UMECT BU/]

g =2dudv + dx* + dy* + dz* + dt* + (b(x2 +y2+22+t2) + au(x2 +y + 20+ tz))duz,
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tnea=H,=Hy, =Hy=Hyyub=H, =Hy,=H;,=H 4 — IpOU3BOJILHbIE IOCTOSIHHBIE. B Takom ciry-
4ae nosydaeM JuddepeHIranbHoe ypaBHeHHE OTHOCHTENBHO GyHKimn F (u) creyromtero Bija:

3
_ld F(u) N 2dF(u)
2 di’ du

U3 storo ypaBHeHust pyHKuus F (u) BBIPaKAeTCs KaK

(au +b) + aF(u)zO.

2 2

awtbl o dirpai] P2 i) PEE 1 o iryi] O +f , ©)

2 2
(-a)3 (-a)3 (-a)s (-a)3
. . . . n
tie AiryAin AiryBi —aactabie pemieHust nudhepeHnnaibHoro ypapaenus )" — uy = 0, Ha3piBaeMble QYHKIIHS-
Mu Diipu. Ito muddepeHnraIbHOe YpaBHEHHE UMEET Ha TeHCTBUTEILHON OCH TOUKY, B KOTOPOU BHJI PEIICHUS

MEHSIETCSI C KOJICOIOMIETOCS Ha SKCIIOHEHITHATBHBINA. J{71s1 MeHCTBUTENBHBIX u PYHKIHS DUpH IIEpBOTO poaa
oTipenensieTcs CIeayIOIuM HECOOCTBEHHBIM HHTETPAJIOM:

1 +00 x3
Airydi(u)=— I cos| — + ux |dw.
T 3
0

JIpyruM NUHEHHO HEe3aBUCHMBIM YaCTHBIM PellleHHeM JIAHHOTO YpaBHEHHUs sBIseTcs GyHKuus Dipu BTopo-
TO poa, y KOTOpoil MpH X —> 00 KoneGaHus UMEIOT Ty ke aMILIATY/y, 4To U y (yHKIuH DiipH mepBoro poaa

o T y y

AiryAi(u), Ho otmuarotcs no pase Ha 5 JIi1st eWCTBUTENBHBIX 1 QYHKLUS DWPU BTOPOTO POJA BHIPAKAETCS
CITEIYIOIIMM HHTErpazoM :

F(u)=C Airydi

1% X NES
AiryBi(u)=—=| | exp| —— + ux |+ sin| — + ux | |dhx.
o) | ool 5 s
B nannOM cnyuae nMeem BeKTOpHOE Tone Buja (3), rue

au+£) + C, AiryBi au+b

(-a): (-a):

bl(u)=C4AiryAi

au+b + C, diryBi au+b ’

(-a)s (-a)

by (u) = CydiryAi

(10)

by(u) = CyAiryAi + Cy AiryBi

b b
WOy, diryBi| T

(~a)s (-a)s

ABJIAIOTCS PELIEHUSIMU ypaBHEHUS Ly g = f ( p) g s cuctemsl (1), a KOHQOPMHBII MHOKUTEIb IPUHUMACT
BUJ

b,(u) = CygAiryAi

"”*f’ AiryAi 1,L+2b 2aC, irvBi] “ | dirypi| 1, S0

- o) L) (o)t (o)) .

2

(o)} (-a)

chedop;OK M. B. Diipu pynkunu // Maremarndeckas sHipkioneans : B 5 T. T. 5/ mr. pen. . M. Burorpaznos. M. : CoB. 3HITUKIL,
1985. C. 939-941.

2aC,, AiryAi
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2aC,, AiryAi| 1, ““f AiryBi ‘””zb 2aC, s AiryAi “’”zb AiryBi| 1, 2”
—-a)3 —-a)3 -a)3 -a)3

. o) ), o) L),

(-a)s (-a)s
Teopema 3. Ilycmo M — 2-cummempuueckoe ulecmumepHoe Hepasiloicumoe J10peHyeso MHO2000pasue
¢ mempuxou (1), menzop Beuna komopozo paeen Hymo. Toeda peuwieHue KOHGOPMHOZ0 aHA02a YPABHEHUS

. dr (u) .
Kunnunea Ly g = f ( p) g U KOH@OpMHBIIL MHONICUMENL [ = ONpeOesiomcst 8 JIOKAAbHOU CUcmeme Ko-
opounam (v, X, V, Z, L, u) moyku p uz coomuowernuii (3), (9)—(11).

3ameuanue. JlokazaHHas TeopeMa POAOIKACT UCCIEI0BaHNs, Ha9aThle B padboTe [4], ¥ MO3BOISIET MOCTPOUTH
HOBBIE HETPUBHAIBHBIE MPUMEPHI KOH(OPMHO-KUITHHTOBBIX BEKTOPHBIX TIOJIEH C TEpeMEHHBIM KOH(POPMHBIM
MHOXHTEJIEM Ha 2-CHMMETPUIECKUX HePa3I0KUMBIX JIOPEHIIEBBIX MHOT00Opas3usax. Kpome Toro, pazpadoran-
HBIE METO/IbI JTAIOT BO3MOKHOCTH MTOJTyYUTh MHOTOMEPHBIN aHaJIOT T0Ka3aHHOW TEOPEMEI.
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ITIOAHAA CXOAUMOCTDb YACTUYHBIX B3BEHIEHHbBIX CYMM
OTPULATEABHO OPTAHTHO 3ABHCHUMbIX
CAYYAVHBIX BEATYVH

T.T.TY"

Y Tananzcruii VHUBEpCUmem — YHUepCcumem HayK u 00pasoeanus,
ya. Ton Jeix Txane, 459, 550000, . Hanane, Bbemnam

Annomayun. OrpunartenbHas OPTaHTHAS 3aBUCHMOCTh PACCMaTPHUBACTCS KaK 0000MICHIE HE3aBUCUMOCTH CITyYaid-
HBIX BenmuuH, kKotopoe BBenu K. J[xoar-JleB u @. [Ipoman. MHorue mcciaeoBaTe 3ydaid HEPaBCHCTBA U 3aKOHBI
OONBIMX YUCEN TSI TAaKUX MOCIIEeOBATeIFHOCTEH CITy9aliHBIX BEIMYMH. B 4aCTHOCTH, OHSATHE TIONMHOW CXOAWMOCTH,
onpenenennoe I1. JI. Xcy u I. Po66uncoM, MPUBIEKIO 3HAYNTEIHHOE BHUIMAHHE. YCTAaHABIMBACTCS TIOHAS CXOIUMOCTh
JIJISl YaCTUYHBIX B3BEIICHHBIX CYyMM OTPHUIIATENIbHO OPTAHTHO 3aBUCUMBIX CIIyYalHBIX BEJIMUMH, HaJl KOTOPBIMH IOMUHU-
pyer ciydaiinas BenuuuHa X. [I[puBoasTCS JOCTaTOUHBIE YCIOBUS TaKOW CXOAMMOCTH MPH BBIMOJIHEHUH MITKUX TPEo-
JIO)KEHUH OTHOCHUTEIBHO BECOB U MOMEHTOB CIy4YailHOW BEIUUUHBI X.

Knrouesvie cnosa: nonnas CXOOUMOCTB, OTpULIATEIIbHAs OPTAaHTHAA 3aBUCUMOCTD, B3BCIICHHBIC CYMMBI; IIPEICIIbHLIC

TEOPEMBI; 3aBUCHUMBIC cnyqaﬁm)le BCIIMYHHBI.

OO0pa3en UMTHPOBAHUS:

Ty TT. IlonHast cXOAMMOCTb YACTUYHBIX B3BELIEHHBIX CYMM OT-
pHULIATETIHFHO OPTAHTHO 3aBUCUMBIX CIYyYaliHBIX BETUUUH. JKVp-
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COMPLETE CONVERGENCE FOR PARTIAL WEIGHTED SUMS
OF NEGATIVELY ORTHANT DEPENDENT
RANDOM VARIABLES

TLTTU?

*The University of Danang — University of Science and Education,
459 Ton Duc Thang Street, Danang 550000, Vietnam

Abstract. Negatively orthant dependence is regarded as a generalisation of independence for random variables, intro-
duced by K. Joag-Dev and F. Proschan. Numerous researchers have investigated inequalities and laws of large numbers
for such sequences of random variables. In particular, the concept of complete convergence, defined by P. L. Hsu and
H. Robbins, has attracted significant attention. Complete convergence for partial weighted sums of negatively orthant de-
pendent random variables dominated by a random variable X is established. Sufficient conditions for this type of conver-
gence are provided under mild assumptions on the weights and the moments of random variable X.

Keywords: complete convergence; negatively orthant dependence; weighted sums; limit theorems; dependent random
variables.

Introduction and preliminaries

The concept of a complete convergence was introduced by P. L. Hsu and H. Robbins [1] while K. Joag-Dev
and F. Proschan introduced the definition of negatively orthant dependent (NOD) sequences [2]. Since then a wide
range of limit theorems for NOD random variables have been developed by numerous researchers. H. C. Kim
established a Hajek — Rényi type inequality [3] while N. Asadian and his colleagues obtained a Rosenthal-type
inequality [4]. In addition, A. Volodin presented the Kolmogorov exponential inequality [5]. Results concer-
ning almost sure convergence appear in the articles [6—8]. Complete convergence has been investigated by the
authors of the works [9—15]. This paper aims to establish complete convergence for partial weighted sums of
NOD random variables dominated by a random variable.

Definition 1. A sequence of random variables {X s N2 1} is said to converge completely to a random vari-
able Xif forall € >0

> P(|x,-X|>¢e) <o
n=1
Definition 2. A finite collection of random variables X, X,, ..., X, is said to be NOD if

P(X\>x, X,>x,, ..., X, >xn)sf[P(X,. >x;)
i=1

and

P(X,<x, X,<x,, ..., X, <x,)<[]P(X;<x)
i=1
for all x;, x,, ..., x, € R. An infinite sequence {X,,, n>1} is said to be NOD if every finite subcollection is NOD.
Definition 3. An array of random variables { X,
bles if for every n >1 {X,

ni>

1<i<n, n> 1} is said to be rowwise NOD random varia-
1<i< n} is a sequence of NOD random variables.

Definition 4. A sequence of random variables {X e B2 1} is said to be stochastically dominated by a ran-
dom variable X if for any x > 0

sup P(|X,|>x)< P(|X|>x).
nx1

Let / (A) be the indicator function of the set 4. The symbol C denotes a positive constant, which may be

different in each appearance, and a, = O(b, ) stands for a, < Cb,. The following lemmas are useful for the proof
of the main results of the work.
Lemma 1 [16]. Let random variables X,, X,, ..., X, be NOD; f,, f,, ..., f, be all non-decreasing (or all

non-increasing) functions. Then random variables f(X,), f>(X5), ..., f,(X,,) are NOD.
Lemma 2 [16]. Let X, X,, ..., X, be non-negative NOD random variables. Then
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E(ﬁXiJSﬁE(X

Lemma 3 [4; 12]. Let p > 2 and {Xn, nz 1} be a sequence of NOD random variables with E(Xn ) =0 and
E(|Xn|p ) < oo for every n 2 1. Then there exists a positive constant C depending only on p such that for every
nx1

P

p
n 2
<C iE|X,.|” + (Z‘;E|Xi|2J

J
24

E| max
lSanizl

Lemma 4. For anyxe Rand r e [1, 2] the following inequality holds:

P
? " 2
}< Clog”(2n) zp:E|X,.|” + [ZEPQF]
i=1 i=1

e <1+ x+ l|x|re‘x‘
r

Proof. Letus consider 2 cases.

1.Casex>0. Sincee*—1-x=¢" I te”'dt, it is sufficient to show
0

f(x)=1x" = [1e”dr >0 forall x> 0.
0

This inequality holds because f(0)=0,

2-r - 2- 2-r y_2_ 2- 2
x* et <supx” e =(2-r) oM i<t e =],
x>0

andf’(x)zxrfl(l X" x)>0 for all x > 0.

2. Case x < 0. From the case 1 we have

J
%|x|re‘x‘ > M jte"dt = (ex—l - x) + (e_x —e*+ Zx), x<0.
0

—X

Since e " —e* +2x >0 for all x < 0, we obtain

%|x|’e\x\ 2e'—1-x,x<0.

Lemma is proved.
Lemma 5. Let p, g >0 and {X s N2 1} be a sequence of random variables, which is stochastically domina-

ted by a random variable X with E(|X|” ) <w. Foralln>1and x > 0 the following inequalities hold:
(i) E(J2, ' 1(1,| <)) < E(1X] 1(|1X] < x)) + 0P > x):
(i) E(1X,['1(1%, > x)) < E(|x 1" 1 (1x]> x)). g <p.
Proof. Let us prove the inequality (i). We have
E(jx, "1(x,|<x))= jtqu |X,|<1)= qudp X, >1)=

>x)+IP( I

0

=—X

(=]
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=x'P(|X|>x) - fﬂdP(|X| >1)=x"P(|X]>x)+ ftqu(|X| <t)=
0 0

= P(|X]> %)+ E(|x['1(|x] <))

Let us prove the inequality (ii). From the inequality (i) for ¢ < p and letting x — o0 we obtain

E|X,|"<E|X]|" <o foralln>1.
Similarly, for g < p we have

+0o0

E(jx,["1(1x,]> %)) = jtqdp X,|<1)= Itqu X, >1)=

+00
=x'P(|X,|>x)+ [ P(|X,|>1)dt <
+0o0

<x'P(|X|>x)+ j P(jx|> 1)t = E(|x["1(x]> x)).

Lemma 6. Let { X,,, x > 1} be a sequence of NOD random variables with mean zero and 0 < B’ = Z EX7<oo.

Then for any x >0 and y > 0

Pl 2x)2 3 p(xifz) 2|3 - S 12|

n

Wwhere S, = Z Xy

ProofForaﬁxedy>0andeachn>1putX’ X,I1(X,<y)and S, = ZX’ Then we have

i=1

P(S,2x)=P(S,2x,8,#S,)+ P(S,2x,8,=5,)=

n

—P(S,%5,) + P(S,22)< > P(X, 2 y) + P(S, 2).

k=1

hu
Note that for a fixed / > 0 the function f ( ) e—}zzul is increasing for u. Since E (X A ) =0, forany y>0
u
y
[ dP(x, <t) jtdp <1)<0, k1.

Therefore,

y +00
Ee™i = [ M"dP(X, <)+ [ dP(X,<1)=

—o y

=1+ hfth(stz) + f(e’”—l— ht)dP(X, <t)<

31+Iiz dP(X <t)sl+¢jth
EAE y
hy _ py
Sexp[ey—};ylE(X,f)], k>1.

By Markov inequality and lemma 2, for any 4 > 0

e —hy -1

(Sf >x) th( hS;, )<e thEthk <exp( hx + y2

)<

sz
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1 xy
Put A =—log| 1 + —= | and get
! g[ sz ‘

n

, Xy 1 xy X X xy
S >x)<e RN — |- —log| 1+ = | |<exp| — — =log| 1+ —=||.
e e () R )

This implies that

Replacing X; with —X,, we also have

g ool )

Combining the last two inequalities, we obtain the desired result. Lemma is proved.

Main results
The following theorem extends the result of lemma 2.3 from the article [11] to the case r € (1, 2].
Theorem 1. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0 and
let {bn, nz 1} be a sequence of positive real numbers. We assume that there exists a positive constant v € (1, 2]
such that
max |X,;|=0(b,).

1<i<n

ZE|XM|F =0(b,),

Bl

Z b <ooforsomeoc>0.

Then Z X,; converges completely to zero.

Pr o o f. Applying lemma 4 for any 7z > 0, we have

E(exp(tX,,)) < E{l LIX, %|tXm.|rexp(|tXm.|)} ~1+ %E(|tXni|rexp(|tXni|)) <

1 r t r
<l+ 7E(|tXm| exp(Ctb, )) < exp[7exp(Ctbn)E(|Xm.| )]

By Markov inequality and lemma 2, for any € > 0

P[iXm > 8] < e’aEexthiXm} < eftgll[Eexp(tXmA)S

i=1 i=1 i=1

<eexp [é eXp(Ctbn)iE“er )] <e™™ exp(t’ exp(Ctb, )Cb, )
ol

Putz= (?—Jrll)_l for n large enough and C > 0 such that C (oc + l)r ¢ >1 we obtain
eb, ~

n

i=1

P[iXm‘ > 8] < exp((C(a +1) e eXp(C(OL + l)aflb,(qrfz)(r*l)i1 ) —o— 1),},}1(’1)l ) <

<exp| —C(a+1)'e™ s <exp s

n n
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Therefore,

MS

(z X, > SJ <o,
Since {—X,,;, 1<i<n, n>1} is still an array of rowwise NOD random variables, we can replace .X,,; with —X
from the above statement. That is

i=1

i (ZX < 8J<OO.

Theorem is proved.
Theorem 2. Let {Xni, I<i<n,nz 1} be an array of rowwise NOD random variables such that E(Xni)
1<i<n,n> 1} are stochastically dominated by a random variable X satisfying E (|X |p log|X |)

and {X,;,1<
1<i<n,n2 1} is an array of positive real numbers such that

for some p (1, 2). We assume that {am-, <
—1 -2

max |a,,|=0| n” andZam— n'te
1<i<n

n

Then z a,; X,; converges completely to zero.

1+p] put X,, =X, + X,., where

i=1 2
Proof Forge
2—
1
> XlZi:XniI |Xm‘|>nq ,”lZl,lSl‘Sn,

g

1

Xy =Xl || X, <0

For any € > 0 we have
n - EXni)

}’Il

>28}S

Zn:am(x,;; —-EX,)|>¢
i=1

=1

< E.O:P > ani(X;;i_EXrlli)
n=1 i=1
:(logn)fl, 257> P4

q-p

we get

For n large enough and b,
1 11

a, (X}, — EX!,) <2|a,|n” <cn® ? <Cb,,

r r
1+———
r|r q P
WX < Cn <Cb,,

am‘(Xr’u' _EX;:i)r S

i=1

0
(r-
Zeb" < oo for any o > 1.

Therefore, by theorem 1, we obtain
> SJ < o0,

> a, (X, —EX);)

n=1 [
Additionally, by Markov inequality, C -inequality and lemma 3, we have

[ Zam X” Xrltlz)

sciaﬁﬂ)@;’i EX"[ <CZ

2
<

Z am Xl! X"

>8j<—

1

|X,',’i|2:CZn:a5iE X1 [ X, > n
i=1

IN

0
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1
H < CZafiE{|X|2 I[|X| >plt? N <
i=1

1
<Cn'E |X|p+1]{|X| >n'*P B

1
a,.( Xy — EX) )| > g} <> nlE{|X|pHI[|X| >nltP N -
n=1

< Czn:afiE[|X|2 1(|X| >n’

i=1

Consequently,

© © o 1
3% [m”“ k1+P<|X|s<k+1>wJ .

ok L 1
= ZZ [|X|’”‘1 K'P < |X|<(k+1)+p | |<
© L 1
<CY log(k)E| | X" 1| K7 <|X|<(k+1)ivp ||<
k=1

o0 L 1
<Cy’ E[|X|p+llog(|X|)I[k”” <|X|<(k+ 1)1+pﬂ =
k=1

= CE(|X|"" log(|x])) <.

Theorem is proved.

Theorem 3. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0, 1<
<i<n, n21, which is stochastically dominated by a random variable X; {am., 1<i<n,n2 1} be an array of
positive real numbers; {bn, n> 1} be a sequence of positive real numbers, b, T oo. Let {wn(l), n 1} be a se-
quence of non-negative even functions satisfying the following conditions:

()T dW"()ias|t|T
| f

for some real number p € (1, 2] We assume that

A <oo an a EW’(X)
T2y <o X

Then

completely.
Proof. Note that for any r e [O, 2]

For a fixed n > 1 define
XM= b, 1(X,; <b,) + X, 1(|X,,|<b,) + b,I(X,; >b,), 1<i<n,

1
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> bns} =

Z am ni

Forany e >0

ni nl

2

>b,e, max |X |<b J+P{

<p[
(n)
iZam.EXi(”) —0 asn —> .

SP[Tn
ni=1

<|X,|1(|X,|<b,). 1<i<n, nx1. Since E(X,)=

by a, EX")|<
i=1

ni m

1<i<n

[

>b,e, max | X, |>anS

zam i

> b 8]+P(max |X |>bnjs
1<i<n

]+P(max |X |>b j
1<i<n

>b,e—

Zn:am’EXi(n)
i=1

We will show that

v, (1)
d

Indeed, it is clear that ‘X l.(")

Tas T, we have

<lb 1§;amE( 1(|x,]<8,)) +

1ZamE( 1(x,]>b,)) <

-

IA

b, Z a,E(X,1(X,

=1

1<5,))
'S 0, (01, ,)

v b IZamE(‘X

+ Zn:aniP(|Xm| >bn)£
i=1

<b! ZamE(|X|[(|X| >b, )) + ianiP(|X| >b,)<
i=1

i=1

o E(w(X)1(X]>8,)) & Ey(X)

S am. —+ ani LA N
i=1 ‘Vi(bn) ; \Vi(bn)

Thus, for n large enough
P( D a,X,,|>b SJ < P[

To complete the proof, it is sufficient to show:

(e

)+P( max | X, |>bnj.
2 1<i<n

and

n 2
Put B2 = ZaﬁiE(Xi(”) - EX,.(”))  n>1. Take x =2, by
i=1 2 2n
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Ex

1

< 221)(% X _

b - B’
>87"j+cz /T R
n=1 B2+8

n

2n

By Markov inequality, C,-inequality, lemma 5 and the facts that %|E||t|) T and W|i |(lt|)  as
t
w E , E‘X
I“<CZZa <CZZa

n=1li= n n=1i=

« n  ElX |PI(|X, |<b
$ S CARCASS

P
n:li:l bn

‘X — x|

w E <b,
<C al C alP(|X|>b,)<
n=1i=1 " b,

n n=1i=

and
2\
. ; I E‘Xl.(")
Ilzgcz(b,;zzaﬁiE(X}” EX(”))J <cY Y 11| <
n=1 i=1 n=1|i=1 bn
w [ s E(|Xm|21(Xm|£bn))n w [ n E(|Xm|p1(|Xm|Sbn))
<CY | Day - <CY | Day <
n=1|i=1 bn n=1|i=1 b;f
o E(|Xm.|p1(|Xm|Sbn)) !
<C Z a,; Y. <
n=1i=1 n
o o E(X1(X]<8,) & '
Cl Y. > ay, v + 2> anP(|X|>b,) | <
n=1i=1 n n=1li=1
© n Evy (X) 1
<C nzi d <00
(Zz w,»(b,,)J
On the other hand,

Theorem is proved.
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Theorem 4. Let {X

ni>

1<i<n,n21} be an array of rowwise NOD random variables with E(X,;)=0,
1<i<n, nZl} be an array of
positive real numbers; {bn, n> 1} be a sequence of positive real numbers, b, T oo. Let \|f(t) be a non-negative
even function satisfying the following conditions:

1 ¥,y

forsomerealnumberpe(l 2] PutA n t Za n>1,t>0.1If

1<i<n, n>1, which is stochastically dominated by a random variable X; {a

ni»

0 E (X) P 2 () E (X)
z::A(”’ ) \u\l](bn) <o, 1€{0,1}, and Z:}A (n, 2)log*”(n) \Vw(bn) <o,

n=1

then

Z anz ni

— max
b, 1<j<n|;

completely.
Proof. We continue to use the notations X;" ™) and T ™) introduced in the proof of theorem 3. For any € > 0

>st

>b 8}+P(1max |X |>b )

]+P( max |X |>bn).
1<i<n

b.' max Zam.EXi(”) <

1<j<n|%

J

Z am ni

P| max
1<j<n izl

J

< P| max Z
ISanizl

( )

77

J
< P| max T.( )‘>bs— max Z
1<j<nl’ 1</ <n|2

T, it follows that

(1)
i

Since

<b max
1<j<l’l

<b! Zn:aniE(|X|1(|X| >b, )) + Zn:aniP(|X| >b,)<
i=1 i=1

. [X]1(|X]>5,) Ey(X)
_A(n,l)E[b—J+A(n,1) \:’(bn) <

Za E (Xl (|Xu]>5,))

+ max ZamP(|X |>bn)£

]<j<n

n

Ey(X)

v(b,)

—>0 asn — oo.

<24(n,1)

Therefore, for n large enough

max Za
{1<]<n ni<* ni

It is sufficient to show that

b j+P(max |X |>bnj.
2 1<i<n
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and
J,= Z:l (1IPza<Xn|X | > bnj < oo,

On the one hand, by Markov inequality, lemma 3 and C,-inequality, we have
2p j
<

+ Zn:a,fiE‘Xi(") -
i=1

7;()

2
J, < CZ:lb ”E[ltgljazcn

_ gx® 2p

SCi b,*" log*” {Zasz

n=1

p
<Cb," log2p(n)[zaﬁfE‘X,-(n) Ty ZaﬁiE‘X,(”)zJ ]<
n=1 i=1 i=1

X, ['1(

SCibfplog {Zaz”E(

n=1

1(x,,|<b, )) + (Z}azE(

t t
On the other hand, by lemma 5 and the facts that \V( ) T and \V( )

< b"))]p }
4 ik

b2r Zn:aﬁf’E(|Xm|2p 1(|x,] <, )) <57y a,f,!’E(|Xm.|" 1(|x,] <, )) <
i=1 i=1

<b7Y o [E(|X|pl(|X| <b,))+ b7 P(|X]> b, )} <
i=1

v(X)1(1X]<B,))  Ey(X)
b

E(
SA(n, 2p) \V( n) + \Il(b,,)

]S CA(n, 2p)

and

3

ni

b2y aE (X, [ 1(X,]<b,))<

i=1

<b2A(n, 2)[E(|X|2I(|X| <b,))+ b2P(|1X|>b, )J <

< A(n, 2)[E£|X|2[(L#b”)} + P{W’l’(x) > wfl’(bn )]] <

n

b

n

i) E[|X|z<|X|sz)n>J+ B (X))

< A(n, 2)
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Therefore,

v(b,)
S Ey(X)
<CY 4”(n, 2)log* (n <0,
2 NG
For J, we have
J,< iip(|xm|>bn)s 3 nP(|X|>b,)< in%b)())<oo.
n=1li=1 n=1 n=1 YO,

Theorem is proved.

Without the assumption of stochastic domination of {X,;, 1<i<n, n>1} the proof of theorem 3 immedia-
tely yields the following result.

Theorem 5. Let {X,;,1<i<n, n>1} be an array of rowwise NOD random variables with E(X,;)=0,1<

<i<n,n2l; {am., 1<i<n,n> 1} be an array of positive real numbers; {bn, n> 1} be a sequence of positive

ni»

real numbers, b, T oo, Let { \un(t), n> 1} be a sequence of non-negative even functions satisfying the following
conditions:

‘Vn|(|| |) 1+ and YA\ \Ifn(| |) |t|T
i

for some real number p (1, 2]. We assume that

Ewi(X) <© an 3 2EW’ )<oo
$EEU 3 P,

n=1li=1 n) n=1i=1
Then

blianani —0

ni=1

completely.
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CIIEKTPAABHBIM METOA, YEBBIIITEBA
AAA PEHIEHW S ITOAHOTI'O OBOBIIEHHOTI'O
YPABHEHWS ITPAHATASA
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Annomayus. Crarbs ocBsIeHa MpobiieMe OCTPOCHUsI BEIYUCIUTEIBHBIX CXEM ISl pELICHUs] HHTErpo-1uddepeH-
UaJIbHBIX ypaBHeHHW [IpaHaTiis, BO3HUKAIOIMX BO MHOTHX 33jauaX MEXaHWKH. B Hell pa3paboTaHbl MpHOIMKEHHBIC
YHUCJICHHBIE aJITOPUTMBI JUIsl PEIICHHsI CUHTYJISIPHBIX MHTETpo-auddepeHnnaibHbIX ypaBHeHHH BU1a 0000IIEHHOTO
ypaBHeHus [Ipanamis. [Ipeanaraempie npHOIMKESHHBIC BEIYUCIUTENIBHBIE CXEMbl OCHOBAaHBI Ha TPECTABICHUN pelie-
HUSI YPaBHEHHS B BUJIE PA3JIOKEHHS [0 OPTOTOHAJIbHOMY Oa3ucy nmonuHoMoB YeObimeBa. Mcnonbs3oBaHue M3BECTHBIX
CIIEKTPaJIbHBIX COOTHOLIEHHH IO3BOJIMIIO OJIyYHUTh aHAJTUTHYECKOE BEIPAXKEHHE I CHHTYJIIPHON COCTaBILAIOLIEH ypaB-
nenus. Kax CJICICTBHUC, pa3pa60TaHHa;1 METOJMKa JEMOHCTPUPYCT BHICOKYIO TOYHOCTb M SKCIIOHCHIHUAJIbHYIO CKOPOCTH
CXOIIMMOCTH TPHOJIMIKEHHOTO PEIICHHUsT OTHOCHTENIFHO CTENEHH MHTEPHOJISIHOHHBIX MHOTOUJICHOB. BhruncnurenbHbie
KauecTBa JaHHOH METOJUKH IIPOJICMOHCTPUPOBAHBI HA TECTOBOM IpHMepe. B 4acTHOCTH, 1MOKa3aHO, YTO JTUCKPETHAs
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MO/I€JIb, OCHOBAaHHAaA Ha NPCACTABJICHHUU PCHICHUA B BUAC PA3JIOKCHUA 110 MHOTOYJICHAM qe6BH_HeBa, MIPUBOIUT K XO-
poIIo 00yCIOBICHHOM CHCTEME JIMHEHHBIX aareOpanvecKnx ypaBHEHHH 171 KOI(Q(HUIIMEHTOB Pa3IOKEHHUS, a CKOPOCTh
CXOIMMOCTH TIOTPEIIHOCTH MPUOIMKECHHOTO PELICHHS MOXKET JOCTUTaTh JTMHEHHOH CKOPOCTH OTHOCHTENIBHO CTEICHH
HHTEPIIOSIIHOHHOTO MHOTOUJICHA.

Kniouegvie cnosa: npuOIMKEHHBI YUCICHHBII allTOPUTM; CHHTYISIPHOE ypaBHEHHE; HHTErpo-AupGepeHIaIbHOe
yYpaBHEHHE; OPTOTOHAIBHBIN 0a3uc NoIMHOMOB YeObleBa; crieKTpaibHbIH MeTos YeOblmesa; 00001eHHOe ypaBHEHHE
[panarus.

brazooaprocms. PaboTa BBIOTHEHA B paMKax rOCYIapCTBEHHON MTPOrpaMMbI HAy4HBIX UcciieaoBannii « KouBepreH-
us-2025» (moamporpamma «MaTeMaTHdecKiue MOJISITH i METONb», 3ananne 1.4.01.2).

CHEBYSHEV SPECTRAL METHOD
FOR SOLVING COMPLETE GENERALISED
PRANDTL EQUATION

G. A. RASOLKO", V. M. VOLKOV", M. V. IGNATENKO"
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®Institute of Mathematics, National Academy of Sciences of Belarus,
11 Surganava Street, Minsk 220072, Belarus

Corresponding author: M. V. Ignatenko (ignatenkomv@bsu.by)

Abstract. This article is devoted to the problem of constructing computational schemes for solving Prandtl integro-dif-
ferential equations that arise in many problems in mechanics. An approximate numerical method for solving singular
integro-differential equations of the generalised Prandtl equation type has been developed. The proposed approximate
computational schemes are based on representing the solution of the equation as an expansion over an orthogonal basis
of Chebyshev polynomials. The use of known spectral relations has made it possible to obtain an analytical expression
for the singular component of the equation. As a consequence, the developed method demonstrates excellent accuracy
and exponential rate of convergence of the approximate solution in relation to the degree of interpolation polynomials.
The computational qualities of this method are demonstrated using a test example. In particular, it is shown that a discrete
model based on the representation of the solution as a decomposition by Chebyshev polynomials leads to a well-condi-
tioned system of linear algebraic equations for the decomposition coefficients, and the convergence rate of the approximate
solution error can reach a linear speed in relation to the degree of the interpolation polynomial.

Keywords: approximate numerical algorithm; singular equation; integro-differential equation; orthogonal basis of
Chebyshev polynomials; Chebyshev spectral method; generalised Prandtl equation.
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BBenenue

B Teopuu kpblla KOHEUHOTO pa3Maxa, KOHTAKTHBIX 3aJa4ax TEOPUH YIIPYTOCTH U APYTUX 3aJja4aX MEXaHUKH
CIUIOLIHOM Cpe/ibl BaXKHYIO POJIb UIPAET YPaBHEHHUE BUIA

L(x) 170
m_E_[:dzzf(x), ~l<x<l,

KOTOpOE HasbiBaeTcs ypasHenueM [Ipanarns'. 3necs B (x) uf (x) — u3BecTHbIe QyHKINU K3 Kiacca C [—1, 1],
a F(x) — rickoMasi QYHKIUS, YAOBJIETBOPSIIONIAs KPACBBIM YCIOBUSM Ha TPaHUIE HHTEpBaia F(il) =0.

Anpo ypaBHeHus [Ipanamis uMeeT CUHTYISIPHOCTB, YTO IIOPOXKIAET CYLIECTBEHHBIC TPYAHOCTHU IIPU YHUC-
JICHHOM PELICHUH BBIILIECYIOMSHYTBIX 3a[a4d C MCIOJIb30BAHUEM TPAJULIMOHHBIX I10IX0J0B, OCHOBAHHBIX Ha
HEIMOCPEACTBEHHOM anmpOoKCUMAaIlny MHTErpajia KBaaparypHbiMu Gopmyiamu [1]. B cBa3u ¢ 3TuM, Kak 1o-
Ka3aHO B MCCJIEIOBaHUSX psilia aBTOPOB (CM., Hampumep, [2—7]), BecbMa 3 deKTHBHBIH criocod 00paboTKu
MOZ0OHOTO PoJia CHHTYIIIPHOCTEH COCTOUT B MIPEICTABICHUH PEHICHUS 3a/1a4k U Ko3(QQUIIMEHTOB ypaBHEHUS
B BHU/I€ MHTEPIIOJIALIMOHHBIX IIOJIMHOMOB € HCIIOJIb30BaHHEM MOIMHOMOB YeOrnImieBa. J[aHHbINi TpueM ¢ yaeToM
M3BECTHBIX CIIEKTPATBHBIX COOTHOIIEHUH [8, . 188]

'Tony6es B. B. Jlexuuu 10 Teopru Kpbita. M. : Toc. H31-Bo TexH. Teoper. 1ut., 1949. 480 c.
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ll T,(t) dr ~U, ,(x)
ne o tx n-IATP
) (1)
1 ¢ dr
EI 1=2U, (1) 7= =-T,(x), -I<x<ln=123 ..,

e Tn(x) 51 Un(x) — MHOrOuWwIeHbl YeOblllieBa CTENCHH 7 IEPBOrO M BTOPOTO POJia COOTBETCTBEHHO, TI03BO-

JSIET BBIYMCIINTD AHAUTUYCCKH CHHTYIISIPHYIO COCTAaBJISIOLIYI0 HHTETpajla U HOIYyYNTh SKCIIOHEHIHATIBHYIO
CKOPOCTb CXOAMMOCTH NPUONMKEHHOTo pemenus 3agauu [3]. [okazaBuire BEICOKYIO 3 PEKTUBHOCTD CIICKT-
paJibHbIE METO/IbI HAa OCHOBE MOJINHOMOB YeObIieBa 1711 HEKOTOPBIX YaCTHBIX CllyyaeB ypaBHeHus [Ipannris
ocTpoeHsl B paborax [4—6].

ITocTranoBka 3agaun

PaccMOTpHM CHHTYISpHOE ypaBHerue [Ipanais oburero Buga” [7]:

M — lJl F’(z)dt

| ¥ . |
B(x) mJlt-x +_J’1St()ix)r(t)dt+__[g(x, NI (t)de= f(x), -1<x<L 2)

3mech B(x), s (x, t), g(x, t) uf (x) — U3BeCTHBIC (DYHKITHUH (TIPH ATOM (DYHKIIHS § (x, t) YIOBJIETBOPSIET YCIIO-

Buto ['énpepa nmo o6enmM nepeMeHHbIM), a F(x) — rickoMmasi pyHKIusI.

s(x,t
[IpeaBapuTenbHO B ypaBHEHUH (2) BBITIOIHUM MPEOOpa30BaHUE CHHTYISIPHOTO HHTErpaia I # (¢)dt
B COOTBETCTBUU C padoToii [9, ¢c. 315]: -1

j@ t)dt = I L t)_s(,_ )+S(x’x)r(t)dt=b(x)Ilr(t)dt+jvxt ) (¢)dt,

rue b(x) = Tts(x, x); v(x, t) = S(x’ Z) _ s(x, x).

t—x
Janee OyneM paccMarpuBarh ypaBHeHHE (2) B BUC

E_ljr'(t)de(x)jr()dz+jgxt dt+j (x, )T (¢)dt = 1 (x),

B(x) n_lt—x T °

<1 3)

3neck B(x), b(x), g(x, 7), v(x, t) u f(x) — usBectnsie pynxunn, a I'(x) — nckomas QyHKuUMS, yIOBICTBO-
psIOIIast KpaeBbIM YCIOBHUSIM
r(£1)=0. (4)
INonaraem, 4To IPOU3BOAHAs PELICHHs 3aauu NPUHAIEKNUT Kiaccy GyHkuuii 7(0) mo Mycxennusmm
(xmacc hyHKIHN C HHTETPUPYEMOI 0COOEHHOCTBIO B OKpecTHOCTH Todek x ==*1 [9, c. 31]), T. e. \u(x) € h(O),
eCJIM Ha OTpe3Ke [—1 +g,1- 82], g >0,¢e,>0, w(x) YAOBJIETBOPSIET YCIOBUIO ['€nbaiepa 1 B OKPECTHOCTH
TOUYeK +1 JOMyCKaeT HHTETPUPYEMYI0 OCOOEHHOCTb.

IIpuBenenue ypapuenus (3) k ypaBHeHuio ®pearoabma

Kak u B padote [10], cBezem ypaBHeHue (3) k ypaBHeHUI0 DpearossMa BTOPOro pojia ¢ IorapuMuuecKkon
ocobeHHOCTHIO. [1ycTh

1¢0(¢
(ﬂ=—5j7§%w. (5)
-1
[Ipumenum popmyiy oOpalieHHsI CHHTYJISIPHOTO HHTErpasa (5) B Kiacce h(O):
1 1-7 u d
A A

T7Ie ¢ — IPOU3BOJIbHAS TTOCTOSTHHASA. OTCIOAA ¢ YIETOM KPAeBBIX YCIIOBHUH (4) mMeeM

*[ony6es B. B. JIeKIuH 110 TeOpHH Kpbina. .. 480 c.
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F(x)z_jjl"' dT_J‘I[}T lx/jT \/lit J\/ld: _;jH(x, t)u(r)de+ p(x),

xt—\/jf[ﬁt_TTJ_ 1- xt+ﬁ\/ﬁ

p(x)= c(arcsinx + g)

Yunrsisas, uro H (-1, £)= H(1, t), nonydaem ¢ = 0.

rae

OTMCTI/IM, 4qTo (l)yHKLII/ISI H(x, I) CUMMCETPHUYHA U HCOTPULIATCJIbHA. Hmeet mecTo OII€HKa

et e

HpI/IHI/IMaﬂ BO BHUMAaHHUCEC, 4YTO

F(x) =2 [ H (e u(r)a, %)

a TaKXKe

BBE/IeM JIMHEHHBIN onepaTop

lx)% j H (x, )u(t)dr + %") jl M (x, t)u(r)dt +

+ jG(x, t)u(t)dt + Jlu(t)V(x, t)dt. 3

Taxum o6pazom, rpannuHas 3axa4a (3), (4) CBOOUTCS K ONEpaTOPHOMY YPaBHEHHIO BHJIA

u(x) + K(u; x) =f(x). 9
J1s BBIBOZIA IOCTATOYHBIX YCIIOBHUI pa3pemmmMocTH ypaBHeHus (9), kak 1 B padote [10], onernM ormepa-
Top (8) B paBHOMEpHOI1 MeTpuke. Ha ocHOBaHMM npenplaymx 0003Ha4eHUH U OLEHKH (6) nMeeM

= jl(l le (11 dt]—dtl

-1 -1

I M (x, t)u(t)dr| <], Ju],
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=[ole el <l el 17 Go)l = el .-

1
%_flw/l t—xdtl
1

YyureiBast, 4To IG(x, t) dt I g(x, t ( )dt MoJTy4aemM
-1 -1
1

1
[G(x, yu(e)dr |< [|e(x, |dz<||gIICIJ1—MI“ “0) gy
-1 -1 -1
to L1=72
L . (A==l bl _[ me 2 gl .-

Tak kak
1

v (x <) =‘% [v(x, ) H (1, )

1
<Vl 5 [1H (6 ) ==,
-1

TO
1

1 1
[uley (e )| <l | [V (v, o)l <o Wl | 1= 22t = ] -
-1 - -1

C YUCTOM AaHHBIX OHCHOK OKOHYATCJIbHO MMOJIydacM

NS 2
”K””c ”u”c ng)l( |B | ”b"c ”V”c t I ”g”CJ

OTHOCHUTENHHO yCIIOBUN pa3pemuMocTy 3a1aun (3), (4) cupaBeminBa ClIeAyomasi Teopema.

Teopema. [lycms ¢ynxkyuu B (x) b(x), v(x, t), g(x, t), exooawue 8 ypasnerue (3), y0081emeopsirom yc-
J108UI0

1= x? 2
W + ]l + ||v||c+;||g||c<1-

Toz0a epanuunas 3adaua (3), (4) umeem eduncmeenHoe peuterue 8 Kiacce QyHKYull F’(x) € h(O) o5t 10601

f(x)eC[-11]

p=

H<1

HeKOTOpLIe npeaABapuTeJabHbi¢ CBEACHUS

st monmyueHust NpuOIMKEHHBIX CXeM peleHus 3a1auu (3), (4) Oynem UCronb30BaTh HHTEPHIOISALMOHHBINA
MHOTOUJICH JIJIsT QYHKITUH [ (x), MMOCTPOCHHEBIH 10 y31aM YeoOrimena nepsoro poxa [11, c. 89], B Buae

uﬂﬂzﬁtﬂ=ZT%EﬁL (10)
rae c.— Z X ] 0,1,...,n x,=cos k+1n k=0,1,..., n. 3neck u najuee Z :—a
/ - 2 T T o042 - o

+a+...+a,

Ha ocnoBanuu ¢popmyast (10) moayduM cienyronui BUa HHTEPIOISLIHOHHOTO MHOTOWIEHA:
%)= fU (%), (i
j=0
rae
fi=G =Gy, j=0,1,....,n=-2, f, =G,_,, /,=G,,

. 2k +1
n+1k:0f(xk)Tj(xk),j=0, ... n, xk=0052n+2n k=0,1,.

[
3
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3nech ObUTH UCITOJIB30BAHBI U3BECTHBIC CBOMCTBA MOTMHOMOB YeOnimena [11]:

To(x) = Uo(x), 2T1(x) = Ul(x), 2T (x) =U; (x) -U 72(x), j=2.
C yuerom dopmyi (10) u (11) UHTEPIOIAIUOHHBIE MHOTOWICHBI JiJIsi (DYHKIMH JIByX IMEPEMEHHBIX Oy/ieM
paccMarpuBaTh B BUJIC PA3IIOKEHHS [0 MHOTOWIeHaM YeObIieBa Kak IepBOTo, TaK U BTOPOTO POJia:

Won(% 1) = ZT %) 2. 0, T (1)
i=0

6} n+1 6 n+1
G’"”:n+1,:lTj(xr)n:rnl,Z::le(x’)w(x” %, ) (12)
1,i=0, 2p
= = =12 1
1 {2’l>0,xp COS n Tc’p b b ’n+ b
®, (X, )= 2 U, (x) 2, ;T (1),
m=0 j=0
6~ n+l1 n+l1
nm,j: ’ 2 Z}(X},) (Tm(xl)_Vme+2('xl))(D(xla xr)a (13)
(n+1) 7= =1
Sj:{l’ J_ZO’ m:{l,OSmSn—L xk:cosﬁn, k=12, ...,n+1;
2, j>0, 0,m=n-1,n, 2n+2
P (%, 1) = mej i
m=0
1 n
pm,j: 2 (Tm(xl) Gme+2 X )Z(P x> X V)(’Z;(x”)_ejj}+2(xr))’ (14)
(n+1) =0 —
,L0<j<n- ,L0<m<n-2
ej={’0 jsn-2, Gm—{’o man ’xk=c0s2k+1n,k—0,l, N
0, j=n—-1,n, 0,m=n-1,n, n+

BolunciauTelbHbIE CXEMBbI

[Mpubmmxennoe perienue 3aaa4n (3), (4) OyaeM UCKaTh KaK PElICHUE CICAYIONIETO YPaBHEHUS:

un(x) + K(un; x) = Fn(x),

rac
K(u,; x)= ngl(x)_'[ H(x, t)u,(t)dt + @:{ M (x, t)u, (t)dt +
+ I] G, . (x, t)u, (1)dr+ IIVM(x, t)u,(1)dt, (15)

-1

\/7 I%ii r (x T):%i vn’n(x, t)H(t, r)dt,

F,(x) — nexoropas ¢yukuus u3 kiacca C[-1, 1] rakas, uro Fn(xj) =f(x]), X = cos > J*

+1
, j=0,1,...,n,
) J

ag, n(x, t) uv, n(x, t) — MHTEPTOJISIIMOHHBIE MHOTOWICHBI [T (DyHKITHIA g(x, t) " v(x, t) COOTBETCTBEHHO.

Cxema 1. ITyctb u,(x) — MHTEPIOIALMOHHBIA MHOrOWIEH JUIs QYHKIMH (X ), IOCTPOCHHBII 110 y3/aM
YeObImieBa nepBoro posa:

1 4T (¢ n
un(x):_EI tn—(x)dtz chUk(x)’ (16)
-1 k=0
rae ¢, k=0,1,..., n, — I0OKa HEN3BECTHBIE IOCTOSHHBIE.
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¢ T(t J
C yuerom cootromennii (1), (7), cBoticTa J k( ) dt = U ) k>0, u popmyinsi (16) BbI-
il

_‘

~
)
bl

yucanm I ( ) Nmeem

n x 1 n xT
= Ck_[ ! (lj 1—t2Uk(t)dtJdr=— ij k+1(r)dr.
=0 S 1=72 ("7 -t =0 S Nl-1°
CraemoBaTebHO,
1 1
[ (x)=+/1-x —U,(x). 17
n(x) x kgockkﬂ k(x) (17)
OrTcrona

Jua pyskumit g(x, t), (x t) BbIOEPEM UHTEPIOJAMOHHBIE MHOTOUIIEHBI g, n(x t), Vo, n(x, t) Bua (12).
Brruucinm mocneaoBaTeIbHO OCTABIIUECS UHTErPalibl B paBeHcTBax (15). Mmeem

l 1 gnn'Xt
Z’tj\/ 1-£(t1-1)

=_n xnc.ml I}(t)dt J:_1_12n xnc..r
Tm( )Z Wh]{ P —J‘l\/ﬁ(t—’t) FEOTm( )jZ::l m,JUjfl( ),

m=0 j=0
rae
S. n+1 s n+1
=y LTS T () (5 ),

1,i=0, 2p—1
S, = ) X, =cCos P T, p=L2,...,n+1.
2,i>0, 7 2n+2

W3mensis mopsiiok CYMMUPOBAHHUS, C YU€TOM CBOKWCTBAa OPTOTOHATHLHOCTH MHOTOWIEHOB YeObImieBa mo-
Iyd4aem

JlGn (% 1) dt——j\/:{ Z T,( )ilcm’j(]j_l(T)}[,{iockUk(T)JdT:

=—§Ck;OTm(x)sz,j(jHU/«(T)U/‘1(T)dT]:_§’§0k 3 T, (X)) k41

Jj=1

Janee, ncrons3ys SBHOE MPEACTABICHHE WHTEPIIONAIMOHHOTO MHOorowiaeHa Buaa (12) mia dyHKumun
v, (%, 1), ¢ yuerom coorromrennit (1) i cBoiicTBa MHOrowiexoB UYeGrimesa [11] 2U, (T ()=U, (1) +

+ U, , ;(¢) monyqaem
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rae

Takum oGpasom, umeeM u, (x) + K (u,; x) = F,(x) win

kZZ:OCkUk(x) 1 a Z Cr

k+1 z k k+1 +Co ZT

_ g Z ;)Tm(x)csmk+1 + Z:o 2}2 2]§Bk_’m§on(x)mm’j = F,(x). (18)

Ha ocHoBannu ypasuenus (18) nmomyuaem cucteMy JTMHEHHBIX anreOpandecKuxX ypaBHEHHH /I BbIUUCIIE-

HUSL €, Cy, ..., C, IIyTEM IIOCIIEJ0BATEIbHON [10JCTAaHOBKY B ypaBHeHue (18) BMecTo x Hysel MHorousaeHa YeOsl-
i+1

LIeBa BTOPOIO POAA X; = COS

n+2

ch[ FUI{ Xi Tk+1(xi)}+

,i=0,1,..., n. Umeem

B(xi) k+1 k41

. T C ®
+c0[z Z: ( _Z(Dm,z_zcm’l)J+cn{4”+4m_oT}n(Xi) m,n}+ (19)
n—1 En ]

+k—16k[ TZEZ:“ Xi mk+l+ﬁ — m(xi)(mm,k_kam’kﬂ)]:f(xj),

0, k>n-2,
i=0,1,.
Lk<n-2,

Ay

CoBMeCTHOCTb cUCTeMBI ypaBHeHHH (19) mo3Bonser BbIUUCIUTL KOd(duiuentsl ¢;, k=0, 1, ..., n. IIpu-

ommxeHHoe pemenue 3anadn (3), (4) — pyHkums Fn(x) — Berymcisiercst o Gopmyne (17) amst mporu3BoOIBHOR
TOYKH X € [—1, 1].
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Cxema 2. Ecnm qyist pyHKImii g (x, t), v(x, t) BBIOpaTh MHTEPITOIAIIMOHHBIC MHOTOUICHBI &n.n (x t) Von (x t)

l
Buja (13), (14), nomyumm emie oiHy BEMUCIUTENBHYIO cxeMy. Utak, G, n =—y1- lj Enn x
WA 1-¢ t—
= & n 1  T(r)ae
G, ,(x,1)=—yl-1 ZUm(x)an,j[Ejjz— -
m=0 j=0 JiAl-t (l—’t)
:_\/1_ Z an J (T)’
S. n+1 n+1
N, j = : 2 ]}(xr) (Tm(xl)_vam+2(xl))g(x]> xr)a
(n+1) r=1 =1
= <m<n- —
61.:{1’]‘ 0 v, = LOsmsn-=2, xk:cos2k ln, k=1,2,..,n+1.
2, j>0, 0,m=n-1,n, 2n+2
CraemoBaTeibHO,

Z:: an, )][Zi:ckUk(T)JdT:
Jlll—TZUk(r)Uj J:-gz z L

(I’Z+1) 1=0 r=0

,0<j7<n=-2, ,0<m<n-2, 2k+1
0.= / G, = xkzcosk—+ ,k=0,1,...,n
700, j=n-1,n, 0,m=n-1,n, 2n+

Orcrona K (u,,; X) npuHAMaeT B

ch[“l x Uk xT,Hl(x)JJrcn{ T Zn:Um(x)pmjn}+

Bx k+1 k1 2n+2 7,

+ ch[_—ZU T]m k+1 %%ZUm(x)pm,k} (20)
m=0

Kax u BpItIe, Ha OCHOBaHMH paBeHCTBA (20) MoOTydyaeM CHCTEMY JIMHEWHBIX aireOpanmdecKuX ypaBHEHHMA
IUIs. BBIYUCIIEHUS €y, C), ..., C, IIyTEM IIOCIIEIOBATEIbHON MOACTAHOBKU B paBeHCTBO (20) BMecTO x Hynel

i
MHoOrouseHa YeOpinieBa BTOPOro pojia x; = cos ,i=0,1,..., n. Umeem

n+2
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Zn:ck Uk(x,-)+HUk(xi)_b(xi)

B(x;)) k+1  k+1

Tk+l(xi) +

n-1 n

+ ch __ZU nm k+l+2ij_2mZOUm(xi)pm,k +

* G 2n+2 f ZU pmn :f(xi)’l=0,1,...,n. @1

CoBMECTHOCTh CHCTEeMbI ypaBHeHHH (21) M03BOJSIET BRIMUCINTD KO3 buuuents ¢;, k=0, 1, ..., n. Ilpu-
OommkeHHOe perieHue 3anaqu (3), (4) — dyHKIus F,,(x) — Berymcisiercs no gopmyne (17) ans npousBosibHON
TOUKHU X € [—1, 1].

Pe3yibTaThl YN CJIEHHOTO IKCIIEPUMEHTA

IIpuBenem pe3ynbrarbl YUCIEHHOTO 3KCIEPUMEHTA, TPOBEAECHHOTO COITIACHO TOCTPOECHHBIM BEIYMCIIUTENb-
HBIM cxemaM. Paccmorpum HHTerpo-nH(b(pepeHuHaanoe ypaBHeHHe

T(x) 1:T°(r) ,  b(x) (1)
m—;lt_de n_jl dt+_[gxt dt+j1 v(x, 0)T(¢)dt = f(x), |x| <1,
1+4x x2
B(x)=+/1-x* = ,
(x) * l+2x ( ) x+2
x 1 1 ¢ (22)
= s e ) T a0 e
(32x5 _32x° 6x)(2x2 n 1) x2(32x6 —48x* +18x2 - 1)
f(x)= 2 - +
4x% +1 x+2

+192x° —192x° + 36x.

W3zBecTHO, uTO pemieHneM 3anaun (4), (22) sisercst QyHKUIus

[(x) = 1= x> (32x° = 322" + 6x) = /1 - x* U (x

HecnoxxHo yoenuTbes B TOM, 9TO TPOU3BOIHAS JAHHON (DYHKITHN F’(x) c h(O).

Kak mokaspIBaroT pacdersl, yKe IpH CPaBHUTEIHHO HEOONBIINX 3HAYCHUSAX 7 JOCTUTACTCS MpeaesibHas
TOYHOCTH MPUOIMKEHHOTO PEIICHUs], IOTPEIIHOCTh KOTOPOTO OIPaHWYCHA CHU3Y JIMIIb C BHIYMCINUTEILHON
MOTPEITHOCTHIO.

Pemras cucremy ypasuennit (19) nmm (21) npu n =10 u n = 34, BuauMm, 9To MpHOIMKEHHBIE PETLICHNS Fn(x),

BBIYUCJICHHBIC 110 (hopmyiie (17), oiMyaroTcst OT TOUHOTO penieHus [ (x) B Toukax x =—0,99, —0,98, ..., 0,99
He Goree weM Ha 5,6 - 10 °u 1,5 - 107" coorBercTBenno. Yncno oOycnoeneHHOCTH MaTpull cucteM (19) u (21)

npu pazmepHoctd 12 = 10 1 1 = 34 cocTaBiser cond(ClO) <25mu cond(C34 ) <142 cooTBETCTBEHHO, YTO TI03BO-
3

J5IeT TPy0O0 OLICHUTH 3aBUCUMOCTH YKciia 00YCIIOBICHHOCTH OT Pa3MEPHOCTH Kak cond(Cn ) = 0| n?

3aKiaoueHune

HpeZ[CTaBHeHHLIe PE3YIbTAThI MOTYT OBITh UCIIOJB30BaHbI KaK B TCOPETUYCCKUX HAYUHBIX UCCIICIJOBAHUAX,
TaK U B THXKCHCPHBIX pacyeTax, a TaKKe B 06paSOBaTeJ'ILHBIX mporpaMmax 1o BBIUHCIIUTEIIFHON MaTeMaTHKeE.
Hrorn paGOTLI CO34ar0T OCHOBY UIA ,I[aJ'ILHefIH.IeFO Ppa3BUTHSA CIICKTPAJIBbHBIX METOA0B, UX aAaliTalluid K HOBbIM
MOCTAHOBKAM U MHTETPAIllU B COBPEMCHHBIC BHIYUCIIUTCIIbHBIC KOMITJICKCHI.

bubnauorpaduyeckne cCblIKU

1. Banos BB. Teopus npubaudicennvix memooos u ee npumenenue K 4uUCieHHOMY PeuleHul0 CUH2YIAPHbIX UHMeZPATbHbIX YPas-
nenutl. Kues: HaykoBa mymka; 1968. 288 c.

2. Elliott D. A comprehensive approach to the approximate solution of singular integral equations over the arc (-1, 1). Journal of
Integral Equations and Applications. 1989;2(1):59-94. DOI: 10.1216/JIE-1989-2-1-59.

60



BreruncanTensHasi MaTeMaTHKA
Computational Mathematics

3. Sahlan MN, Feyzollahzadeh H. Operational matrices of Chebyshev polynomials for solving singular Volterra integral equa-
tions. Mathematical Sciences. 2017;11(2):165-171. DOI: 10.1007/s40096-017-0222-4.

4. Pacosnbko TA. YnciaeHHOE pelieHne CHHIYIISIPHOTO HHTerpo-1udhepeHInanbHoro ypapHeHus [Ipasamist METoI0M OpTOroHab-
HBIX MHOTOWICHOB. JKypHan benopyccrkoeo cocyoapcmeentozo ynusepcumema. Mamemamurxa. Uupopmamura. 2018;3:68—74. EDN:
ZLJXDF.

5. Paconbko T'A. K 4HCICHHOMY PELICHUIO CHHIYIISIPHOTO MHTErpo-auddepeHunanbHoro ypaBHenus [Ipanatis METoI0M OpTo-
TOHAIBHBIX MHOTOWICHOB. JKypHan Beropycckoeo cocydapemeennoeo ynusepcumema. Mamemamuka. Hngopmamuxa. 2019;1:58—68.
EDN: CKPPHZ.

6. Paconbko ['A, llemko CM, Illemko MA. O6 0qHOM METO/IC YUCICHHOTO PEIICHUS] HEKOTOPBIX CHHTYIISIPHBIX HHTErPO-Iudde-
peHIMANBHBIX ypaBHeHU. Juppepenyuanvhoie ypasnenus. 2019;55(9):1285-1292. DOI: 10.1134/S0374064119090115.

7. T'abnynxaes BI. [IpsiMble MeTONIBI pellIeHNs] ypaBHEHUs TEOPHUU KpbLIa. M3gecmus ebicuiux yueOnuvix 3agedenutl. Mamemamuxa.
1974;2:29-44.

8. beiitmen I, Opaeitn A. Boicuiue mpancyenoenmuvie gynrxyuu. Iunepeeomempuueckas gynxyust. @ynxyuu Jlescanopa. 2-e n3na-
nue. Bunenkun HS, nepeBomunk. Mocksa: Hayka; 1973. 296 c. (CnipaBouHast MaTeMaTuueckasi OHOIHOTeKa).

9. MycxenuuBunu HU. CuneynsapHvle unmezpaibtble ypAGHEHUs: SPAHUYHbLE 3a0aUU MeOpUuU YYHKYULL U HEKOMOopble Ux NPULo-
orcenus Kk mamemamuyeckoli usuke. 3-e nuzganue. Mocksa: Hayka; 1968. 513 c.

10. Rasolko GA, Volkov VM. Chebyshev spectral method for one class of singular integro-differential equations. Computational
Mathematics and Mathematical Physics. 2025;65(2):339-348. DOI: 10.1134/S0965542524701963.

11. MamxkoBckuit C. BuiuuciumensvHvie npumeHeHuss MHo2ouenos u pados Yeowviuesa. Kupo CH, nepeBonuuk; Jledenes BU, pe-
naktop. Mocksa: Hayka; 1983. 384 c.

Honyuena 07.10.2025 / ucnpasnena 06.11.2025 / npunsma 06.11.2025.
Received 07.10.2025 / revised 06.11.2025 / accepted 06.11.2025.



TEOPETI/I‘IECKI/IE OCHOBbI

NHDOOPMATUKHU

THEORETICAL FOUNDATIONS
OF COMPUTER SCIENCE

VIIK 004

PASHOPQAHBIPI BAO‘:!HBIPI AATOPUTM
ITONCKA KPATHAMNIIIUX IIYTEU MEXAY BCEMU ITAPAMU
BEPIIIMH KAACTEPU30OBAHHOTI'O B3BEIHNIEHHOI'O IT'PAGA

A. A. IPUXOKHH", 0. H. KAPACHK?
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Annomauyusa. [peanaraercss HOBBIA TETCPOTCHHBIN OJIOYHBIN aITOPUTM MOUCKA KPATIANUIINX ITyTeH MEKIY BCEMH
TTapaMu BEPIINH OOJIBIIOT0 OPUEHTHPOBAHHOTO B3BEIIEHHOTO ITPOCTOTO rpada, COCTOSIIETO 13 CIa00CBI3aHHBIX TNTOTHBIX
KJ1acTepoB (MoArpadoB) pasHbIX pasMepOB. AJIITOPUTM YUHTBIBAET U aKTUBHO HCIONIb3YET BXOIHbIC U BBIXOHbIC TPAHIYHbIC
BEPLIMHBI M pedpa KaXkKI0ro KiacTepa Iyl YCKOPEHHMs BBIUMCICHUH 1 JIOKAIN3aluu oopamieHuii K namstu. OH JeuT Bce
OJIOKM MaTpHIIbl «CTOMMOCTH — CMEKHOCTBY Ha YeThIpe THTA (KBaAPATHBIN IMarOHAIBHbIN, IIPSIMOYTOJIBHBIA BEPTHKATBHBINA
Ha KpecTe, MPsIMOYTOJIbHBIN TOPU30HTAIBHBIN HA KPECTE U NPSIMOYTOJIBHBIN epU(EpUITHBIN) U UCTIONB3YET OTACIBHYIO
POy Py pacdeTa Ul HUX, YUUTHIBAeT KOHCTPYKTHBHBIE 0COOCHHOCTH caMoro OJIoKa M CIoco0 ero pacuera yepes
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BpEMsI BBIITOJIHEHHS TIPH TIOMCKE KpaTdaiimx myteid. JIocToBepHOCTh ChOpMYITHUPOBAHHBIX MOJOKESHUH TTOATBEPIKAACTCS
pe3yibTaTaMy NPOBEACHHBIX BHIYUCIIUTEC/IBHBIX SKCIICPUMEHTOB. Pa3pa6aT])IBaIOTCH OTHOIIOTOYHBIC peaiu3allui U MHOI'O-
norounsie OpenMP peanuzaiyn rmpeaiaraeMoro reTeporeHHOro allrOPUTMa 1 JBYX U3BECTHBIX TOMOTEHHBIX OJIOUHBIX ajl-
TOPUTMOB JIJISI TONCKA KpaTJalInX MyTel. BoraucnnTenbHble SKCIIEpUMEHTHI Ha MHOTOSIEPHBIX ITPOLIECCOpax MPOBOISATCS
Ha CIIyJaifHbIX OPHEHTHPOBAHHBIX B3BEUICHHBIX rpadax, JeKOMIIO3UPOBAHHBIX Ha C1a00CBsI3aHHBIC TUIOTHBIE KJIACTEPHI
pas3HbBIX pa3MepoB. OMUCHIBAIOTCS PE3YABTATHI I YETHIpEX KIacTepU30BaHHBIX rpadoB, IBa U3 KOTOpBIX nMeroT 4800 Bep-
mmH (20 u 41 kIacTep COOTBETCTBEHHO) M 1Ba M3 KOTOPhIX uMeroT 9600 BepimH (40 u 80 kacTepoB COOTBETCTBEHHO).
Ha xommnbrorepe MacBook M1 Max B cityyae ¢ OJHOIOTOYHOCTBIO MTPE/IJIOKEHHBIN TeTePOreHHbIH OJIOUHBIN aJlrOPUTM
JUISL KJIACTEPU30BaHHBIX I'padoB C rpaHMYHBIMU BEPIIMHAMHE ITPEB30ILIEI N3BECTHBIN TOMOT€HHBIH OJIOUHBII allrOPUTM LIS
TakuXx ke rpagos B 1,62—-1,94 pasa; B cixyuae ¢ OpenMP-MHOTonoTo4HOCTHIO YCKOpeHue coctasmio 1,87-1,97. Ha cepsepe
u3 ByX mporeccopoB Intel Xeon E5-2620v4 rereporeHHbIN anropuT™ IIPEB30IIeN TOMOTSHHBIN anropuT™ B 1,58—1,66 paza
JUT OTHOTIOTOYHOCTH U B 1,29-1,64 pasa mans MHOTrOnmotouHOCTH. CpaBHEHHE MPEIOKEHHOTO aTOPUTMa C KIlacCHYe-
CKUM OJouHBIM anroputMomM droiina — Yopiemnia, B KOTOPOM OJIOKH UMEIOT OJIMHAKOBBINA pa3Mep, MoKa3ajao YCKOPSHHE
B 4,17-8,18 paza B cimyuae ¢ OJHOMOTOUYHOCTHIO U yckopeHue B 3,91-6,36 pasa B cinyuae ¢ OpenMP-MHOTOnoTo4HOCTHIO.

Knrouegvie cnosa: xnacTepn30BaHHBINA B3BEIICHHBIH OONBIION rpad; KpaTdaiiine IMyTH MEXIy BCEMHU ITapaMH Bep-
IIMH; OJIOYHBIN aJITOPUTM; T€TEPOT€HHbIE BBIYHUCIICHHS; YCKOPEHHE.

HETEROGENEOUS BLOCKED
ALL-PAIRS SHORTEST PATHS ALGORITHM
FOR CLUSTERED WEIGHTED GRAPHS

A. A. PRIHOZHY"?, O. N. KARASIK"

*Belarusian National Technical University, 65 Niezaliezhnasci Avenue, Minsk 220013, Belarus
bISsoft Solutions, 5 Chapajeva Street, Minsk 220034, Belarus

Corresponding author: A. A. Prihozhy (prihozhy@yahoo.com)

Abstract. New heterogeneous blocked algorithm of finding all-pairs shortest paths in a large directed weighted simple
graph consisting of weakly connected dense clusters (subgraphs) of different sizes is proposed. The algorithm considers
and actively exploits the input and output bridge-vertices and edges of each cluster to speed up computation and localise
memory accesses. It divides all blocks of the cost adjacent matrix into four types (square diagonal, rectangular vertical
cross, rectangular horizontal cross and rectangular peripheral) and uses a separate computation procedure for each type,
considering the design features of the block itself and the way it is computed through other blocks. A theoretical justifica-
tion of the advantages of the proposed algorithms, which reduce the execution time when searching for the shortest paths, is
given. The validity of the formulated statements is also confirmed by the results of computational experiments. We have de-
veloped single-threaded implementations and multi-threaded OpenMP implementations of the proposed heterogeneous algo-
rithm and two known homogeneous blocked algorithms of finding shortest paths. Computational experiments on multicore
processors were performed on directed weighted random sparse graphs decomposed into weakly connected dense clusters of
different sizes. The results are described for four clustered graphs, two of which have 4800 vertices (20 and 41 clusters,
respectively) and two of which have 9600 vertices (40 and 80 clusters, respectively). On the MacBook M1 Max computer
in the case of single-threaded implementations proposed heterogeneous blocked algorithm for clustered graph with bridge-
vertices outperformed the known homogeneous blocked algorithm for the same graphs by a factor of 1.62—1.94; in the case
of multi-threaded OpenMP implementations the speedup was 1.87—1.97. On a server with Intel Xeon E5-2620v4 processors
heterogeneous algorithm outperformed the known homogeneous algorithm by a factor of 1.58—1.66 for single-threaded
implementations and by a factor of 1.29—1.64 for multi-threaded implementations. A comparison of proposed algorithm
with the classical blocked Floyd — Warshall algorithm in which all blocks are of the same size showed a speedup of
4.17-8.18 times in the case of single-threaded implementations and a speedup of 3.91-6.36 times in the case of multi-
threaded OpenMP implementations.

Keywords: clustered weighted large graph; all-pairs shortest paths; blocked algorithm; heterogeneous computations;
speedup.

Introduction

The problem of all-pairs shortest paths (APSP) is fundamental in many domains including social networks,
bioinformatics, transportation networks, synthesis of quantum logic circuits, etc. [1; 2]. The classical Floyd —
Warshall algorithm (further FW) [3; 4] solves this problem. The blocked FWW (further BFW') [5-7], which is
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homogeneous, performs a partitioning of the graph into subgraphs of equal size and uses the same block cal-
culation procedure for all blocks of the distance matrix. New APSP algorithms for large clustered graphs were
proposed in the works [8; 9]. They combine the classical F/ and Dijkstra algorithm and utilise bridge-vertices
of the clusters to improve performance. The heterogeneous blocked APSP algorithm [10; 11] for non-clustered
dense graphs distinguishes four types of blocks, each computed by a separate procedure, but all blocks are
of the same size. The homogeneous BFW, which can handle subgraphs and blocks of different sizes [12; 13],
uses the same universal procedure to calculate the blocks of all types. The blocked APSP algorithm for clus-
tered graphs and unequally sized blocks [14], which uses bridge-vertices to reduce runtime, is homogeneous
because it uses a single block calculation procedure. The works [15-22] improve BFW while considering as-
pects such as efficient utilisation of graphics processing units, tuning to optimal block size, using cooperative
thread scheduler, reducing power consumption, establishing dataflow networks of actors, etc. In this paper, we
present a new heterogeneous blocked algorithm for solving the problem of APSP on large clustered graphs
considering bridge-vertices and bridge-edges, unequally sized blocks, separate computation procedures for
each block type and algorithm transformation for localising data references.

Homogeneous BFW

Let G= (V, E ) be a directed simple graph with real edge-weights composed of a set V' of N vertices and
a set £ of edges. A cost adjacency matrix W of G has w; ;=0, 1 <i< N, where w, ; is equal to the weight of
edge (i, j) €k, and w; ;=0 if i#/ and (i, j) ¢ E. When G has no negative-weight cycle, the dynamic prog-
ramming FW [3; 4] computes a sequence of distance matrices D’ = W, ..., Dk, ..., D" such that in matrix D" the

shortest path from i to j is composed of the vertex subset { L..., k}. FW calculates the elements of matrix D using
the formula
dr

T ij >

min(df ;, df + df ) (1)
and assuming that df S=W

Claim 1 [6]. We suppose that di]fj, k=1,..., N, is computed with the formula (1) for k', k" >k —1 and
k', k" < N, then upon termination FW correctly computes APSP.

Algorithm 1 (homogeneous BFW) [5; 6; 10—14] divides set V into subsets of equal size S and splits the mat-
rix D into blocks leading to matrix B[M x M ] Initially each block has a zero level of calculation, Bo[v, u] =
= W[v, u]

Algorithm 1. Homogeneous BFW

form<«1,...,Mdo

B" [m, m] <« BCal(Bmfl[m, m], Bmfl[m, m], B”’*l[m, m]) // DO block
forve{l,..., M} and v = m do
Bm[v, m] <—BCal(Bm71[v, m], Bmfl[v, m], Bm[m, m]) // C1 block
Bm[m, v] <« BCal(Bm_l[m, v], B'”[m, m], Bm_l[m, v]) // C2 block
for v,ue{l,...,M}and v #mand u # m do
B" [v, u] <« BCal(Bm_l[v, u], Bm[v, m], Bm[m, u]) // P3 block
return BY.

In each of M iterations of the loop along m, homogeneous BFW computes one diagonal D0 block B™ [m, m]
to level m of calculation, computes M — 1 vertical C1 cross-blocks Bm[v, m] to level m, computes M — 1 hori-
zontal C2 cross-blocks B"[m, v] to level m and computes (M — 1)2 peripheral P3 blocks B"[v, u] to level m.

All cross-blocks can be calculated mutually in parallel. All peripheral blocks can be calculated in parallel as
well. The following claim holds for all the blocks of type P3 [19; 20].

Claim 2. We suppose that the P3 block B”[v, u], m=1, ..., M, is computed with the formula
Bm[v, u] = BCal(B'”*l[v, u], B’”'[v, m], B’”"[m, u])

for m', m" > m and m’, m" < M. Upon termination BFW correctly computes APSP in graph G.
At each iteration BFW increments the calculation level of each block and fulfills the requirement of claim 2
for the P3 blocks. Therefore, BFW computes APSP correctly.
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The block calculation algorithm 2 (BCal) implements the classical W and can compute D0, C1, C2 and P3
blocks in three loops along k, i and j (loops along i and j can be reordered). Its three input blocks are denoted
B1°, B2° and B3", respectively. Every execution of the assignment in the nest of loops increases the calculation
level of element Bl from k —1 to k. The assignment fulfills the requirement of claim 1; therefore, BCal cor-
rectly computes B1 block over itself, B2 and B3 blocks. But if we reorder the loop along k with the loop along i
or j, the requirement is not fulfilled, and the algorithm becomes incorrect.

Algorithm 2. BCal (single calculation of all blocks)
fork<1,...,5do

for i,je{1>-~'a S} do
h . k-1 K K"
Bl; ; « mm(Bl,-J , B2, + B3k,j)
return B, P.

Directed weighted sparse graphs consisting
of unequally sized clusters

In the paper we call a graph clustered if it can be partitioned into dense subgraphs that are interconnected
by a few edges. We call a subgraph dense if its density (the actual number divided by the maximum number
of directed edges) is over 0.5. We call a graph sparse if its density is less than 0.3. Figure 1 shows an example
directed clustered graph that consists of 17 vertices, 69 edges and 3 clusters including 5, 5 and 7 inner vertices,
respectively, and 14, 15 and 31 one-direction-edges, respectively. The clusters have densities of 0.70, 0.75 and
0.74, respectively, and are interconnected by 9 one-direction-edges. The density of the entire graph is 0.25. Let

C be the set of all clusters, C[c].vert be the set of vertices of cluster ¢ and C[c]:size or size(c) be the vertex

set size. All vertices are numbered within the cluster, so C[c].vert[v].index e {1, s C[c].size} is assigned to
each v e C[c].vert.

Cluster 2

S
.’4‘" | In-bridge-vertex
v

Fig. 1. An example graph consisting of weakly connected clusters

The algorithms we have developed exploit the concept of cluster bridge-vertices. A vertex is a bridge in
cluster ¢ € C if it is incident to an edge, which connects the vertex with a vertex of other cluster e € C\ {c} Let
C[c]-bridge be the set of bridge-vertices of cluster ¢ such as C[c].bridge = C[c].vert. A vertex v is an input bridge
in cluster c if it has an incoming incident edge connecting v with other clusters’ vertices. Let C [c].bridge.inall
be the set of input bridge-vertices of cluster ¢ such as C|[c].bridge.inall = C[c].bridge. A vertex v is an out-
put bridge in cluster ¢ if it has an outgoing incident edge connecting v with other clusters’ vertices. Let
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C[c]-bridge.outall be the set of output bridge-vertices of cluster ¢ such as C[c]-bridge.outall = C[c]-bridge.
The set C [c].bridge.inout includes the vertices of cluster ¢, which are input and output bridges simultaneously:
C[c]-bridge.inout = C|[c].bridge.inall N C[c].bridge.outall. The set C|[c].bridge.in includes the purely input
bridge-vertices of cluster ¢: C|c].bridge.in = C[c].bridge.inall \[c].bridge.outall. The set C[c].bridge.out in-
cludes purely output bridge-vertices of ¢: C[c].bridge.out =[c].bridge.outall\ C|[c].bridge.inall. In fig. 1 clus-

ter 1 has two input bridges (vertices 1 and 2) and one output bridge (vertex 3), vertices 4 and 5 are inner. Cluster 2
has three input and output bridges (vertices 6, 7 and 8), vertices 9 and 10 are inner. Cluster 3 has one input and
output bridge (vertex 10) and two output bridges (vertices 11 and 12), vertices 13—16 are inner.

Having a partitioning C of graph G into clusters, we create matrix B of blocks of the shortest path distances

between the vertices (fig. 2). A block B [m, m] (below denoted B [m]) of dimension C [m].size x C [m].size lies
on the principal diagonal of matrix B and describes the shortest path distances between the vertices of clus-
ter m. A block B[c, e] of dimension C [c].size xC [e].size lies out of the principal diagonal and describes the
shortest path distance between the vertices of cluster ¢ and the vertices of cluster e.

¢ G G

In-bridges of cluster c,

-1~ In-out-bridges of cluster c,
| Out-bridge of cluster c,

------------------ Inner vertices of cluster c,

G

Fig. 2. Layout of distance-adjacency matrix in memory

A block element B, e]l_,j is identified with indices i € {1, s C[c].size} and j = {1, s C[e].size} of ver-

tices in clusters ¢ and e, respectively. Within each block the vertices are placed in the following order: input
bridges, input and output bridges, output bridges and other inner vertices of the cluster. This allows us to lo-
calise and assign the vertices of the same group in the same memory lines, and to speed up computations with
the algorithms we propose.

Heterogeneous blocked APSP algorithm for clustered graphs

In developing the heterogeneous blocked APSP algorithm for clustered graphs upon unequal block sizes and
bridge-vertices (algorithm 3 (HBSPCG)) we combined the following techniques: handling blocks of unequal
sizes, using input and output bridge-vertices of clusters to speed up computation, using a heterogeneous approach
to compute four types of blocks and considering all the features of each block type. Its input is a matrix W
describing the graph. Its output is matrix B of the shortest path distances between all pairs of vertices. Algo-
rithm 3 describes HBSPCG at the level of block computation sub-algorithms. Algorithm 4 (DOCG) calculates
the shortest path segments between the vertices of one subgraph, algorithm 7 (C1CG) and algorithm 8 (C2CG) —
between the vertices of two subgraphs, and algorithm 9 (P3CG) — between the vertices of two subgraphs, provided
that the path passes through the vertices of the third subgraph. HBSPCG organises the correct recalculation
of the shortest path segments, when searching for APSP in the entire graph. At the block level the same control
flow scheme is used as in BFW. The key difference between the algorithms is that HBSPCG uses four separate
sub-algorithms for calculating DO, C1, C2 and P3 blocks with different parameter profiles. The structure of
matrix B in HBSPCG is different from that in BFW.

Algorithm 3. HBSPCG
B [MxM]«W[NxN]
form<«1, ..., Mdo
B"[m] <« DOCG(C, m, B"~'[m]) // DO block

force{l,...,M}andv#=mdo
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B"[c, m]« C1CG(B"'[c, m], B"[m], C, c, m) // C1 block

B"[m, c]« C2CG(B" '[m, c], B"[m], C, m, c) // C2 block
forc,ee{l,...,M}and c#mande#=mdo

B’"[c, e] <—P3CG(B’"71[C, e], Bm[c, m], Bm[m, e], C,c,m, e) // P3 block

return BY.

At the control flow level the correctness of HBSPCG is ensured in the same way as BFW. The computation
level of each block, regardless of type, increases at each iteration of the loop along m. The main difference
between HBSPCG and homogeneous BFW is that the former is aimed at saving central processing unit and
memory resources, when calculating diagonal, vertical, horizontal and peripheral blocks.

New algorithm for calculating diagonal blocks
All blocks are square on the principal diagonal of B. When recalculating a diagonal block over itself, the bridge-
vertices are not considered. DOCG, which we propose as a sub-algorithm of HBSPCG, uses one cluster m and
computes one square block B[m, m]0 (which will also be denoted B[m]o) of dimension C[m].size x C[m] size
from computation level O to S. Since the block is computed over itself, the order of computing the elements
[ ] through elements B[m] and B[m]ij along k is crucial. It must satisfy the formula (1). The block
descrlbes APSP between the vertices of cluster m, which may pass through the vertices of other clusters. We in-

terpret block B°[m] as a matrix of edge weights between the vertices of cluster .
DOCG consists of two nests of loops. The first nest includes three loops along variables 4, i and j and three
assignments with the min operation. The first two loops along i and j cover k£ — 1 vertex of the subgraph of clus-
ter m. The loop along £ is repeated over the indices of vertices C [m].vert of cluster m. In DOCG three assign-

ments are aimed at updating APSP between vertices i and j, between vertices i and &, and between vertices &
and j over new paths of shorter length. The second nest consists of two loops along i and j. Finally, it computes

the shortest path between vertices 1, ..., S — 1 through the row and column labeled by S in the matrix B [m]
We developed DOCG as a competmg altematlve to BCal.

Algorithm 4. DOCG (calculation of the diagonal square block B[m])
S « C[m]size
fork<2,....,5do
fori<1,....k—1do
for j<1,....k—1do

B[m]].c_.1 (—min(B[m]l.c_.z, B[m]l.c_l_1 + B[m]/;:i]) 11y
Blm)/ ;" min(B[mY . B[m] "+ B[] ) I/ A,

(], < min(B[m], , B[], +B[m]") e
fori<1,...,5-1do
forj(—l,...,S—ldo
S . S-1 S N
Blm]} , «min(B[m] ", B[]} + B[m]; ) 11O
return B[m]S.

Theorem 1. Upon termination DOCG correctly computes the diagonal block B [m]s over B [m]o, which repre-
sents the shortest path lengths between all vertices of cluster m, possibly passing through vertices of other clusters

of graph G.
Proof. DOCG does not consider the bridge-vertices of cluster m because it computes the block B[m] over
itself. The competitive algorithm BCal recomputes each element of the block B[m] at each iteration of the

loop along k. Unlike BCal, DOCG starts with a one-vertex graph and a block B[m]1 of dimension 1x 1. It then
iteratively adds one row k and one column & to block B[m]ki1 and obtains block B[m]k. The procedure is
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illustrated in fig. 3, a. In this figure B [m]o denotes input block B[m] of dimension S x S before executing DOCG.
Variable b, denotes an element of the matrix B[m].

Two operations A, and €, are used to accomplish the procedure. The first operation A, computes APSP that
are represented by column k and row k of block B[m]k and are computed over APSP of subblock B[m]ki1

Column k is computes by the following equation:

Bl =min(Bm], B[m] "+ B[m], ) for i, j=1,...k~1. @)
Row k is computes according to equation

Bl =min(Bm], . B{m], + Blm]; ") for i, j=1,.... k1. (3)

It should be noted that clalm 1 does not apply to items (2) and (3). The second operation Q, calculates all
elements of subblock B[m] " over row k and column k of computation level , obtaining a block B[m] of
APSP in the subgraph on & vertices of cluster m. It uses the following formula to perform the calculation:

Blm]) =min(B[m]; ", B{m]| + Blm, ) for i, j=1,.... k=1,
We can describe the behaviour of DOCG as the sequence of pairs (A o Qk) of operations:
(A, ), (Mg Q5)s s (Mg, ) s (Ag, Q). 4)

Algorithm 5 displays the corresponding pseudocode. The loop along k represents sequence (4), in its body
the first nest of loops along i and j is the operation A,, and the second nest of loops over i and j is the opera-
tion ;. The operations A, and ©; do not change the block B [m]1 compared to B[m]o, so they are omitted, and
we start with £ = 2. The calculation levels of elements B[m]i’j, B[m]i’ , and B[m]k,j in the operation 2, of
algorithm 5 satisfy claim 2, so the elements B[m]i,j are calculated correctly. The operation A, correctly com-
putes the elements B[m]i’ , and B[m] (. ; from level 0 to level k. We can conclude that algorithm 5 is correct.

Algorithm 5. Recurrent procedure DOCG for calculating diagonal block

S « C[m]size

for k < 2 to S do

fori<1,....k—1do
for j<1,...,k—1do

Blm)l, " min(B[m] . Blm] '+ B[m] ) /A,
Bm],| min(B[m], . B[m], +Bm] ") /A,

fori<1, ...,k 1 do
forj<«1,...,k—1do

B[m]ij,(—min(B[m]i;l, B[m]ik +B[m]l,;j) /1€y
return B[m]S.

Two nests of loops along 7 and j cannot be combined into a single nest of loops due to data dependencies:
element B[m]l_ ; cannot be modified while it is used to modify all elements B[m]i and B [m] . To overcome

this obstacle, we resynchronise (fig. 3, ») sequence (4) with the following sequence of pairs (Q i—1o Mg ):
A (0 A5), (R0 As)s oo (1 Ay ) o (10 A ), Qs

Now we can rewrite algorithm 5 to algorithm 6. The loop along k includes two nests of loops along i and j,
which have the same iteration schemes. The first nest performs the operation €, _,, and recalculates all ele-

ments of the subblock B[m]kil The second nest performs the operation A, and calculates column & and row &
in the block B [m] The two nests of loops can be merged, since B [m] " will not change due to the calculation

of B [m] and B [m] ko and vice versa. As a result, we have obtalned DOCG The theorem is proved.
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Fig. 3. Iterating the diagonal block B[m] along calculation level k in DOCG:
a — adding vertex £ to cluster m; b — resynchronised process of adding vertices

Competitive BCal and DOCG have different iteration schemes. The total number of iterations
of the innermost loop of BCal is S°. The total number of iterations of the innermost loop of DOCG is

6
2+ 3(size(m))_1 + (size(m)z)
size(m)2 element accesses at each iteration of the loop along k. DOCG has k* accesses for k=1, ..., size(m).

Moreover, the element B [m]l ; is common to three assignments. In terms of data reference locality, DOCG out-

performs BCal by up to 3 times. We further transform DOCG to incorporate vectorisation and parallelisation
mechanisms.

— times smaller than that of BCal. It tends to be 3, when size(m ) — c. BCal has

Algorithm 6. Resynchronised DOCG
S « C[m]size
for k< 2 to Sdo
fori<1,....k—1do
for j<1,...,k—1do

Bl min(B[m]i;Z, Blm]', + B[m]ij’j) ey

fori<1,....k—1do
for j«<1,...,k—1do

Blm]/ "« min(B[m]] . B[m] "+ Bm] ) e
Blm], )« min(B[m], , B[m], +Blm] ") I/ A
fori<1,....5-1do
for j<1,....,5-1do
B[m].sx—rnin(B[m].ST1 B[m]s +B[m]S ) /1 Q
i, ] ij i,S S,Jj S
return B[m].

New algorithm for calculating vertical cross-blocks

C1CG computes APSP from the nodes of cluster ¢ to the nodes of cluster m and changes the vertical
cross-block Bl = B[c, m] of dimension size(c) x size(m) through diagonal block B3 = B[ m] of dimension
size(m) X size(m). In this paper we assume that the block sizes are not equal and use the bridge-vertices of

cluster m to speed up the computation of APSP. C1CG is a generalisation of BCal for vertical cross-blocks
describing APSP in clustered directed graphs. It considers two clusters ¢ and m and has two entries: a vertical

crossing block B[c, m] and a diagonal block B[m]. It returns the modified block B[c, m].
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Theorem 2. Upon termination C1CG correctly computes the vertical cross-block B[c, m] over the diago-
nal block B[m] which describes APSP distances from the vertices of cluster c to the vertices of cluster m that
pass through the input bridge-vertices of m.

Proof. The blocks B[c, m]and B[m] have different dimensions: size(c) x size(m) and size(m) x size(m),

respectively. The differences do not affect the fundamentals [ 12] of the shortest path calculation method (BCal)
and the execution of min-plus operations on matrices. Therefore, C1CG is valid with respect to unequal block
sizes.

The algorithm recalculates only one of the two blocks, i. e. B[c, m] and thus relaxes the requirements of

claim 1 to the ordering of the calculation levels of its elements. Therefore, it satisfies claim 1 in advance and is
correct from this point of view. As a result, three loops along £, i and j can be reordered arbitrarily.

Algorithm 7. C1CG (calculation of vertical cross-block upon bridges and unequal block sizes)
for i <— 1 to C[c] size do

for ve C[m].bridge.inall and k = C[m].vert[v].index do
for j <1 to C[m]size do
B[c, m]i’j «— min(B[c, m]i’j, B[c, m]i’k + B[m]k’j)
return B[c, m].

Now we prove that any shortest path from vertex i of cluster ¢ to vertex j of cluster m passes through an
input bridge-vertex k of cluster m. We assume that APSP between the inner vertices of cluster m have been
already calculated. For the shortest path between i and j 2 cases are possible (fig. 4).

1. The path p = (i, ek, ) passes through vertices of the cluster ¢, then passes through the input bridge-
vertex k and other vertices of cluster m, and finally reaches vertex ;.
2.The path p= (z', e Wy ko, j) passes through vertices of cluster ¢, then passes through vertices w

of cluster x and possibly through other vertices of other clusters, then through an input bridge-vertex & of clus-
ter m, and finally reaches the vertex j.

In both cases any shortest path between i and j passes through one of the input bridge-vertices of cluster m. That
is why for loop along & in C1CG it is sufficient to traverse only the input bridge-vertices of cluster m. The theo-
rem is proved.

Cluster x

\ ™ In-bridge-vertex

o

st i ; Inner vertex

Fig. 4. Calculation of vertical cross-block
through diagonal block
(illustration of proof of theorem 2)
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Corollary 1. If cluster m has no input bridge-vertices, C1CG does not change the vertical cross-blocks
B[c, m] in column m of matrix B and hence is not applied to the column.

C1CG gives a speedup in the computation of the vertical cross-blocks compared to the homogeneous blocked
algorithm [14] depending on the share of the input bridge-vertices in the total number of bridge-vertices in cluster .

New algorithm for calculating horizontal cross-blocks

C2CG computes APSP connecting vertices of cluster m with vertices of cluster c. It modifies a horizontal
rectangular cross-block B[m, ¢] of dimension size(m) x size(c) through the diagonal square block B[m] of

dimension size(m) x size(m). C2CG is a generalisation of BCal for horizontal cross-blocks describing shortest

path segments in clustered directed graphs. It uses the output bridge-vertices of cluster m to speed up the shor-
test path computation.

Algorithm 8. C2CG (calculation of horizontal cross-block upon bridges and unequal block sizes)
for i < 1 to C[m]size do

for ve C[m] bridge.outall and k = C[m].vert[v].index do
for j <1 to C[c]size do
B[m, c] ; (—min(B[m, c]l, I B[m] i B[m, c]k j)

return B[m, c|.

Theorem 3. Upon termination C2CG correctly computes horizontal cross-block B[m, c] through diago-
nal block B [m] which describes APSP distances from vertices of cluster m to vertices of cluster c¢ that pass
through the output bridge-vertices of m.

Proof. Although the blocks B[m, c] and B [m] have different sizes [12], these differences do not affect the

correctness of the shortest path calculation method and min-plus operations on matrices as it is done for BCal.
Therefore, C2CG is correct from this point of view.
The algorithm relaxes the requirements of claim 1 for the order of the matrix element calculation levels,

since it recalculates only one block B[c, m] and does not change other block B[m]at the same time. Therefore,
it correctly computes B[c, m] for any order of three loops along variables 7, k and j.

Now we suppose that APSP between the inner vertices of cluster ¢ and between the inner vertices of cluster m
have been already calculated. At this assumption, we prove that any shortest path from vertex i of cluster m to
vertex j of cluster ¢ passes through an output bridge-vertex & of cluster m. For the shortest path between i and
2 cases are possible (fig. 5).

1. The path p= (i, e ky o, j) passes through vertices of cluster m including an output bridge-vertex &,
then passes through vertices of cluster ¢, and finally reaches vertex j of the cluster.

2.The path p = (i, U U A | ) passes through vertices of cluster m including the output bridge-ver-
tex k, then passes through one or more vertices w of cluster x and may be other vertices of other clusters, then
passes through vertices of cluster ¢, and finally reaches vertex j of the cluster.

Cluster m

Out—bridgeivertex Cluster x

Fig. 5. Calculation of horizontal cross-block through diagonal block
(illustration of proof of theorem 3)
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In both cases any shortest path between i and j passes through one of the output bridge-vertices of clus-
ter m. This is why for the iteration scheme of the loop along k in C2CG it is sufficient to traverse only the
output bridge-vertices of cluster m. The theorem is proved.

Corollary 2. If a cluster m has no output bridge-vertices, C2CG does not change the horizontal cross-blocks

B[m, c] in row m of matrix B and hence is not applied to the row.
C2CG provides the speedup in computation of the horizontal cross-blocks in comparison to the homo-

geneous blocked algorithm [14] depending on the share of the output bridge-vertices in the total number of
bridge-vertices in cluster m.

New algorithm for calculating peripheral blocks

P3CG computes shortest-path segments. The segments connect vertices of cluster ¢ with vertices of clus-
ter e, passing through vertices of cluster m. The algorithm modifies a rectangular block B[c, e] of dimension

size(c) x size(e) using two rectangular blocks B[c, m| and B[m, e] of the dimension C[c].size x C[m]size
and C[m].size X C[e].size, respectively. P3CG is a generalisation of FW for clustered directed graphs. It uses

the input or output bridge-vertices of cluster m to speed up the computations.
The algorithm consists of three nested loops along variables 7, k£ and j and includes one assignment state-
ment. The loops along i and j traverse all vertices of clusters ¢ and e, respectively. The loop along £ traver-

ses the vertices of cluster m that belong to the subset C [m].bridge.best. The subset is one of two vertex subsets
that has the minimum size: C[m] bridge.best = C[m] bridge.inall if |C[m].bridge.inall| = |C[m].bridge.outall],
and C[m].bridge.best = C[c].bridge.outall, otherwise.

Algorithm 9. P3CG (calculation of peripheral rectangular block upon bridges and unequal block sizes)
for i < 1 to C[c]size do

for ve C[m].bridge.best and k < C[m].vert[v].index do
for j < 1 to C[e]size do
B[c, e] i <~ min(B[c, e]i,j, B[c, m]i’k + B[m, e]k’j)

return B[c, e]. "

Theorem 4. Upon termination P3CG correctly computes block B[c, e] over blocks B[c, m] and B[m, e],
which describe the shortest path segments from the vertices of cluster c to the vertices of cluster e that pass
through the best bridge-vertices of cluster m.

Proof. Although, unlike BCal, the input blocks B|c, e], B[c, m] and B[m, e]have different sizes in P3CG,
the differences do not affect the shortest path calculation technique [12] and min-plus operations on matrices as
is done in BCal. Therefore, P3CG is correct regarding different block sizes, since BCal is proven to be correct.

The algorithm relaxes the requirements of claim 1 for the order of the calculation levels of the distance mat-
rix elements, since it recalculates only the elements of one block B [c, e] and does not simultaneously change
the elements of the other two blocks B[c, m] and B[m, e]. Therefore, it correctly computes the block B|c, €]
with respect to the calculation levels for any reordering of three loops along variables i, k£ and ;.

Now we prove that any shortest path p = (i, ..., k, ..., j), where i € C[c].vert, k € C[m].vertand j e C|e].vert,
includes the input bridge-vertex of cluster m. As shown in fig. 6, there are 4 cases of the shortest path passing
through three clusters.

1. The strait path through clusters ¢, m and e is p = (i, vk, ) This means that the path starting from
i passes through the vertices of cluster ¢, enters cluster m through the input bridge-vertex £, exits cluster m
through one of the output bridge-vertices, and finally goes to vertex ; of cluster e.

2.The path is p=(i,..., w, ..., k, ..., j), where we C[x].vert, and x is a cluster other than ¢, m and e.
The path goes from i through vertices of cluster ¢, goes through vertices w of cluster x (might be several clus-
ters), enters cluster m through vertex k, exits it through an output bridge-vertex, and finally passes through
vertices of cluster e to vertex J.

3.Thepathis p=(i, ..., k, ..., z, ..., j), where z € C[ y].vert, and y is a cluster other than ¢, m and e. The path
goes from 7 through vertices of cluster ¢, enters cluster m through vertex £, exits it through an output bridge-ver-
tex, passes through vertices z of cluster y (there may be several clusters), and finally goes through vertices of
cluster e to vertex ;.

4.The path is p = (i, oWk Z, j), where w and z are vertices of clusters other than ¢, m and e.

The path goes from i through vertices of cluster ¢, passes through vertices w of cluster x (there may be several
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clusters), enters cluster m through vertex £, exits it through an output bridge-vertex, passes through vertices z
of cluster y (there may be several clusters), and finally passes through vertices of cluster e to vertex ;.

Having considered these 4 cases, we can conclude that no path from i to j that does not pass through an
input bridge-vertex of cluster m. Therefore, all iterations of loop along & in P3CG may correspond to the input
bridge-vertices of cluster m.

‘_I__.,-'r'rB[c, e]

i ] e

. Cluster e

In-l;ridge-vertex

Fig. 6. Calculation of peripheral block over two cross-blocks
through input bridge-vertices of cluster m (illustration of proof of theorem 4)

Similarly (fig. 7), it can be proved that any shortest path p = (i, ..., k, ..., j), where i € C[c].vert, k € C[m].vert
and jeC [e] .vert, includes an output bridge-vertex of cluster m. This means that the iterations of loop along &
in P3CG can correspond to the output bridge-vertices of cluster m. We have two alternatives for the loop ite-

ration scheme. To speed up the computations, we choose the subset C [m].bridge.best that has the smallest size.
The theorem is proven.

B [C’ e]i, Fi

Cluster ¢ Cluster e

Out-bridge-vertex

Fig. 7. Calculation of peripheral block over two cross-blocks
through output bridge-vertices of cluster m (illustration of proof of theorem 4)

Corollary 3. If cluster m has no input or output bridge-vertices, P3CG does not change the peripheral blocks
B [c, e], c ec {1, M } c # m and e # m, of matrix B and therefore is not applied to all the peripheral blocks.

The smaller the number of bridge-vertices in C[m].bridge.best than the less central processing unit time
the P3CG consumes.

Experimental results and comparison
of algorithms and their implementations

We developed in C++ language and used two versions (single-threaded and multi-threaded OpenMP (ver-
sion 4.5)) of implementations of the proposed HBSPCG and, for comparison, implementations of previously known
algorithms. The source code was compiled by GNU Compiler Collection (version 14.2.0) with auto-vectorisation
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enabled. The paper presents the results of experiments performed on two computers: MacBook M1 Max and
server consisting of two Intel Xeon E5-2620v4 processors (each has 8 cores and 16 physical threads).

The article describes experiments conducted on four random directed simple weighted graphs decomposed
into dense weakly connected clusters of different sizes (table 1). Judging by the number of edges in the graphs and
the number of edges between clusters, all clusters are dense subgraphs. The edge density in all four graphs was
in the range of 0.003 55-0.012 51, meaning that all graphs were sparse.

Table 1
A sample of four random sparse graphs consisting of tens of dense clusters
L\Ifu;:;ﬁ Vertices Clusters Edges Density Bridge-vertices | Bridge-edges
1 4800 20 288 245 0.01251 567 621
2 4800 41 153 858 0.006 68 620 687
3 9600 40 644 198 0.00699 3452 2374
4 9600 80 326 779 0.003 55 3550 2505

Table 2 shows results obtained on MacBook M1 Max. In case of single-threaded implementations the speedup
of the proposed heterogeneous blocked algorithm HBSPCG (clustered graph, bridge-vertices) compared to the
known homogeneous blocked algorithm BSPCG [14] (clustered graph, bridge-vertices) is of 1.62—1.94 times.
In case multi-threaded OpenMP implementations the speedup is 1.87-1.97 times.

Table 2
Runtimes of algorithms BSPCG and HBSPCG on MacBook M1 Max
Single-threaded implementations Multi-threaded OpenMP implementations
Number Speedup Speedup
of graph BSPCG, s HBSPCG,s |of HBSPCG over| BSPCG,s HBSPCG,s |of HBSPCG over
BSPCG, times BSPCG, times
1 321 1.65 1.94 0.69 0.35 1.97
2 2.70 1.66 1.62 0.48 0.26 1.88
3 37.30 19.52 1.91 5.54 2.87 1.93
4 34.84 21.15 1.65 5.31 2.84 1.87

The results obtained on the server are shown in the table 3. HBSPCG outperformed BSPCG by 1.58—-1.66
times for single-threaded implementations and by 1.29-1.64 times for multi-threaded OpenMP implementations.
Table 3 also provides a comparison of HBSPCG with the classical BFW with equal block sizes. The speedup
of HBSPCG over BFW was in the range of 4.17-8.18 for single-threaded implementations and 3.91-6.36 for
multi-threaded OpenMP implementations.

Table 3

Comparison of BSPCG, HBSPCG and BFW
on server with two Intel Xeon E5-2620v4 processors

Single-threaded implementations Multi-threaded OpenMP implementations
Number Speedup Speedup Speedup Speedup
of graph BSPCG, s| HBSPCG, s| of HBSPCG over | of HBSPCG over |BSPCG, s | HBSPCG, s| of HBSPCG over | of HBSPCG over
BSPCG, times BFW, times BSPCG, times BFW, times
1 11.07 6.28 1.76 8.18 0.91 0.57 1.59 6.36
2 11.18 6.82 1.64 7.24 1.05 0.82 1.29 4.13
3 148.08 89.06 1.66 4.59 9.62 5.86 1.64 4.52
4 149.95 94.90 1.58 4.17 10.50 6.48 1.62 3.91
Conclusions

The FW family of algorithms, which solve the problem of APSP has cubic time complexity and quadratic
memory complexity regardless of the number of edges in the graph that creates obstacles for processing real
large graphs on multi-processor systems. The goal of the BFW is to provide parallelism and efficient use of
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the hierarchical processor memory. It is most efficient on dense graphs and has losses on sparse graphs. Many
works and publications are devoted to achievements in the field of reducing the computational resources con-
sumed by the blocked algorithm. In the paper we propose a heterogeneous version of such an algorithm that
considers the features of large clustered directed weighted graphs, which are divided into dense clusters of
different sizes, weakly connected by bridge-vertices and bridge-edges. The algorithm distinguishes four types
of blocks and exploits their unique features in a separate procedure for each block to speed up the computa-
tion of APSP and improve the locality of references to data. This allowed us to reduce the runtime by approxi-
mately twice on the MacBook M1 Max computer compared to the well-known homogeneous BFW on the
clustered graphs and to reduce the runtime up to eight times on the server compared to the classical BFIW with
equal block sizes.
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METOAOAOTUA AHAAUSBA YI'PO3
NHOOPMAIIMOHHOU BE3OITACHOCTHA
C NUCITIOAB30BAHMEM IIN®POBBIX ABOMHUKOB

H. B. KOTEHKOV, H. b. CAEHKO", E. C. MUTAKOB? B. I. KOYHH?>

YCanxm-Ilemepbypeckuii pedepanvupiii uccnedosamenscruii yenmp PAH,
14-a nunus Bacunvesckoco ocmposa, 39, 199178, e. Canxm-Ilemepoype, Poccus
DMUPIA — Poccutickuii mexnono2uieckui yHusepcumem, np. Bepnaockozo, 78, 119454, . Mocksa, Poccus
3)Ee/zopyca<u12 2ocyoapemeennblil yHusepcumem, np. Hezasucumocmu, 4, 220030, e. Munck, Berapyce

Annomayus. IIpuBOIUTCS METONOJIOTHS aHAJIN3A YIPO3 HH(POPMAIIMOHHON 6€3011aCHOCTH KHOep(PHU3NIECKNX CUCTEM
Ha oCHOBe IIU(POBBIX ABOMHUKOB. [Ipenaraemplii MoaXo/ MpeaycMarpuBaeT GopMaIU3alrio CUCTEMbI M IPOCTPAHCTBA
YTPO3 4epe3 MHOTOCPE30BYIO CTPYKTYPY, BKIIOYAIOMIYIO TEXHIUECKHH, TIPOIIECCHBIH, (QYHKITMOHATBHBIN, OpTraHN3aIlNnOHHbIH
U 0TpaciieBoii cpessbl. [lajee ocylecTBIsIeTCS IMHAMHYECKOe MOIEIUPOBAHUE YIPO3 B 0€30I1aCHOM BUPTYyaIbHOM cpefe
1 (POBOTO IBOHHMKA, YTO TTIO3BOJISICT BOCIPOM3BOUTE CIIEHAPHH aTaK U MTOydIaTh CHHTETUUECKHUE TAaHHBIC 1711 00y4eHHs
AITOPUTMOB OOHAPYKEHUS MHIUKATOPOB yrpo3. JIs BHIIBICHNST aHOMAJIMH IPUMEHSIOTCSI METObI YaCTOTHOTO aHAJIH3a,
MaIIMHHOTO o6yquH$[ " KJ1aCT€pusalunu, O6CCHC‘II/IBaIOH_[I/Ie aJallTUBHOC U TOYHOC 06Hapy>1<eHI/Ie KaK M3BCCTHBIX, TaK
1 paHee HEM3BECTHBIX aTak. Bepudukanus MeTononorun mpoBoanTCs Ha IPUMEPE YMHON SHEPTOCETH, T/Ie MOKA3hIBACTCS
3 PEeKTUBHOCTH 0OYYEHUsI M TECTUPOBAHMSI aJITOPUTMOB Ha CHHTETUYECKUX JIAHHBIX, OTPAKAIONINX PeabHbIC U aBapHii-
HBIE PEKUMBI. Pe3ynbTaTel AEMOHCTPUPYIOT BO3MOXKHOCTB CO3/1aHHS CaMOHACTPaMBAIOIINXCS CHCTEM MH()OPMaMOHHON
0€30MacHOCTH C BBICOKOH CTETIEHBIO aJIAITUBHOCTH M TOYHOCTH OOHapy»keHus yrpo3. IIpeacrasieHnas MeTomoIorus ooe-
CIICYUBACT UTCPATUBHYIO 06paTHy}o CBA3b MCXKY OTallaMH, YTO IMOBBIMIACT KAYC€CTBO MOACIIUPOBAHUA U 06Hapy>1<eHmI yrpos.

Knrwouegvie cnosa: xnbeppusnueckas cucreMa; muhpoBoii ABOMHUK; HH(POpMAIHOHHAS 0€3011aCHOCTh; MOJICITUPOBAHIE
yrpo3; oOHapy)XeHNE aHOMaJINi; MalIMHHOE 00y4eHNe; CHHTETHYECKHUE JITaHHbIE; aJJalTHBHASI CHCTEMa; YMHAas 9HEPTroCeTh;
aHAJIU3 yIPo3.

bnazooapnocms. VccnenoBanue BBITOIHEHO NPH (prHAHCOBOH noaaepskke Cankt-IlerepOyprckoro HaydHoro (onma

(rpant Ne 23-PB-01-09).

O0pa3en NUTHPOBAHMUA:

Korenko B, Caenko b, Mutskos EC, Kounn BI1. MeTomosno-
T'Hs QaHAJIN3a YTpo3 HHYOPMAMOHHON 6€3011aCHOCTH C UCIIONb-
30BaHUEM HU(POBBIX IBOHHHUKOB. JKypHan benopycckoeo eocy-
oapcmeennozo ynusepcumema. Mamemamuxa. Hugopmamuxa.

For citation:

Kotenko IV, Saenko IB, Mityakov ES, Kochyn VP. Methodolo-
gy for information security threat analysis using digital twins.
Journal of the Belarusian State University. Mathematics and In-
formatics. 2025;3:76—91. Russian.

2025;3:76-91. EDN: RLHKJY
EDN: RLHKJY
ABTOpBI: Authors:

Hzopv Bumanveeuu Komenko — 10KTOp TEXHUYECKUX HAYK,
3aciIyKeHHBIN JesTens Hayku Poccuiickoit denepauuu, npo-
(eccop; IaBHEINA HayYHBIH COTPYIHUK JIabopaTopuu mpodiieM
KOMITbIOTepHOM Oe3omacHocTH CaHKT-IleTepOyprckoro HHCTUTY-
Ta THPOPMATHKH 1 aBToMaTH3anuu Poccuiickoii akajeMuu HayK.
Hzopv bopucosuu Caenko — NOKTOp TEXHUUECKUX HayK, [1PO-
(eccop; TaBHBII Hay4YHBI COTPYIHUK JJabopatopuu mpoliemMm
KoMITbIoTepHOM Oe3onacHocTn CankT-IleTepOyprckoro MHCTH-
TyTa nH(OpPMATHKN 1 aBTOMaru3anuu Poccuiickoil akameMun
HayK.

Egzenuit Cepzeesuy Mumaxog — 1OKTOp SKOHOMUYECKUX HAYK,
akazieMuk Poccuiickoii akazieMuu €CTECTBEHHBIX HayK U AKazie-
MHUH WHKEHEepHBIX HayK nMeHn A. M. IIpoxoposa, mpodeccop;
3aBenytomuii kapeapoit Kb-9 «IIpeamerHo-opreHTHPOBaHHBIE
nH(opMannoHHbIe cucTeMb» MHCTHTYTA KHOEpOe30ImacHOCTH
1 IUQPOBBIX TEXHOIOTHH.

Bukmop Ilagnosuy Kouun — xanauiaT TeXHUYECKUX HAYK, J10-
LICHT; IIPOPEKTOP 110 yueOHOH paboTe M HHTEpHAMOHATIN3AIINN
oOpazoBaHusl.

Igor V. Kotenko, doctor of science (engineering), honoured scien-
tist of the Russian Federation, full professor; chief researcher at
the laboratory of computer security problems, Saint Petersburg
Institute for Informatics and Automation, Russian Academy of
Sciences.

ivkote@comsec.spb.ru

Igor B. Saenko, doctor of science (engineering), full professor;
chiefresearcher at the laboratory of computer security problems,
Saint Petersburg Institute for Informatics and Automation, Rus-
sian Academy of Sciences.

ibsaen@comsec.spb.ru

Evgenii S. Mityakov, doctor of science (economics), acade-
mician of the Russian Academy of Natural Sciences and the
A. M. Prokhorov Academy of Engineering Sciences, full pro-
fessor; head of the department of KB-9 «Domain-oriented in-
formation systemsy, Institute of Cybersecurity and Digital Tech-
nologies.

iyao@mail.ru

Victar P. Kochyn, PhD (engineering), docent; vice-rector for
academic affairs and internationalisation of education.
kochyn@bsu.by

76




TeopeTuyeckne ocHOBBI HH(pOPMATHKH
Theoretical Foundations of Computer Science

METHODOLOGY FOR INFORMATION SECURITY
THREAT ANALYSIS USING DIGITAL TWINS

L V. KOTENKO?® I. B. SAENKO®, E. S. MITYAKOV", V. . KOCHYN*®

Saint Petersburg Federal Research Center of the Russian Academy of Sciences,
39, 14 " Line V. 0., Saint Petersburg 199178, Russia
®MIREA — Russian Technological University, 78 Vernadskogo Avenue, Moscow 119454, Russia
“Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Corresponding author: V. P. Kochyn (kochyn@bsu.by)

Abstract. This paper presents a methodology for analysing information security threats in cyber-physical systems based
on digital twins. The proposed approach involves formalising the system and threat space through a multi-layered struc-
ture, including technical, process, functional, organisational and sectoral layers. Next, dynamic threat modelling is con-
ducted in a secure virtual environment of the digital twin, enabling the reproduction of attack scenarios and generation of
synthetic data to train threat indicator detection algorithms. To identify anomalies, frequency analysis, machine learning
and clustering methods are applied, ensuring adaptive and accurate detection of both known and previously unknown at-
tacks. The methodology is verified using a smart grid example, demonstrating the effectiveness of training and testing
algorithms on synthetic data that reflect normal and emergency operating modes. The results show the potential for
creating self-adjusting information security systems with a high degree of adaptability and threat detection accuracy.
The presented methodology provides iterative feedback between stages, enhancing the quality of threat modelling and
detection.

Keywords: cyber-physical system; digital twin; information security; threat modelling; anomaly detection; machine
learning; synthetic data; adaptive system; smart grid; threat analysis.
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BBenenue

CoBpeMmennbie nHhopMannoHHbIe cucTeMbl (M C) mpeacTaBisiroT co00# BRICOKOCTIOKHBIC pacTIpeieICHHbIC
knOepdunIeckre KOMILIEKChI CO MHOXKECTBOM B3aUMOCBSI3aHHBIX KOMITOHEHTOB, ()YHKIIMOHUPYIOIIHX B yCJI0-
BUSIX BBICOKOH HEOTPEACICHHOCTH. DTa HEONpeIeICHHOCTh 00y CIIOBIICHA HE TOJIBKO BO3pacTaHUEM BHYTPEHHEH
APXUTEKTYPHOW 1 MOBEACHYECKON CIIOKHOCTH CHCTEM, HO M TOCTOSIHHOM ABOIIOLIUEH yrpo3 HH(POPMALTHOHHON
oe3onacHoctu (MB), BKito4as mosiBiieHue paHee He HAOMIONAEMbIX (zero-day) v TPYTHOUICHTU(PHUIIIPYEMBIX
arak. B Takux ycnoBusix 0coOyI0 3HAYMMOCTh TPHOOPETAET 3a/1a9a CBOEBPEMEHHOTO BBISIBJICHHUS HHIUKATOPOB
yTpo3 (KOCBEHHBIX MPHU3HAKOB HACTYIUICHHUS HEXKENNATENbHBIX COOBITHI) 10 UX peaTn3alyy B BUIE TOJTHOMAC-
MITa0HBIX MHIUACHTOB. DPQEKTUBHOE PEIICHUE NaHHOW 3a7[a4d MPU OTPAHUYCHHOM O0BEME JOCTOBEPHBIX
AMIIUPUYECKUX AAHHBIX TPEOyeT MOCTPOSHHS BOCIIPOU3BOIUMBIX MOJICTICH MOBEACHUS 3aIIUIIAEMBIX CUCTEM
1 MOTEHIUANBHBIX CIIEHAPUEB AECTPYKTHBHOTO Bo3AeHCTBUsA. OMHUM U3 Hanboiee MepCIeKTUBHBIX HHCTPY-
MEHTOB B 3TOM KOHTEKCTE BBICTYIIAET TeXHOIOTHs u(poBbiX nBoHUKOB (LI/]) — I poBbIX penpe3eHTanui
00BEKTOB M TPOIIECCOB, MMO3BOJIIOIINX MOJISTMPOBATh KaK HOpMalbHOE (DYHKITMOHUPOBAHUE CHCTEMBI, TaK
1 ee peakirio Ha BHEITHUE BO3JEHCTBUA, BKITIOUAs PEaTU3aIiI0 CIICHAPHEB aTak.

Texnonorus L1J] B HacTosiee Bpems popMann3oBaHa B psijie OTEUECTBEHHBIX M MEXKYHAPOHBIX CTaHIAPTOB,
takux kak [OCT P 57700.37-2021, ISO/IEC 30173:2023 u ISO/IEC 20924:2024. OgHako clienyeT OTMETHTb,
YTO B YKa3aHHBIX HOPMaTHBHBIX JTOKYMEHTaX 00beKTOM IH(POBOro MOAETHUPOBAHHS TPEUMYILIIECTBEHHO BBI-
CTyNaroT (pU3NYECKHe U3ACIUS U TEXHUYECKUE YCTPOICTBA, B TO BpeMsl KaK BOIIPOCHI ipuMmenenus LIJ] ns
pemenns 3a1a4 Vb, B 0COOCHHOCTH TMHAMUYECKOTO MOJIEIMPOBAHHS YTPO3 ¥ TeHEePAIHH TAHHBIX IS TIOCTPOe-
HUS CHCTEM OOHApyKEHHSI aHOMAJTHI, OCTAOTCS MPAKTHYECKHA HEUCCIIETOBAaHHBIMH.

Kpome Toro, B coBpeMEeHHOM Hay4YHOU U MPUKIAAHOU JI€ATEIHbHOCTH OTCYTCTBYET €UHAas METOHO0JOTHS,
o0ecrieunBaromas JOrHYeCcKH HeMPEePBIBHBIN Mepexo OT (OPMaIn30BaHHOTO OMHMCAHUS apXUTEKTYpPhI U T10-
BECHUS 3alIMIIAEMON CUCTEMBI Yepe3 MOJCITUPOBaHUE CLIEHAPUEB aTak K 00y4YeHHIO 1 BepUPHUKALIUU CPEICTB
o0OHapyKeHUs MHMKATOPOB HapyIIeHWH. JlaHHBII pa3phiB MKy MOICIUPOBAHUEM YIPO3 U IOCIIEAYIOIIAM O-
CTPOEHHEM MEXaHHU3MOB UX BBISBICHUS B pealIbHBIX CHCTEMAaX CYIECTBEHHO OTPAaHUYMBAET BOCIIPOU3BOTUMOCTb,
000CHOBAaHHOCTH M MPUKIIATHYIO 3HAYNMOCTD pa3padaThiBacMbIX perreHuii B obmactn ooecnieuenus Ub.

Hacrosiee uccieoBanre HapapiIeHO Ha MPeoiofieHne 0003HaYEHHOTO METO0JIOTHIECKOTo Aeduiura.
Ero nenbio siBisieTcst pa3paboTKa M SKCIIEpUMEHTaIbHAs BepUpHUKALMs METOA0IOrHH aHanu3a yrpo3 b Ha
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ocHoge [1]I, oGecnieunBaromieil 3aMKHYTBINM KOHTYP Iepexoaa oT popMaIu3alii CTPYKTYPhI U TTOBEICHUS 3a-
IIUIIAEMON CHCTEMBI U TIPOCTPAHCTBA yTrpo3 K cuHTe3y L1/, Bocpon3BeneHUIO ClieHApUEB aTak, TeHepaIluu
CHHTETHUYCCKUX TAaHHBIX U 00yUEHHUIO aJlTOPUTMOB OOHAPYKEHHUST aHOMAJTUH.

KirroueBast rumoresa UCCIIEIOBAHUS 3aKIIIOUAETCS B CICAYIONMIEM: allTOPUTMBI IETCKTUPOBAHMSI aHOMAJIHH,
00yUYeHHBIC UCKITIOUNTEIIHFHO Ha CHHTETUICCKUX JAHHBIX, TIOTYUYEHHBIX B PE3YIIBTATE MOJICITUPOBAHISI THTIOBBIX
crienapues arak B L[], ciocoOHbI 3)heKTUBHO BBISIBIISTH paHEE HEM3BECTHBIC YTPO3bI 32 CUET BBIJICIICHHSI YCTOM-
YUBBIX MMOBEJACHUECKUX MATTEPHOB, XapaKTEPHBIX ISl COOTBETCTBYIOIIETO KJIacca BO3AeHCTBUHN. 111 mpoBepKu
ATOH THITOTE3hI PEATN30BaHa YKCIICPUMEHTAIbHAS YCTAHOBKA HA OCHOBE MOJICIT YMHOM dHEproceTH (smart grid),
TIOJIBEPKCHHON Pa3IMIHBIM THIIAM aTaK. DKCIICPUMEHTAIBHEBIC PE3yIbTaThl JEMOHCTPUPYIOT IPUMEHUMOCTh
1 3QPEKTUBHOCTH MPEIOKEHHOTO TOIX0/1a, TOJTBEPIKIasi €r0 HAyYHYH HOBU3HY U MPAKTHUYCCKYIO 3HAUUMOCTb.

CocTosiHME UCCIeI0BAHMI

B nactosmem pasnesne gaH aHAIUTHYECKUH 0030p COBPEMEHHBIX HAyYHBIX UCCIIEOBAHMM, TOCBSIIIEHHBIX
npumenenuto 1/ B kontekcte obecneuenust Ub kubeppuznveckux cucrem (KOC). OcHOBHOE BHHUMaHUE
yIelieHo paboTaM, KacaroluMCsl MOJICIIMPOBaHUs yIrpo3, TeHepalii CHHTETUYECKUX JaHHBIX U OOHapyXKe-
HHUSI aHOMAJIMIA.

LI mpencraBisror co00ii BUPTyaIbHBIC aHAJOTH (PU3NUECKUX CUCTEM, TIPUMEHsIEMbIE JJIsi MOHUTOPHHTA, TPO-
THO3MPOBAHUS U ONTHMM3AINHU MPOLIECCOB B CAMBIX PA3HBIX OTPACIIAX — OT HHTEIIEKTYaJIbHOTO IPOU3BOACTBA
u KOC 1o crpoutenbHOU chepbl U a9pOKOCMUYECKOM MPOMBILIUIEHHOCTH [ 1; 2]. BMecTe ¢ TeM pacuiupeHue uc-
nonb3oBanus L[ /1 B pactipeieneHHbIX HH(POPMAIMOHHO-TEXHUYECKUX U IPON3BOACTBEHHBIX CHCTEMAX BBISBIISIET
3Ha4YMUTeNIbHbIE BBI30BbI B 00nmactu Ub [3; 4]. OnHuM U3 HEeHTpaJbHBIX PUCKOB CTAHOBHUTCS BBICOKAs CTETIEHb
unterpanuu /] ¢ nHGopMannoHHBIMU 1 OTIEpAIIMOHHBIMUA CHCTEMaMH, YTO OTKPHIBAET HOBBIE BEKTOPHI aTak,
TaKkHe KaK aTaky TUIA «4YeJOBeK IocepeuHe», 0TKa3 B 00CTyKUBAaHUH, KOMIIPOMETAIIHs JAHHBIX U HECAHK-
LIMOHUPOBAHHBIN TOCTYII, KOMITJIEKCHBIE paclipe/ielieHHbIe aTaku [S5; 6]. B nmureparype BblieNeHbI cleyomuye
KJIIOUEBbIE HaIlpaBlieHUs aHaiu3a u 3amuTsl LIJ] [4—7]: aHanu3 yrpo3 B pacnpeeneHHbIX TPOMBIIUIEHHBIX
LT, pazpaboTKa 3alIMIICHHBIX IaTQOPM B IPOTOKOJIOB, a TAK)KE MPEBEHTUBHOE MOJICTUPOBAHUE MTOBEACHUS
3JI0yMBIIIICHHUKOB (human digital twins, HDT).

[To muenuto uccienoparenei [8], ms apdexTuBHOro odecneueHus 6e3onacHoctu L1 momkHbI 00anars
AQHATIMTHYECKOH MPEICKa3yeMOCThIO, HHTEIPUPOBATHCS ¢ (PU3NUYECKHM OOBEKTOM M 00eCIeUnBaTh AMHAMU-
YECKYH0 CHHXpOHHu3amuto. Ps aropos [9] ormeuarot nepexon L11J] oT onTuMu3aiiMoHHBIX (YHKIHMA K POJIK
WHCTPyMEHTa NMpoakTuBHOM Wb, 4TO CBsI3aHO C BO3MOXKHOCTSIMH 0€301acHOTO MOJIETHPOBAHUS aTakK, TECTH-
POBaHUsI 3AIIUTHI, TPOTHO3UPOBAHUS TIOCIICICTBUN WHIIMJCHTOB M aBTOMATH3aIlMK 0OHAPYKEHUSI aHOMAJIHIA,
Bu3yanu3anuu uapopmarnuu [10].

B nurepatype BeIIENSIOTCS JIBa OCHOBHBIX peskuMa (pyHkuuoHuposanus L/] B mpouiecce MogenupoBaHust
kuOeparax [11]: peskuM peruimKaiy, mpyu KOTOPOM MOJIEb CHHXPOHU3UPYETCS ¢ (PU3NIECKON CHCTEMOM B pe-
QIILHOM BPEMEHH, U PEXKHUM HU30JHMPOBAHHOTO MOJEITUPOBAHUS, TO3BOJISIFONINIA O€30IaCHO BBIMIOIHATH CIIeHA-
pun arak. KonnyecTBeHHas OlIeHKa PUCKOB M MOJIEJIMPOBAHUE BIUSHUS aTak, OCHOBAaHHbBIE HAa JMHAMUYECKUX
0alieCOBCKUX CETSIX M MapKOBCKHX IPOIECCax, MOApOOHO paccMOTpPEHBI B psifie padot (cM., Hanpumep, [12]).
[MapannensHO pa3BUBAIOTCS UTPOBBIE Cpeilbl Iuist 00yueHus Mb-crienmnanncToB peanusaniy ClieHapueB aTaKk
u 3anuThel [11].

OTnenbHOE MECTO B HCCIIEIOBAHMAX 3aHUMAIOT 33/1a4i OOHApYKEHHS aHOMaJIMH ¢ ucrosb3oBanuem LIJ1:
CpaBHEHHE MPOTHOZHPYEMOTO M (PaKTUYECKOTO IMOBEACHHS CHCTEMBI TO3BOJISICT BBISBIISATH BTOPIKEHUS
u coou [13]. HDT-TexHOJI0rHU paCIIMPSIOT aHAJIUTHKY, J00aBIIsIsl B MOJEIMPOBAHUE TOBEICHYCCKUE T1aT-
TepHHI yenoBeka [ 14].

TeM He MeHee UCTIONIb30BaHUE CHHTETUYECKHX JaHHBIX, MOMy4YeHHBIX 13 LIJ], A oOydeHus anropuTMoB
OoOHapyKeHHsI aHOMAJIMi CONPSDKEHO C psiioM mpobieM. Bo-niepBbIX, orpanuyeHHas obo0miatonias crocoo-
HOCTb YIIpoIIeHHbIX Mozeneit LI/ cHmkaer peanusm BoIOOpOK [ 1]. Bo-BTOpBIX, TOMEHHBIN pa3pbIB MEX/ly CHH-
TETUYECKUMHU U peabHBIMH JaHHBIMH, BKIIIOUas PACIpeesINTEIbHbIE CMEIIEHUS, ITyM 1 HEOTIPE/IeIeHHOCTb,
CYIIECTBEHHO CHIKAET MEPEeHOCUMOCTh Mozeneii [ 15]. Kpome Toro, oTMedaroTcst CTpyKTypHBIE 1 HOPMATHUBHBIE
ys3BUMocCTH L1, OTCYyTCTBHE €MHBIX apXUTEKTYpP U JTOTIOJIHUTEIbHBIE BEKTOPHI aTaK, KOMIIPOMETUPYIOIINE Ha-
NeKHOCTh CHHTETHYEeCKUX AaHHbIX [16; 17]. B cTarbe [18] mpeanoxeHo cTpyKTypHUpOBaHHOE MOJIETIMPOBAHNE
YIpo3 Ha OCHOBE TPa)OBBIX M TAKCOHOMHUYECKUX MOJIEIICH, HHTETPUPYIOIINX KHOepHETHIECKHE U (PU3UUECKUE
acreKThl aTak. B HacTodmiei paboTe nmpencTaBieHo pa3BUTHE JAHHOTO MOX0/Ia ITyTEM €ro ajalTalii K MHOTO-
cpe3oBoMy MojiennpoBanuio B LI/, 4To 1o3BosIsAET OXBAaTUTH HE TOJIBKO TEXHUYECKUE, HO U OPraHU3aIl[MOHHBIE,
MIPOIIECCHBIE M OTPACIIEBBIE ACTIEKTHI CUCTEMBI.

OHTOJIOTHYECKHE U areHTHO-OPUEHTHPOBAHHBIE MOJIENH, TAKHE KaK KOHIeNTyallbHast cTpykTypa «Cybonto
(Cybonto conceptual framework) [14], HOTIOIHSIOT 3TOT MOAXO0]] KOTHUTHBHBIM KOMIIOHEHTOM, ITO3BOJISISI MOJICIIH-
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poBaTh MOBEIEHUE TOTEeHIMANBHBIX HapymuTesen. Texandeckue 0630psl (cM., Hapumep, [19]) moxgepkuBaioT
BOXHOCTH (POpPMAIM3ANNN CIIEHAPUEB aTaK B MYJIBTUCHCTEMHBIX LJ[-apXuTeKTypax u aJalTUBHBIX CUCTEMAax
pearupoBanus, CIOCOOHBIX 0000IIATh Pe3yIbTAThl C YIETOM MEXTUCITUILTHHAPHBIX cBs3eit [18].

Eme oquH 3HaYMMBIH BBI30B — 3TO 00CCIICUCHUE UHTEPOIEePadeIbHOCTH U CTAHAapPTU3AINHN TUIaTPOpPM
II/1, ocobenno B koutekcre Ub. PaznoponHocTs hopMaToB, MPOTOKOIOB M CEMAaHTHICCKUX MOJICIICH MEIIaeT
yHUDUKAIMN B3aMMOJICHCTBUS. YCIOKHEHUE BO3HUKACT U3-32 TIOTPEOHOCTH B CEMaHTHYECKOM COTJIACOBAHMH,
3amuTe U KOHTPOJIe KOH(UICHINAIBHOCTH, a TaKKe B YIPaBICHUN KM3HEHHBIM nukioM LIJ[ ¢ ygetom ot-
pacieBsix ocodernHocTel [20—22]. Cpenu crpaTernii pemenns 0003HaYeHHOW TTPOOIIEMBI MOKHO BEIACIUTH
craraptel ISO/IEC JTC 1/SC 41, ISO 23247, nokyment NIST IR 8356, a Takxe pexomeniaiuu Koncoprnyma
UG poBbIX ABOHHUKOB (Digital Twin Consortium).

HecMotps Ha 3HaUNMTENBHBIN TPOTrpecc B yKa3aHHBIX HANIPABICHUIX, B HAYYHOH JUTEPAType OTCYTCTBYET
eJIMHAast METOJIOJIOTHsl, 00ECIIEYHBAKOIIasi CKBO3HOM UK OT (POpPMaITU3AIMU CUCTEMBI U IIPOCTPAHCTBA YIPO3 JI0
reHepalui CHHTETHYECKUX JaHHbIX B [1J], 00yueHus anroputMoB 0OHApYKEHUsI aHOMAITUI 1 UX BeprUKaIHu.
B Hacrosmiei pabote aBTOpHI MpeIaraloT TaKyl0 METOIOIOTHIO, OHA TPEICTaBIIeHA B CIEAYIONIUX pa3ieiax.

KOHIIel'[TyaJIbHaﬂ cxXeMa MEeToa 010

[pennaraemslii mogaxon 6a3upyercsi Ha JIOTHYECKH BBICTPOCHHOHN IMOCIIEIOBATEILHOCTH JTAINOB, 00bE/IN-
HEHHBIX OJIHOM IIeNIbI0 — 00ecrieuuTh nepexos oT popmanuzanuu KOC u mpocTpaHCTBa yrpo3 K BBISIBICHHIO
WH/IMKAaTOPOB peasin3allii 3TUX YIpo3 Ha OCHOBE JaHHBIX, IOJIYYEHHBIX B X07ie 0€301MacCHOr0 JUHAMUYECKOTO
MojenupoBanus yrpo3 B LIJI. PaccmarpuBaemast MeTO10JIOTHS HOCUT CKBO3HOW M MTEPAaTHBHBINA XapakTep,
oOecrieunBast 3aMKHYTHIN KOHTYp aHajn3a, B KOTOPOM Kakjas mocieayromas ¢aza yTouHseTcs Ha OCHOBE
Pe3yabTaToOB NpeAbIAyIeH (ha3bl.

B cTpykTypHOM BHI€ METOMOJIOTHS BKIIIOYAET YEThIPE B3aNMOCBA3aHHBIX ATara.

Itan 1: popmanuzanys cucTeMbl H TpocTpancTsa yrpo3. Coznaercs Gpopmanr3oBaHHass MHOTOCPE30Basi MO-
Jens KiroueBbIx aciiekToB KOC, oTpakarolas ee apXUTeKTypy, QyHKIHH, TPOIECCHI U OTPACIIEBYIO CIIEIM(UKY.
Yrpo3bI COOTHOCATCS ¢ KOMIIOHEHTaMH MO/JIENIN C yUeTOM TpeboBaHMH K KOH(UACHIINAIHHOCTH, LIETOCTHOCTH
u goctynHocTy. [lonmydeHHass MOJEIb CIyKUT OCHOBOM A1 moctpoenust LIJT.

Oran 2: mojenupoBanue yrpo3 B [1JI. Ha ocHoBe opmann3oBaHHOM MOEIH B BUPTYAJIbHOM cpejie pea-
JU3YIOTCS CIIEHAPUH aTakK C y4eTOM MX JAWHAMUKHU M rocnenctsuid. 11/ cuHXpoHU3MpyeTCs ¢ mapaMeTpaMu
peasbHOM crcTeMbl. Pe3ynbraroM stana siBnsieTcst HabOp CHHTETHYECKHX JTAHHBIX, OTPAXKAIOIINX KaK HOPMaJlb-
HOE ITOBEJIEHNE CHCTEMBI, TaK U €€ peaklliy Ha pealn30BaHHbIC YTPO3BI.

Jran 3: BbIJIeIeHNEe HHANKATOPOB yrpo3. JlaHHbIe, Moy4YeHHbIe IPY MOJIeNUpoBaHuu yrpo3 B L/, ncromns-
3yIOTCS Il OOy4eHHs aJIrOpUTMOB OOHApYKEHHUS WHAMKATOPOB yrpo3. [[puMeHsoTCs MEeTObl YaCTOTHOTO
aHaiM3a U MalIMHHOTO 00ydeHusd. 3BieKaloTcs ycTOMUnBhIE MOBEACHYECKHE MAaTTepHBI, KOTOPBIE CITy)KaT
OCHOBOH JJIsl TOCTPOEHUA alaiTUBHBIX cuctem Ub.

Oran 4: Bepudukanus noaxona. OO0ydeHHbIC aNTOPUTMBI IIPOXOAST TECTUPOBAHUE Ha HOBBIX CIICHAPHSIX
aTak M MpoToTHUIe cucTeMbl. OTIeHHBAETCs UX CIIOCOOHOCTDH BBISBIIATH KaK M3BECTHBIC, TAK U PaHEe HEU3-
BECTHBIE yrpo3bl. [lomyueHHbIe pe3yIbTaThl HCIOIB3YIOTCA A1 YTOUHEHUS MOJISIH, CLIEHApUEB U ITapaMeTPOB
MOJICIIMPOBAHUS YIPO3.

Mertososorus mpeycMaTpuBaeT 00paTHble CBA3H, 00ECTIEUNBAIOIINE aJalTUBHOCTD U HACTPOMKY BCEX KOM-
MIOHEHTOB CHCTEMBI. Pe3ynbraThl aTamna 3 (BblIe]ICHUEe HHIUKATOPOB YIPpo3) U dTana 4 (BepuQuKaus moaxoa)
UCTIOJB3YIOTCS:

® JIJIs IepecMOTpa ¥ YTOUHEHHS (hOpMaTN30BaHHON MOJICIIH CUCTEMBI M IPOCTPAHCTBA yrpo3 (3Tar 1);

® aKTyaJIM3alliy CIIEHApPHUEB 1 TTapaMeTPOB MOJETUPOBAHUS yrpo3 (3Tam 2);

® COBEPIIIEHCTBOBAHUS apXUTEKTypsl LI/] 3a cueT moBbIIeHNsa KauecTBa MOJAEIMPOBAHMS U T€HEPAINH
JTAHHBIX.

CxeMaTH4HO paccMaTrpuBaeMasi MeTOIOJIOTHS Tpe/iCTaBlIeHa Ha puc. 1.

LI/ BBICTYMaeT AApOoM METOAOIOTHH, 0OeCTieunBas HHTErPALMI0 BCEX ITANOB B €IUHBIA UTEPATUBHBIN
nporecc. OH npescTaBisieT co00i 0e30MacHyI0 BUPTYaIbHYIO Cpeay U AMHAMHYECKOTO MOJICIMPOBAHHUS
CIICHapHUEB aTaK, FTeHepali CHHTETUYECKUX JTAHHBIX U TECTUPOBAHMS aJITOPUTMOB OOHAPYKEHUST aHOMAJIHH.
Bbuarogapst AByHarpaBieHHOW CUHXPOHU3ALUU € peasibHOM cuctemoi L] moinep:xuBaeT akTyajlbHOCTh MOJIENIH
Y TI03BOJISIET a/IalITUPOBATh CIICHAPHH aTaK C Y4eTOM Pe3yJIbTaTOB aHaIM3a.

PesynbraTtoM nprMeHeHUs METOIOIOTUH SIBIISICTCSl KOMILIEKC MOJIEIIeH M HHCTPYMEHTOB: (DOopMai30BaHHAs
MHOTOCpEe30Basi MOZIENIb CUCTEMbI U MIPOCTPAHCTBA yIPO3, CHHTETUYECKHE JaHHbIe, 00yUeHHBIE aJlTOPUTMBbI
oOHapy’KeHHs aHOMAJINH 1 BbI/IEJICHHbIE HHIUKATOPhI yTrpo3. MeToo0rnueckuii kKapkac 00beJUHsIEeT HallpaB-
JICHUSI MOJIETTUPOBAHMS YTpO3, aHAJIN3a JaHHBIX, 00ecIeYnBaeT OCHOBY JJISl MOCTPOCHUS CaMOOOYJarOINXCs
ajanTUBHBIX cucteM Ub.
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Jran 1: Gpopmanuzanus CUCTEMBI U MPOCTPAHCTBA YTPO3
* MHorocpe3zoBast monens KOC
* Knnaccugukauus yrpos b
* Marpuua coorsercTBusi KomnoHeHToB KOC u yrpo3

Mogens cucTemMbl
Y U IPOCTPAHCTBA yTPO3
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Jran 2: Moxenuposanue yrpo3 B [1J] - Pesyabrar
N =
. Peanmaum CLICHAPUEB aTaK B BUPTYaJIbHOU CPEaC S NnpUMeHeHHusI MeTOX0JIOr uH
* Cunxponusanus L] ¢ peanpHOil cucTemoi S + DOpPMAH30BAHHAS MOJEIH
o o =}
- * GopMupOBaHUE PACIIMPEHHON TUHAMIYECKOH MOAETH YIPo3 = CHCTeMbI H IPOCTPAHCTBA YIPO3
g =\ T'eHepanust CHHTETUYECKUX JAHHBIX E « [IJ1 kak TaaTdopma s
§ 3 e MOJICJIMPOBAHUS U TECTUPOBAHUS
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. a00TKa IMOTYYCHHBIX TaHHBIX :é N
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* YacTOTHBIN M MMOBEIEHYECKUI aHAIIN3
* O0yueHHe aNTrOPUTMOB OOHAPYKEHUSI aHOMAIUI
* BoiienieHue yCTOMYMBBIX MTOBEICHUYCCKUX TTATTEPHOB

U BbIJIEJIEHHbIE HHAUKATOPBI YTPO3
* [IpoBepeHHEBIE U a1aNTUPOBAHHBIC

@apym arak
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¥UHRI0dNIOAL MUIOIdA U gordenard snHadumoe,

OOy4ueHHBIE aITOPUTMBI
Y 1 MHAUKATOPHI yTPO3

TlepecMoTp MozenM Ha OCHOBE Pe3yNBETaTOB BEpH(HUKAIIH

Jran 4: BepuduKanys noaxona

* TecTupoBanue 00y4eHHBIX MOJieIel Ha HOBBIX CIIEHAPHUSIX
* [IpoBepka obobmatoeii crrocooHOCTH

* Bepudurkanns npuMeHIMOCTH K paHee HEU3BECTHBIM yIrpo3aM
* [IpoBe/ieHUE SKCIIEPUMEHTOB Ha IIPOTOTHUIIE CHCTEMBI

U

Puc. 1. CxemMa METOLOJIOTUHI
Fig. 1. Methodology scheme

(I)opManusaunﬂ CUCTEMBI U IMPOCTPAHCTBA YI'PpO3

dopmanuzanust KOC v npocTpaHcTBa yrpo3 ABIISIETCS KJIIOYEBBIM 3TarloM METOI0JIOTMY aHanu3a yrpo3 b
c ucrionbzoBanueM L{/1. Ha atom atamne dropmupyeTcst BOCIIpOU3BOIMMAs MOJIEITb, 00bEAMHSIONIAS ADXUTEKTYPY
CHCTEMBI, €€ MOBEJCHYECCKIEe 0COOCHHOCTH M MOTEHIUANbHBIE BEKTOPHI aTak, YTO 3aKJIaJbIBAET OCHOBY JUIS
U(PPOBOTO MOJCTUPOBAHUSI U TEHEPAIIMU CHHTETUIECKUX JIAHHBIX.

[Mony4eHHast MOJIETh OTIMCHIBACT 3aIUIAEMYIO CUCTEMY Yepe3 MATh B3aHMOCBSI3aHHBIX CPE30B:

® TeXHUUYECKHUH cpe3 (S7), BKIIOYAIOINI anapaTHbIe CPEeICTBa, BCTPOCHHBIC YCTPOMCTBA, CETH Iepefadn
JaHHBIX, IPOTPaMMHOE 00eCIICUeHNE U CPEACTBA 3alHUTHI;

e TIpoLieCcCHBIH cpe3 (Sp), OXBaThIBAIOLIUI IKCILTYaTALMOHHBIE [IPOLIENYPbI, CLIeHapUU (DYHKIIMOHUPOBAHMUS,
MOHHUTOPUHT U pearupoBaHUe HA HHIUJICHTEI,

o hYHKUMOHAIBHBIN cpe3 (Sy), OTpaKarolii Ha3HAYeHHEe KOMIIOHEHTOB, UX B3aUMOJICHCTBUE U y4acTHE
B peasin3anuu QyHKIUH YIIpaBieHUs U O€30MaCHOCTH;

® OpraHu3alMOHHBIHN cpe3 (S,)), BKIIOYAIOIINHA POJIN, OTBETCTBEHHOCTh, BHYTPEHHHE PEINIAMEHTHI U MeXa-
HU3MBbI YIIPABIEHYECKOTO KOHTPOJIS;

e oTpacieBoil cpes (S)), yUUTHIBAIOIINN 0COOCHHOCTH NPUMEHEHHSI CHCTEMBI B KOHKPETHOHM NPEIMETHOM
o0nacTu, BKJIIOYasi HOpMaTUBHBIE TPEOOBAHUS U XapaKTepHBIE YTIPO3bI.

KaxaoMy KOMIOHEHTY CUCTeMSI ¢; € S, k € {T ,P,F,O,1 }, COIOCTAaBIISIETCS] MHOXKECTBO yrpo3 U (cl. ) cU,

rae U — o01riee MHOXKECTBO pacCMaTpHUBaEMBIX YIpo3, ChOpMHUPOBAHHOE HA OCHOBE aBTOPUTETHBIX Kiaccupu-
Karuii (Hanpumep, banka naHHBIX yrpo3 Oe3onacHocTr nH(popMmanmy deaepanbHO CITyKOBI 10 TEXHUYECKOMY
1 3kcniopTHOMY KoHTpoIto (nanee — bJIY ®CTIK Poccun)). [iis ynoOcTBa 1 (hopMaIbHOTO aHATN3a BBOAUTCS

nxm
OuHapHasi MaTpuIa COOTBETCTBUS M € {0, 1} , The n= Z|S k| — o0111ee KOJIMYeCTBO KOMIIOHEHTOB BO BCEX
k

cpesax, a /m — KOIMYeCTBO yIUTBIBACMBIX YIpo3. 3HaueHNe M, =1 yKa3biBaeT Ha HAINYHE CBS3H MEHKIY KOM-
TIOHCHTOM ¢; M yIPO30# u;, a 3HaueHne M; = 0 — Ha ee OTCYTCTBHUE.
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B onmcanno# Moxenu Kaxplii cpe3 S, mpeacTaBiseT coboil popmMaan30BaHHOE IPEICTABICHNE 3aIlUIIAc-
Mot KOC B mpeziennax 0HOTO U3 CTPYKTYPHBIX CPE30B — TEXHHUYECKOTO, MPOIIECCHOTO, ()YHKIIMOHAIILHOTO,
OpraHU3allMOHHOTO WM oTpacieBoro. OHako peasnbHble yrpo3sl b yacTo 3aTparnBaroT HECKOJIBKO CPE30B O1-
HOBpeMeHHO. Hamprmep, peannzarus ysI3BUMOCTH B IPOrPaMMHOM 0OECTIEUeHNH MOYKET HE TOJIBKO HAPYIIUTh
TEXHUYECKYIO LIEJIOCTHOCTh CUCTEMBI, HO U IIOBJIUATH HA MPOLIECCHI SKCIUTyaTalliy U pearupoBaHusl.

o o 5x5 o

Jiis hopmanu3aiuy B3aMMOCBS3€H MEX/Ty Cpe3aMU BBOJAUTCS MaTpHIla BIUSHUN V € [O, 1] , T KaXKIbIN

3IEMEHT V/, OTpaXkaeT JOJI0 yrpo3, KOTOPble OJHOBPEMEHHO 3aTParuBaoT cpessl S, U S,. OHa BBIUUCIISIETCS
CJICYIOLIUM 00pa3oM:

‘{ueU|ElcaeSa, €Sy M, ,=1AM u:l}‘

o ‘{MEU|EICaESa:MCa’”:1}‘

B ducnurene HAXOMUTCS KOJIMYECTBO YTPO3 U, KOTOPBIE OJHOBPEMEHHO BO3JICHCTBYIOT XOTSI ObI Ha OJIMH KOMITO-
HEHT U3 cpe3a S, ¥ XOTs Obl Ha OIMH KOMIIOHEHT U3 cpe3a S, a B 3HaMEeHaTele — KOJIM4eCTBO yrpo3, Bo3zeiicT-
BYIOLIMX XOTs1 ObI HA OJIMH KOMIIOHEHT U3 cpe3a S,,.

ManI/I]_Ia BIUSHUN V = [ Vab ] IMO3BOJIACT OLUCHUTD, HACKOJIBKO pe€ain3alus YIrpO3bl B OJHOM ACIICKTC CUCTCMBbI

(HarpuMep, TEXHUYECKOM ) MOXKET TIOBJIHSITh Ha APYTrOW aclIeKT CUCTEMBI (Harpumep, mporeccHslil). [pakru-
YEeCKO€E 3HaueHHE [I0Ka3aTels V), 3aK/II04aeTCs B BBIABICHUU KAaCKaIHBIX ITyTell paclpoCTpaHEHUs yIrPo3, YTO
KPUTUYECKU BaXKHO AJIs1 IOCTPOCHUSI MHOIOypOBHEBOM 3amuTsl. Hanpumep, eciiu 3Hauenue Vyp (TexHUUECKU
cpe3 — mporieccHbIil cpe3) paBHO 0,7, 3T0 o3HadaeT, yTo 70 % yrpo3, CBA3aHHBIX C TEXHUYECKHIMH KOMIIO-
HEHTaMH, TaK)Ke BO3JCHCTBYIOT Ha SKCIUTyaTallMOHHBIE Mpoliecchl. JlanHas nHPOpMaIrs MO3BOJISET BBIIBUTh
MOTEHIMAJIbHBIE KACKaHbIE TyTH PaclpOCTPaHEHUs aTaK U MPUHATH YIPEXKJAIOIINE MEPHI Ha APYTHX YPOBHSIX
cucremsl. Takum 00pa3zoM, 3HaueHUE V/, OTPaKaeT YCIOBHYI BEPOSITHOCTD TOIO, UTO yIpo3a, BIUIOILAS Ha
cpes S, 3arparusaet u cpe3 S,. Ilpu oOHapykeHnn aHOMaJInu, HAaIpUMEpP, B TEXHUYECKOH MOJCUCTEME 3TO
MO3BOJISIET AaBTOMAaTUYECKU aKTUBUPOBATH MOHUTOPHUHT IPOLECCHBIX U OPTaHU3ALMOHHBIX IPOLIEAYP, NPEAOT-
Bpatas KackaJaHblii 2P deKT.

[pennoxenHast popmanuzaiys odecreunBaeT OCHOBY ISl TOCIEAYIONIET0 JMHAMHYECKOTO MOJIEITUPOBa-
Hud yrpo3 B I/, rae yuer Mexcpe30BbIX 3aBUCUMOCTEN KPUTUYECKH BaXKEH ISl HOCTPOEHUS PEATMCTUYHBIX
CLIEHAPUEB aTaK U aHAJIW3a MOBEJCHUSI CUCTEMBI B PA3JIUUHBIX YCIOBUSIX.

Mopeauposanue yrpo3 B LI/I

CrenyromumM 3TaroM METOI0JIOTHH SABJIsIeTCs TMHAMIYeCcKoe MosierpoBanue yrpo3 Mb ¢ ncnoip3zoBannem
IJ1 nccnenyemoit KOC. Ha ocHoBe Momenu, chopMUpOBaHHOHN Ha 3Tare (popMaIu3aiiyl CHCTEMBI U TIPO-
CTpaHCTBA yrpo3, co3aaercs cTpykrypa LIJI, BkiIroyaromast KOMIIOHEHTBI CUCTEMBI, CBSI3U MEKIY HUMH U COOT-
BETCTBYIOIME KJIACCHI yTPO3.

Apxutektypa LI/l 6azupyercst Ha IpUHITHUIIE IBYHAPABICHHON CHHXPOHU3AINH C peabHON CUCTEMOI, UTO
o0ecrieunBaeT rnepeady akTyaJlbHbIX JAHHBIX O COCTOSIHUM KOMIIOHEHTOB CUCTEMBI U IIOIY4YEeHHUE PE3YIbTaToB
CUMYJISIIMI B PEKUME, MAaKCUMaJIbHO TPUOJIMIKEHHOM K peaJlbHOMY BpeMeHH. Takasi CHHXpOHU3a1Ms rapaHTu-
PYeT akTyaJIbHOCTb U JJOCTOBEPHOCTb MOJIEIMPOBAHMS, ITOBBIIIAS €0 MPAKTUYECKYIO 3HAUUMOCTb.

MopnenupoBanue peanausyercs yepe3 GoOpMHPOBAHHE U TPOUTPHIBAHUE CIICHAPUEB aTaK, COOTBETCTBYFOIIMX
BBISIBJICHHBIM YTPO3aM U oTpacieBoi crienuduke. CrieHapuu aTak CTpOsITCs Ha OCHOBE CIIEIYIOLINX (DaKTOPOB:

® TAKCOHOMMI YIpo3, C(HOPMHUPOBAHHBIX B IpoLecce (HopMaIn3auny;

® MEXCPE30BBIX CBS3EH yrpo3, ONpPeAEIeHHBIX C UCIIOJIb30BAHUEM MATPHULbl BIUSHUN V;

e yHQOpMAIMK O KOMIIOHEHTax | mporeccax KOC.

KitroueBpIM 37€MEHTOM IIpe1araeMoro Mojaxo/a sIBJSIETCsl pacIiupeHHasi JMHAMUUECKask MOJENb yrpo3s,
(hopmanmzyemas QyHKIHEH

Txtended :F(Tbase’ DT,

e impact )9

rae 7, — 0a3oBas (craTuueckasl) MOJEb YIpo3bl, BKIIOYAIONIAsl ONMCAHNE aTaku (BEKTOP aTakH, LEllb, IKC-
TLTyaTHPyEeMbIE YA3BUMOCTH, HEOOXONMMbIE yCIIOBHS M TEXHUYECKUE XapaKTepUCTHKN); DT, o, — IMHaMHUYe-
CKUU KOMIIOHEHT, (POpMaTH3YIONINi TOTOIHUTEILHY 0 HH(DOPMAITUIO, TOJTyYCHHYIO B PE3yJIbTaTe CUMYJISIIUI
W aHaJIn3a JaHHbIX B LU:[ (I[I/IHaMI/IKa Pa3BUTHA COCHAPUCB aTaK, pECaKINU CUCTEMbI, ITIOBEACHNUEC 3alllTUTHBIX ME-
XaHU3MOB, a TaK)Ke IMOCIIEICTBHSI peaan3anuu yrpo3s); F' — QyHKIHS HHTErpainu, KOTopas 00beIUHSIET CTATH-
YEeCKOE OMMCAHUE aTaKH ¢ pe3ylbTaTaMu MojeIupoBanus yrpo3 B L1, hopMupyst pacuimpeHHy0 THHAMUAYe-
CKYIO MOJENb YIPO3bI T, ed-
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basoBas mozenb yrposbl Ty, MOKET ObITh (OpMaIN30BaHa KaK CIEIyIOMIUM KOPTex:
T ase = (BEKTOp aTaKH, 1I€NIb, yA3BUMOCTb, YCIOBHS, TEXHUUECKUE XapaKTEPHCTHUKH).

Hanpumep, 11 aTaku TUNa <«J10KHBIE KOMaHbl YIIPABICHUS» B YMHOM SHEPrOCETH MapaMeTpbl KOpTeka
MOTYT OBIThH CIIETYIOIIMH:

e Bektop araku — MITM (man-in-the-middle);

® [[eJ1b — KOHTPOJUIEP PacCIpeeIEHHOIO T€HEPAToOpa;

® yA3BUMOCTb — OTCYTCTBHE ayTEHTU()UKALIMKA KOMAHT;

e ycioBus — akTuBHOCTE SCADA-ceccnn;

® TEXHIMUYECKUE XapaKTePUCTHKH — MpoTokos Modbus/TCP.

HAunamnaeckuii koMnoHeHnt DT, NPEACTaBIseT COOON BPEMECHHYIO TPACKTOPHIO PasBUTHS MHIM/ICHTA,
3aukcuposanuyto B L1/1, u Bkmrovaer:

© BpEMEHHBIE METKH Hauaja U MH1Ka pa3BUTHUS aTaKH;

® PEaKITNIO 3alTUTHRIX MEXaHN3MOB (HanmpumMmep, cpabdarsiBanue IDS);

® KackagHbIe APPEKTH (HapUMep, OTKIIIOYCHNE CMEKHBIX Y3II0B);

® 3MEHEHHUE KJIIOYEBBIX ITapAMETPOB CUCTEMBI (HaNpsKEHHE, 4acTOTa, 3a/IEPIKKH).

DyHKIMSA UHTErpalMU [ peaan3yeTcs Kak paCIIMpPeHNe CTaTUYECKON Mozienu 71, , . ¢ IOMOIIBIO BEKTOpa -

HaMHUYECKUX MapaMeTpoB DTimpaCti

Textended = 7;Jase W {tstan’ tpeak’ AV(t)’ D, affected }’

II€ fy, — BPEMCHHAs METKA Hauasa aTaku; £, —

BpEMEHHAs METKa [TUKA Pa3BUTHs aTaky, yKa3bIBAIOIasl Ha
MOMEHT MaKCHUMaJIbHOTO BO3AEHUCTBHS YIpo3bl Ha cuctemMy; AV (t) — (yHKUMSI N3MEHEHHUS HAIIPSKEHUsI BO Bpe-
MeHH (B KOHTEKCTE YMHOM SHEProceTH), OTpakarolas TMHAMHKY BO3ACHCTBUS YIPO3bl HA TapaMEeTPhl CUCTEMBI,
ID, 4. oteq — WAECHTU(DUKATOPBI 3aTPOHYTHIX KOMIIOHEHTOB CUCTEMBI, TIO3BOJISIIOLINE OIPEAEIUTD, KAKUE 2JIEMEHTBI
HHPPACTPYKTYPBI MOABEPIINCH BO3ACHCTBHIO.

[IpaxkTnyeckas HEHHOCTh TAaKOH MOZENH 3aKIHYaeTcs B IeHepaluyd OOOTalleHHbIX CLIEHApUEB aTak s
o0yueHwHst cucTeM 0OHapYKEHUS MHMKATOPOB yIpo3, a TAKIKE B KOJIMUECTBEHHOM OlleHKe 2P ()EeKTUBHOCTH Mep

3alIMTHI (HalpuMep, BpeMs CpadaThIBaHUsI 3aIIUThI, IITyOWHA PaclipoCTPaHEHHUS YTPO3bI).

BoigesieHne MHAMKATOPOB YIpo3

CrnenyrommM 3TarmoM METOAONOTHH SBISIETCS pa3padoTKa CUCTEMbl OOHAPYKEeHUs WHIUKATOPOB yIpo3 —
aHOMAaJIN{, CBUAETEIhCTBYIOMNX O peann3anuu atak. OCHOBHAs 3ajjada JaHHOTO dTara COCTOUT B 00yYeHUH
AJITOPUTMOB OOHAPYKCHHS XapaKTEPHBIX MPU3HAKOB YIPO3 HA OCHOBE CHHTETHUCCKUX NAHHBIX, CTEHEPHUPO-
BaHHBIX B [1/]I.

B omnruue oT TpaauIMOHHBIX MTOIXO0/0B, 0a3UPYIOIIUXCS PEUMYIIICCTBCHHO Ha peabHbIX JaHHBIX WU
JKCIIEPTHBIX OLEHKaX, PEUIOKEHHAs! METOIMKA UCITIOJIb3YET CHHTETUUECKUE, HO IOCTOBEPHBIE U KOHTPOJIUPYE-
MbIe HaOOPBI TaHHBIX, TIOTy4aeMble B 0€3011aCHON BUPTYaIbHOU cpeze. Takol moaxoa o0ecredrnBaeT mupoKoe
pa3HooOpasne 00yJaronix IPUMEPOB, BKITIOUAs PEAKIE U paHee HeM3BECTHBIE CIICHAPHH aTaK, YTO 3HAYUTEIBHO
TIOBBINIACT YHUBEPCAIBHOCTD U aHallTUBHOCTH aJITOPUTMOB OOHAPYKEHUST aHOMAJTHH.

JIns1 BBISBIIEHUS] aHOMAJIMI UCTIOJIb3YOTCS B3aUMOIONIOJIHSIOIME METO/bI TPEX TUIIOB:

1) aHanM3 CHEKTPaIbHBIX XapaKTEPUCTUK CUTHAJIOB, KOTOPBIH J1ae€T BO3MOXKHOCTh OOHAPY)KUBATh HECTaH-
JApTHBIC U3MEHEHHUS B TIapaMeTpax paOdoThl CUCTEMBI,

2) oOyueHue Mojieliel pacrio3HaBaTh HOPMaJIbHbIE MTATTEPHBI TIOBEJICHHS U BBISBISITh OTKIIOHEHHS, XapaK-
TEepHbIE JIs aTak;

3) kmacTepu3aIius, MO3BOJISIONIAs CTPYIITHUPOBATh TaHHBIC TI0 TUITUIHBIM pPeKUMaM (QyHKIIMOHUPOBAHUS
U BBIJIETIUTH JIEMEHTHI, HE TIONAaAal0LIMe B 3TU IPYIIbI, KAK MOTEHI[MAJIbHbIE aHOMAJIUH.

APXUTEKTYypa CUCTEMbI OOHAPYKEHUS MHIUKATOPOB YIPO3 MOCTPOCHA 10 IPUHITUITY MHOTOKOMIIOHEHTHOTO
aHaym3a (puc. 2). BXonHO# NOTOK JaHHBIX, TOCTYMAIONINN KaK U3 PealibHOM cCcTeMBbI, Tak 1 u3 L1, mpoxonut
aTan npenoOpadboTKy, IMOCIe Yero mapauiebHO aHAIN3UPYETCs HECKOIBKUME anroputmamu. [lomydeHHbie
pe3yIBTaThl TO/IBEPTaloTCs arperanuu u kinaccudukannu. [pu xnaccnpukanum aHoManuii HCIIONb3yeTcs UH-
(hopmanus o BUugax yrpos, chopMupoBanHas Ha dTanax GopMaIn3aliid CHCTEMBI H TPOCTPAHCTBA YTPO3 U MO-
nenupoBaHus yrpo3 B L[ /], 4To ob6ecrneunBaeT TOUHOE COMOCTABICHNE BRISBICHHBIX AHOMAIHHI C KOHKPETHBIMU
KJIaCCaMH aTak.

OOyueHue Ha TaHHBIX, CreHepUpoBaHHbIX B [1/], cyIiecTBeHHO paciinpsieT BO3MOKXHOCTH CHCTEMBI 110 CPaB-
HEHUIO C TPAJAUIIMOHHBIMY METOIaMU 00yUYeHHsI, 00eCTIeYrBast aIalTHBHOCTh K PEJIKAM U paHee HEM3BECTHBIM
BHUJIaM aTax.
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PeanpHas cucrema ]4—
\
(]

Jlanubie ]4—
4[ [lepepaboTka gaHHBIX ]7

Y IMapasmnenbHas o6padoTka Y

[‘-IaCTOTHLIﬁ aHajm3 ] [MamHHHoe 06yquHe] [ Knacrepuszanus ]

Arperanus U KiiaccuuKanus
Ppe3yJIbTaToB

BriBox ¢akTopoB yrpo3
C TIPUBSI3KOH K KJIacCaM aTak

Puc. 2. ApxutekTypa CHCTeMbI 00HAPYKEHHUSI HHANKATOPOB YTPpoO3
Fig. 2. Architecture of the threat indicator detection system

Bepuduxanus noaxoaa

OKcIieprMeHTaIbHAS anpo0anyus MpeIoKeHHONH METOIONIOTHH, HAallpaBJIeHHAs Ha €€ BePU(HUKAIIHIO, ITPO-
BOJIMJIACh HA IIPUMeEpe YMHOM sHeproceTu. Llens 3Toro stana — noaTBepanuTs, uto L[/ He TONBKO MO3BOJISAET
MOZICTTMPOBATh CIIEHAPUH aTaK, HO ¥ TeHEPUPYET AaHHbIC, IPUTOAHBIC 115l 00yUEHHS aITOPUTMOB OOHAPYKCHUS
aHOMAaJIHH, CTIOCOOHBIX 3(PPEKTHBHO BBIABIATH paHEE HEU3BECTHBIE YTPO3HI.

CorpemMennsie yrpo3s! Mb, BKITIogas BpeqoHOCHOE MporpaMMHOE obectiedenue, (urmmar, DDoS-araku u 1iene-
HarpaBJIeHHBIE OTIEPAINH, IPEICTABISAIOT CEPHE3HYIO ONTACHOCTD /Il YMHOM SHEPTOCETH M3-3a BHICOKOI CTENIeHN
I(POBU3ALMHI U CETEBON B3aMMOCBSI3aHHOCTH KOMIIOHEHTOB. KitroueBas mpobiiema COCTOUT B TOM, UTO KHOepaTaku
MOTYT MacKHPOBAThCSI TOJ] €CTECTBEHHBIE HCKaKEHUsI, BEI3BAHHBIC, HATIPUMED, HETMHEWHBIMHU TTOTPEOUTEISIMH,
TTOTOHBIMH YCIIOBHSMH WITH aIIIapaTHBIMK COOsIMH. DTO 00CTOSITEIHCTBO 3aTPYIHSICT X OOHAPYKEHHUE U pa3rpa-
HUYCHUE C HEYTPOXKAIOIIUMHI OTKIIOHEHUSIMH, CO3/1aBasi PUCKH ISl yCTOWYMBOCTH U O€3011aCHOCTH CUCTEMBI [23].

B cooTBeTcTBHM € TIPEIIOKEHHON METOIOJIOTHEH Ha MIEPBOM ATarle arpobdaiy moaxoaa Oblia mocTpoeHa
(hopmanr3oBaHHAsI MHOTOCPE30Basi MOJIEThb YMHOW YHEPTOCETH, BKITIOYABIIIA:

® TCXHUYECKHUI cpe3 (anmaparHbie | MTPOorpaMMHBIC KOMITOHEHTHI — MaT4YnKH, KOHTposuiepsl, SCADA, koM-
MYHUKaIIMOHHAS! HHYPACTPYKTYpa H CPE/ICTBA 3aIHTHI);

® [IPOLIECCHBIN cpe3 (MpoLecchl MOHUTOPUHTA, YIIPABICHUSI HArPy3KOH, aBTOBOCCTAHOBIICHHS M Pearupo-
BaHUS HA WHIMJICHTHI);

¢ (OhYHKIIMOHATBHEIN cpe3 ((hYHKIMH peryINPOBaHUS HANIPSDKEHIS U 9aCTOTHI, 0ATaHCHPOBKH HATPY3KH U TIe-
penavu JaHHBIX);

® OpraHU3alMOHHBIN cpe3 (POJiIM NepcoHalla, perylaMeHThI 1ocTyna U noautuku 1b);

e oTpaciieBoil cpe3 (HopmaruBHbIe TpeOoBanus, Brimrodas [OCT P UCO/MOK 27019-2021, u xapaxrep-
HBIE YTPO3BI /IS DHEPTETHKH).

[lanee Ha ocHOBe 3TOW MoOJeNIN ObLIa MOCTPOEHA OMHApHAs MaTPHUIA COOTBETCTBUS MKy KOMIIOHEHTaMHU
cuctembl 1 yrpo3amu u3 bBJIY ®CTIK Poccun. Ananus nokasai, uto 78 % yrpos, CBI3aHHBIX C TOJMEHON KO-
MaH]I, ICKQ)KEHHEM JJAHHBIX C TATYMKOB U OTKa3aMH B O0CITY)KHBaHHH, 3aTParuBatOT KOMIIOHEHTHI, Y4aCTBYIOIINE
B M3MEPEHUH U PEryINPOBAHIH HAPSHKEHU (B YaCTHOCTH, JATIMKH, KOHTPOJIIEPHI M KAHAIBI TIepeIadr TaHHBIX
B SCADA-cucreme). Mcxomst u3 3TOro, MOXKHO 3aKITFOUUTh, UTO PEATU3AIIHS TAKUX YTPO3 C BEICOKOI BEPOSTHOCTHIO
MIPUBEJIET K OTKJIOHEHHUIO HAPSKEHNS OT HOPMBI MJIM K €0 HEKOPPEKTHOH peructparyu. Cre1oBaresibHO, BpEMEH-
HOU PSIJ] HATIPSDKEHUS CTAHOBUTCS YyBCTBUTEIILHBIM HHIMKATOPOM KHOEpaTaK, MOCKOIBKY B HEM OTPAYKAFOTCS KaK
TIpSIMBIE, TaK ¥ KOCBEHHBIE (HaIpuMep, HCKaKEHHBIE JaHHbIe, MCTIONb3YeMBbIe IS YIIPABISHNS ) TOCIISICTBHUS aTaK.

Ha ocHoBe 3t0ii cTpykTyphl ObUT TIOcTpoeH LI/], peannu3oBaHHbIN B BUJE BUPTYaIbHOW MMUTALMOHHON
cpenbl Ha s3bike Python ¢ ncnonb3oBannem oudnnorek SimPy, Scapy, Pandas 1 NumPy. LIJ] nognepxuBaet
JIBYHAIPaBJICHHYIO0 CHHXPOHHU3AIINIO C peaIbHON CUCTEMOU U UCTOIB3YETCs AJI MOJISITMPOBAHUS ClIeHApHEB
KuOepaTak U aBapUHHBIX COCTOSTHIH.
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Jlnst aHanM3a TIOBEICHUS CUCTEMBI U BBISIBIICHHS] aHOMAJIWH ObLJT pa3paboTaH KCIepUMEHTAILHBIN KOMILIEKC,
uHTerpupoBaHHblii ¢ [/ u Birouaronmii:

® cOOp W IIpeBapUTEIbHYI0 00pa0OTKY CHTHAJIOB;

® IPUMEHEHHUE AITOPUTMOB OOHAPYKEHUST AaHOMAITHIA;

® arperupoBaHUe Pe3yJIbTaTOB U BU3yalIU3alUIO;

® aBTOMATHYECKOE PearupoBaHKUE HA COOBITHS.

Takast apXuTeKTypa [03BOJIMIIa UCTIOB30BaTh L1 /] B kauecTBe Oe30macHoi TeCTOBOM m1ar()opMbl, 00eCrieyr-
BaIOIIEeH THOKOCTh W KOHTPOIMPYEMOCTh SKCIIEPUMEHTA B YCIIOBHUSIX, IPUOIMKEHHBIX K peajJbHOMY BPEMEHH,
HO 0e3 prcka s Gu3ndecKoit HHPPaCTPYKTYPHI.

B ocHOBY monixo/ia iery TpH KITFOUYEBHIX HATPABJICHUS aHAIINA3A:

® YACTOTHBIN aHAIIM3 C BEHBIICT-NPEOOpa30BaHUEM (HCIIONIB3YETCS Ha 3Tare npeaoOpadoTKU Il BhISIBIIC-
HUS XapaKTepHBIX OTKJIOHEHH B CUTHAJaXx);

® aHANIN3 OTKJIOHEHUH OT IITATHOTO TOBENCHUS (peaan3yeTcs MyTeM OOydeHHUsT MoMeieii Ha JaHHBIX HOP-
MaJIbHOTO (PYHKIIMOHUPOBAHWS CHCTEMBI);

® KJIACTepH3allns PEKUMOB pabOTHI (3aKITtodaeTcsl B (QOPMUPOBAHUH YCTOWYHBBIX KIIACTEPOB OE30ITACHBIX
COCTOSIHHH, TJIe BCE, YTO BBIXOJIUT 32 MX MPEACIIbl, pacCCMaTPUBACTCS KaK ITOTCHIIMAIbHAS aHOMAJIHS).

[IpencraBuM ModTANHYO MPOLEAYPY apoOaIuy MPEII0KEHHOM METOI0JIOTHH.

Iran 1: renepanus B 11/] nanubix 1yis o0yuenust. Ha atom stane skcniepumenta B L1J] Obl1a cMonenupoBana
paboTa SHEPrOCUCTEMBI B TPEX PEIKUMAX:

© HOPMaJIBHOM PEXHMe (HaNpsHKEHHE CETH OMMUCHIBAIOCH CHHYCOMIAIBHBIM CUTHAJIOM C JJ0OABICHHUEM CITy-
YaifHOTO IITyMa, YTO OTPaXKajio €CTECTBEHHBIE KOJICOAHNS B CUCTEME IIPH MITaTHOM (PYHKIIMOHUPOBAHWHN);

® peXHMME pean3aln yrpo3 (kudeparaku) (MMUTHPOBATUCH PE3KHE CKaYKH HAMPSDKEHHUS, XapaKTePHBIE JIJIs
kuOepaTak, HalpaBJICHHBIX Ha ASCTa0MIM3AIHUIO CETH; ITH CIICHAPUH MIPECTABIISLIIN COOO0M CreHEpUPOBAHHBIC
MaTTepHbI aHOMAJINK — UHANKATOPOB yTpo3);

© AaBAPHUITHOM pexXHMe (OCYIIECTBIISIIOCH ITABHOE, HO YCTOMYMBOE M3MEHEHNE aMIUIUTY/Ibl CUTHaJIa, YTO MO-
JIeTMPOBAIO COOM M TEXHUYECKUE HENCIIPABHOCTH, HE CBSI3aHHBIE C BPETOHOCHBIMH JEHCTBHAMH).

Ha puc. 3 mpencraBneHa WuTIOCTpanys OMHOTO U3 CTeHEPHPOBAHHBIX BPEMEHHBIX PSIOB HAIIPSHKSHUS C Map-
KHPOBKOH aHOMAJTNH, COOTBETCTBYIOIINX Pa3IUYHBIM PEKAMaM paOOThI CUCTEMEI.

Kaxxpaprit pexxum Monenuposaics MHorokparHo (100 pa3) ¢ BapprpOBaHUEM MapaMeTPOB, YTO ITO3BOJIUIIO
c(hopMUpOBATh JaTaceT U3 HECKOJIBLKUX HA0OPOB CUHTETHYSCKUX CUTHAJIOB.
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Puc. 3. CreneprpoBaHHbI BpEMEHHOM PsiJ] HAMPsHKEHNS ¢ MAPKUPOBKOH aHOMAaIUH (BbIIETEHBI
KPACHBIM 1IBETOM), COOTBETCTBYOIIUX PA3JIMYHBIM PEKHMaM PaOOThI CUCTEMBI:
a — HOPMaJIbHBIHA PEXKHUM; 6 — PEXKUM KHOepaTaku; ¢ — aBAPUUHBINA PEKUM

Fig. 3. Generated voltage time series with anomalies (highlighted in red)
corresponding to different system operating modes:
a —normal mode; b — cyberattack mode; ¢ — emergency mode
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Oran 2: npeaodpadboTka u GpuiabTpanus AaHHbIX. [Tociie reHepalu CXoAHbIX JaHHbIX B L[ /] Bce BpeMeHHbIe
PSABI IPOXOAMIIM dTal MpeaoopadboTku. st 3TOH 1enu NPUMEHSIIOCH IByXyPOBHEBOE TUCKPETHOE BEHBIIET-
npeoOpa3oBaHue ¢ UCIIOIb30BAaHUEM Pa3IMYHBIX TUIIOB BEUBIIETOB, YTO TIO3BOJIMIIO BEIOPATh ONTHMAJIBHBIH METO
GuIBTpaMu I MOCIEAYIONEero 0OHapyKeHUsI aHOManni. B xoze skcriepuMeHTOB ObUTH MPOTECTHPOBAHEI
HECKOIIbKO THITOB BEHBIIETOB, BKItoUas BeiiBneTsl JJooemu (db), cumierst (sym) u koudmnetst (coif). dist -
JFOCTPALMU PE3yNbTaTOB B cTaThe BbIOpaH BeliBieT JJobemn 1 (dbl), KoTOpbIil moKa3an Xopolue pe3yabTaThl
pu 00paboTKe CUTHAJIOB HanpshKeHus B dHeprocucteme. Belisner Jlobemm 1 ocodenno apdexrruBen mms 060-
PabOTKH CUTHAJIOB € PE3KUMH TIEPEXOIaMH U pa3pbIBAMH, YTO XapaKTEPHO I KNOepaTak Ha yMHBIE SHEPTOCETH.

Oco0oe BHUMaHHUE yAEIAIO0CH ANNPOKCUMUPYIOLIUM K03 (DHIEHTaM BTOPOTo YPOBHS (4, ), KOTOPBIE IIPea-
CTaBIISIIOT COO0I HU3KOUACTOTHYIO KOMIIOHEHTY CHT'HAJIA HANPSDKEHUS, COACPKALLYI0 HHPOPMAaLHIO0 00 OCHOBHON
TEH/ICHIIN PA0OTHI SHEPrOCUCTEMBI. B 0TiIume 0T HCXOHOTO CUrHaIa KO3 GUIMEHTHI A, TPEICTABISIOT COO0I
«CTIIAKEHHYIO» BEPCHUIO HAPSKEHUS, T/I€ YA eHbl BBICOKOYaCTOTHBIE IITyMBI M KPaTKOBPEMEHHBIE KonleOaHus,
YTO MO3BOJISIET OKYCHPOBATHCS Ha YCTOMUMBBIX XapaKTEPUCTHKAX CUCTEMBI. B KOHTEKCTE SHEproceT! kod3d-
¢bunueHt 4, orpaxaer 6a30Byr0 (opMy HaNpsLKEHUS IPH HOPMAJIbHOH paboTe U SBIISETCS 4yBCTBUTEIbHBIM
MHJIMKaTOPOM CHUCTEMHBIX U3MEHEHUi, TaK KaK KHOepaTaku W aBapu¥ 4acTO BIUSIOT MMEHHO Ha OCHOBHBIC
XapaKTepPUCTHKN CUTHAJIA, & HE TOJIBKO Ha BHICOKOYACTOTHBIE IITYMBI.

Ha puc. 4 mokazan pe3ynbTar 00paOOTKH CHTHANIA HANPSDKCHUS, MPEICTABICHHOTO Ha PUC. 3, METOIOM
JUCKPETHOTO BEHBIET-NIpeo0pa3oBaHusl ¢ MCIOIb30BaHNeM BeiiBiera JloOemu 1. BuzyansHo gopma mpeod-
Pa30BaHHOIO CHI'HaIa OJIM3Ka K UCXOAHOM, MOCKOIBKY (DHIIBTPAIHS COXPAHIET HU3KOYaCTOTHYIO KOMIIOHEHTY
(OCHOBHYO BOJIHY), HO yZaJIsieT BBICOKOYACTOTHBIC KOJICOAHHS 1 CITydaifHbIe BO3MYIIICHUS. DTH N3MEHECHNUS He
BCET/Ia 3aMETHBI HEBOOPYKEHHBIM IJ1a30M, OTHAKO OHH BITUSIIOT Ha YACTOTHYIO CTPYKTYPY CUTHAIIA, YTO KPUTHYHO
JUIs1 aBTOMATUYECKON KIIaCCU(PHUKALINH: CITIaKCHHBIH Psi/ TTO3BOJISIET ANTOPUTMAaM HaJIe)KHO BBIIENISTH aHOMAJIb-
HBIC OTKJIOHECHUS, XapaKTePHbIE [T KHOepaTaKk U aBapHHBIX COCTOSIHUH, TPY MUHUMAJIGHOM BIUSTHAN ITYMOB.

JIst MocTeayIoNero aHaiu3a u BU3yain3aliy paOoThl alTOPUTMOB OOHAPYKEHUSI aHOMAIHI OBLITH ChOp-
MHPOBAHBI IPU3HAKOBBIE IIPOCTPAHCTBA, T/IE 110 OJJHOM OCH OTKJIAIBIBAIUCE 3HaYeHHS Kod(duimenrta 4, B HOp-
MaJIbHOM PEXUMe pabOThI CUCTEMBI, a [0 APYTroi ocu — 3HaUeHUs K03 dunnenTta 4, B aHOMaJIbHOM COCTOSIHUH
(pexxum KubepaTaky WM aBapuHHBIN pexknM). Takoi mOIXo/ MO3BOIUII YETKO BH3YaTU3UPOBATH U3MECHEHHUSI
B OCHOBHBIX XapaKTEPHCTHKAX CHUTHAJIa U BBISBUTH MOMEHTEHI, KOT/Ia TIOBEACHHE CUCTEMBI CYIIECTBEHHO OT-
KJIIOHSJIOCH OT HOPMBI.
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Puc. 4. BeiiBner-npeoOpa3zoBaHie BPEMEHHOTIO Psiia HANPSKEHUs, IPEACTAaBICHHOTO Ha PUC. 3:
a — HOPMAaJIbHBIN PEXKNM; 6 — PEXKUM KHOEpaTaKH; 6 — aBapUHHBIN PEIKIM.
CHHSSL IMHYA OTpa)kaeT UCXOJHBII CUTHAJ C IIyMaMH, OpPaHKeBast JIMHUS — CIIaXKEeHHOe npuommkenue (4, ),
HOJIy4eHHOE 13 KOG (QULUCHTOB BEHBIET-Pa3I0KEHUS

Fig. 4. Wavelet transform of the voltage time series shown in fig. 3:
a —normal mode; b — cyber attack mode; ¢ — emergency mode.
The blue line represents the original signal with noise, the orange line represents
the smoothed approximation (4,) obtained from the wavelet decomposition coefficients
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Jtan 3: obydenune anropuTMoB. Ha 3ToM sTame anmpobdamnuu METOMOJIOTHH ObUTA MPOBEICHBI HACTPOIKa
u o0ydeHue aropuTMOB OOHApYKEHUsI aHOMaJIMii Ha 00BbEJMHEHHOM JIaTaceTe, BKIIOYAIOUIeM JJaHHbIe HOP-
MaJILHOTO PEKUMa U peXrUMa pealn3aluy yrpo3, cMoienupoBatHblx B L[], Anroputmbl 00y4aanch BBISBISAThH
YCTOWYHBBIE TIOBE/ICHUECKHUE TTATTEPHBL, XapaKTEPHBIE ISl CHCTEMBI TP MITAaTHOM (DYHKIIMOHUPOBAHUH, & TAKKE
pacro3HaBaTh OTKIOHEHHS, BOSHUKAIOIINE B MOMEHT peaji3aiii yrpos.

ABapuiiHbIe pEKUMBI, OTpaXKaIOLIHe HeNpeIHAMEePEHHBIE COOM M TEXHUYECKHE HEHCIPABHOCTH, Ha dTarle
00y4eHMsI He HCIIOIb30BAINCEH, OHH OBUIN 3ape3epBUPOBAHBI AJIsI dTara TECTUPOBAHUS, YTO MTO3BOJIHIO Chop-
MYJIHPOBaTh O0JIee CTPOTYIO 33a9y JJIsl aITOPUTMOB: HAyYUTHCSI OTIIMYATh PeaH3aluy yTpo3 OT APYTHX BUIOB
OTKJIOHEHWH, HE CBS3aHHBIX C BPAXK/ICOHBIM BO3JEHCTBHEM.

Jlnst anpoGai MEeToI0JI0T M ObLITH UCTIONB30BaHbI KaK KJIACCHUECKHE, TaK U 00Jiee yCTONYMBhIE K BRIOpOoCcaM
QITOPUTMBI OOHAPYKEHHUSI aHOMAIMH M KJlacTepu3an. MIX BBIOOp 0OBsCHSIETCS CIETYOIMMA TPUINHAMU:

® AITOpPUTMBI OOHApYKeHUsI aHoManui Isolation forest, One-class SVM, Local outlier factor (LOF) xopo-
10 3apPEKOMEHI0BAN ce0sl Ipu paboTe ¢ aHOMAaJIUSAMH B MHOTOMEPHBIX BPEMEHHBIX PsAax, OHH CIIOCOOHBI
(bMKCUpOBaATh TOYEUHBIE WITH JIOKAIN30BAaHHBIE BHIOPOCHI;

® anropuTMbI Kiactepusanuu Density-based spatial clustering of applications with noise (DBSCAN), Or-
dering points to identify the clustering structure (OPTICS), Spectral clustering yCTOWYHBBI K IIyMY U CIIOCO0-
HBI ()OPMHUPOBATH CIOKHBIE IO (POPME KIIACTEPHI, UX TPUMEHEHHE OMPABIAHO TEM, YTO aHOMAJIHH B CJIOKHBIX
CUCTeMax MOTYT TPOSIBIATHCS HE KaK OTAENbHBIE BBIOPOCHI, a KaK CABUTH MEXKIY KIacTepaMH yCTOWYMBBIX
PEXKUMOB.

B kadecTBe JONOIHHUTENBHBIX METOJIOB UCIIOIB30BAUCH MeToAbl K-means nu Gaussian mixture models
(GMM).

Jrtan 4: reHepanys HOBBIX peain3alluil yTpo3 U aBapuHHBIX COCTOAHUN. [l IpOBeAEHNS TECTUPOBAHUS
B L[] ObITH creHepupOBaHbl HOBBIE JaHHBIE, BKIIIOYAIOIIINE:

® HOBBIC peajH3alliil yrpo3, KOTOPhIE OTIIMYAIHCh OT CIICHAPUEB, UCIIONL30BAHHBIX NP OOYUYCHUU ajro-
PUTMOB (YCTOMUYUBBIE HCKAKEHHS (POPMBI CHTHAJIA, & TAK)KE JOINTOBPEMEHHBIC OTKIIOHCHHS [TapaMeTPOB dHEP-
rOCHCTEMbI, MOJCITUPYIOLIHE HOBbIE BO3MOYKHBIE CIIOCOOBI peaan3anri MOTEHIHAIbHbBIX YIPO3);

® ABapUITHBIE COCTOSIHMS, BRI3BAaHHBIE HETIPeTHAMEPEHHBIMH (haKTOpaMH, TAKUMH KaK BHyTPEHHUE COOMH, TeX-
HUYECKHEe HENCIIPABHOCTH ¥ ITPOYHE He3IOHAMEPEHHbIE aHOMAITH, HE CBSI3aHHBIE C BPEZOHOCHOW aKTHBHOCTBIO.

CdhopmupoBaHHast TeCTOBast BHIOOPKA T03BOJIMIIA POBEPUTH CIIOCOOHOCTH O0YUCHHBIX aJITOPUTMOB HE TOJIBKO
BBISIBIISITH aHOMAJIMU — MHIUKATOPHI paHee HEN3BECTHBIX YIPO3, HO M 3)(HEKTUBHO OTIIMYATh UX OT HE3JI0HaMe-
PEHHBIX OTKJIOHEHH, CBSI3aHHBIX C aBAPUHHBIMU COCTOSIHUSMHU.

Jran 5: tectupoBanne. OOydeHHbIE HA JIaHHBIX dTana | aaropuTMbl ObUTH MPUMEHEHBI K TECTOBOH BbI-
Oopke, chopMupoBaHHO Ha Tare 4. OCHOBHBIMH 3aJlauaMM dTOTO dTara SIBIBUIACE:

® 00HapyXeHUE OTKIOHEHHW OT HOPMAaIIbHOTO MOBEJCHUS B PEKUME, OIM3KOM K peaibHOMY BPEMEHH;

® KOppEeKTHas Kilaccu(hMKaIMsI BEISIBICHHBIX aHOMAJTUH ¢ pa3/iejieHueM UX Ha JIBE KaTerOpUH — HHANKATOPBI
peanuzanyu yrpo3 (kubeparaki) ¥ HEYyrpoxKalolue aHOMaJIuy (aBapuu U TEXHUYECKHE COOM).

Pe3synbraTsl TECTHPOBaHUS OIIEHUBAIINCH C IIOMOIIBIO METPHK []-score, Precision n False positive rate (FPR).

Ha puc. 5 u 6 mpencTaBieHsl pe3yabTaThl CPABHUTEIIHPHOTO aHAIN3a PA0OTHI MIECTH AITOPUTMOB 00pabOTKH
BPEMEHHBIX PsIJIOB, IPUMEHEHHBIX B paMKaxX 3KCIIEpUMEHTa 10 OOHAPY)KEHHIO aHOMAJIMH B YMHOW 3HEPro-
cetu. beuM paccMOTpeHbI Tpu anropuTMa oOHapyxxeHus anomanuii (Isolation forest, LOF n One-class SVM)
u Tpu anroputma knacrepuzauuul (DBSCAN, OPTICS u Spectral clustering), KoTopble 00paOaTbIBain JaHHBIC
MOCJIe TUCKPETHOTO BEHBIIET-IIPe0Opa3oBaHusl CUTHANA HaNpsbkeHus. Ha puc. 5 mpuBeneHs! pe3ynbTarsl A
TECTOBOT'O CIIEHAPHSI, IMUTHPYIOIIETO PEXKUM KHOepaTaku, KOTOPhINA XapaKTepru3yeTcsi TOYeUHBIMH aHOMAJHSIMHY,
PE3KO OTIAMYAIOIIMMUCS OT HOPMAILHOTO TIOBeIeHHs cucTeMbl. Ha puc. 6 moka3zaHbl pe3ysIbTarhl IS CLEHApHS,
COOTBETCTBYIOIIETO aBApPUHHOMY PEXKUMY, TPH KOTOPOM HAOIIOJAIOTCSl YCTOMYUBBIC OTKIIOHEHHS, BBI3BAaHHbIC
TEXHUYECKUMU COOSIMH WJIM aBapHsIMH B CETH.

Jl1s KaKToTo anropuTMa IMpeJCTaBIeHs 1Ba Tpaduka. Bepxanii rpaduk — BU3yanu3anus TOYEK B IByMEPHOM
MPU3HAKOBOM ITPOCTPAHCTBE, CHOPMUPOBAHHOM HA OCHOBE KOO HUIIEHTOB BEHBIIET-ITPe0Opa30BaHMs CUTHAIA
HanpspkeHus. [1o ocu x oTa0oxkeHo 3HaueHHe ko3 duuuenTa 4, BeiiBiaeT-npeodpa3oBaHys CUIHANA HAIPSKEHUS
B HOPMAJILHOM PEXUME, a TI0 OCH Y — 3HAUCHHUE TOT0 ke Ko PULIMEeHTA, HO B aHOMAJILHOM peKuMe (Kubeparaka
nin aBapus). Takum 00pa3om, Kakaast TOUKka COOTBETCTBYET OTHOMY BPEMEHHOMY OKHY M OTpakaeT W3MeHEeHNE
TIOBEICHUS CUTHAJIA TT0 CPABHEHUIO ¢ HOpMOH. Touku, pactonokeHHbIe BIOIb THarOHAN, COOTBETCTBYIOT y4acT-
KaM CHTI'Hajia 0e3 aHOMaJIMH, TorJja KaK OTKJIOHEHHS OT JMAroHaIM yKa3bIBAIOT HA MOMEHTHI, KOTJ[a OCHOBHBIE
XapaKTEPUCTHKH CUTHAJIA M3MEHUIIUCH, — 3TO U €CTh MOTCHIMAIbHbIE aHOMaluK. LIBeT U MapKepbl OTpakaroT
pe3yibTaT Kiaccu(uKauy: HopMaabHble TOUKA ((POHOBAS I[BETOBAs 3aJIMBKA) M aHOMAIHH (KpPaCHBIC TOUKH
Wim KOHTYphI). HiokHNMi rpaduk — TerioBas KapTa ypoBHS aHOMAJIBHOCTH BO BpeMeHH. 1o ropu3oHTanm ot-
JIO)KEHO BPEMsi, YPOBEHb aHOMaJILHOCTH BU3yalH3HUPOBaH IIBETOM — OT CHHETO (HH3KHI YPOBEHb OTKIOHECHUS
OT HOPMBI) JTO KPacCHOTO (BBICOKHH YPOBEHD OTKJIOHEHHSI OT HOPMBI).
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TeopeTuyeckne ocHOBBI HH(pOPMATHKH
Theoretical Foundations of Computer Science

Taxoi MOAXO0/ MO3BOJIACT HE TOJIBKO OLCHUTH IMOBECACHUE aJITOPUTMOB B IIPU3HAKOBOM ITPOCTPAHCTBE, HO
U COIIOCTaBUTh OOHAPYKEHHBIC aHOMAIUK C MX BPEMEHHBIM PACIOJIOKEHHEM, YTO KPUTHUECKU BaKHO JIJIS
JMUATHOCTHKYU W KJIaCCU(PUKAINKA PEKAMOB pabOTHl SHEPTOCUCTEMBI. AHAIOTHYHAs 00pabOTKa M aHATN3 BBI-
MOJTHSITMCH JIJISl BCETO TECTOBOTO JIaTaceTa.

Onenka 3¢ heKTUBHOCTH TPOTECTUPOBAHHBIX AJITOPUTMOB ObLIa TPOBE/ICHA HAa TECTOBOM jaracere. B Tao. 1
U 2 IpUBEICHBI yCPETHEHHBIE METPHKH KaueCTBa paboThl aJITOPUTMOB, PACCUYUTAHHBIE TI0 BCEM 00pabOTaHHBIM
JTAHHBIM B paMKax SKCIICPUMEHTA.

Tabnunma 1

MeTtpuku oueHKkH 3P (PeKTHBHOCTH AJITOPUTMOB (Pe:KMM KHOepaTaKu)

Table 1
Algorithm evaluation metrics (cyberattack mode)
Anroputm Precision, % Fl-score FPR, % Bpewms orkimka, Mmc
Isolation forest 98 0,96 2 20
LOF 89 0,82 15 150
One-class SVM 92 0,88 5 80
DBSCAN 98 0,95 3 130
OPTICS 96 0,92 8 160
Spectral clustering 92 0,89 12 180
K-means 85 0,78 10 50
GMM 84 0,82 17 100
Tabnuma 2
MeTpukH oueHKH 3P (PeKTUBHOCTH AJITOPUTMOB (ABapHITHBIIH pexKIM)
Table 2
Algorithm evaluation metrics (emergency mode)
Anroput™m Precision, % Fl-score FPR, % Bpewms orknuka, Mc
Isolation forest 93 0,88 5 20
LOF 82 0,80 20 150
One-class SVM 83 0,82 10 80
DBSCAN 95 0,86 8 130
OPTICS 90 0,83 11 160
Spectral clustering 86 0,80 18 180
K-means 93 0,88 5 20
GMM 82 0,80 20 150

ITpoBenenHas orieHka 3()(eKTUBHOCTH aJITOPUTMOB 10 BCEMY TECTOBOMY JaTaceTy BBISIBUIIA 3HAYUTEIIHHBIC
pasnuums B criocobax oOHapyKeHUsI aHOMAJIMH [UIsl ABYX NPUHIMIIMAIBLHO PAa3JIMYHBIX CLIEHAPUEB — PEKHMA
KnOepaTaky U aBapuiHOTO pexumMa. [T1laBHOE OTAMYME MEKAY HUMH 3aKII0YaeTCsl B AMHAMHKE MPOSBICHUS
AHOMaITNii: KHOepaTaky COMPOBOXKIIAIOTCS PE3KMMHU KPAaTKOBPEMEHHBIMHU CKauKaMH CHTHAJIa, TOT/Ia KaK aBa-
pUIHBIE COCTOSIHUS XapaKTepU3YIOTCS IUIaBHBIM, HO yCTOIHYMBBIM N3MEHEHHEM MapaMeTPOB CHCTEMBI. JTO
OTIIMYHE OTPa’KaeTCs B TOKa3aTelsix S(PQEKTHUBHOCTH MPUMEHEHHBIX AITOPHTMOB.

B cuenapuun xubeparaku (cMm. Tadn. 1) anropurm Isolation forest AeMOHCTPUPYET MaKCUMAaIbHYIO TOY-
HOCTh (98 %) 1 MUHMMAJIbHBIM YPOBEHb JIOKHBIX cpadaTbiBaHuil (2 %), 4To 0OBACHSIETCS €ro BBICOKOW YyB-
CTBHUTEJBHOCTBIO K TOYEYHBIM BbIOpocam. B To e BpeMs mpH aHalu3e aBapuiiHBIX PEKUMOB (cM. TalI. 2)
HaOmoaercst obriee cHmkeHue 3QHEKTHBHOCTH OOJIBIIMHCTBA AITOPUTMOB, 0COOCHHO 110 METpHKaM F1-score
u FPR, 4TO CBA3aHO C MOCTENEHHBIM U MEHEE BbIPaKEHHBIM XapaKTepOM U3MEHEHUW CUTHaja. AJITOPUTMBI
KJIACTEPHU3ALMH IIPU ITOM MOKa3BIBAIOT OoJiee cTaOMIIbHBIC PE3yIbTaThl B 000MX CIIEHAPHSX, IIOCKOIBKY OHH
OPHEHTUPOBAHBI HA BBISBICHHUE IPOCTPAHCTBEHHO-BPEMEHHBIX KIIACTEPOB AHOMAJIUH, @ HE Ha ICTEKTHPOBAHUE
OT/IEIBHBIX BEIOpOCcOB. ClielyeT OTMETHTD, YTO BpeMsl OTKJIMKA aJITOPUTMOB OCTAETCS IPAKTHYECKH HEM3MEH-
HBIM HE3aBHCHUMO OT TUIIA aHOMAJIUH.
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[To pe3ynbraram arpodauy METOIOIOT MU MOKHO CJIENAaTh CIEAYIONINE OCHOBHBIC BHIBOJIBL:

® [T0JTy4eHBI TOATBEPIKIAIOIIIE PE3YIIBTAThI, CBUACTEIHCTBYIOIINE O BO3SMOKHOCTH IIPUMEHEHUST CHHTETH-
YeCKUX JaHHbBIX, CTeHepUpoBaHHBIX B LJ], 115t 00yueHust aropuT™OB OOHAPYKEHUsI aHOMAJIHI, YTO OTPAKACTCs
B CTAOMIILHBIX 3HAYCHUAX METPHUKH F'/-score TIpW BBIABICHUH PaHee HEM3BECTHBIX YTIPO3;

® YCTaHOBJIEHA CIIOCOOHOCTD NPEIOKEHHOM CUCTEMBI (P QEKTUBHO Pa3InvaTh aHOMAJMH, CBSI3aHHbBIC C pea-
nm3anueit yrpo3 Ub, n He3noHamepeHHbIe OTKIIOHEHHsI, BhI3BAaHHbBIC aBAPHUIHBIMU COCTOSTHUSIMH M TEXHHUYE-
CKMMU HEHCIIPABHOCTSIMH, YTO 00ECTICUMBACTCS OTHOCUTEIFHO HU3KHM YPOBHEM JIOXKHBIX CpaOaThIBaHHIA,

® 3a)MKCHPOBaHA TCH/ICHIIUS K CHIDKCHHUIO BpEMEHH OOHAPYKEHUsI aHOMaJIUH 110 CPaBHEHUIO C TPAJIUIHOH-
HBIMH CUTHATYPHBIMH METOJIaMH, YTO ITOTEHIIHAIBHO CITOCOOCTBYET TIOBHIIIEHUIO OMEPaTUBHOCTH pearnpoBa-
HUS B YCIIOBUSIX PEajbHOTO BPEMEHH;

e ycTaHOBJICHO, uTo [1/] moka3an cedst Kak mepcreKTuBHas miardopma st MOISTHPOBAHUS pa3HOOOpas-
HBIX CLEHAPHEB aTak W IeHEepaluy PENpe3eHTaTHBHBIX O00ydYarollnX M TECTOBBIX JAHHBIX, obecneuynBas Oe-
30MACHYIO CpejLy JUIs anpoOaluy ajJropuTMOB;

® [T0JTyYeHBI pe3yJIbTaThl, YKa3bIBAIOIINE Ha I1eJIeCO00Pa3HOCTh MPUMEHEHUS KOMOMHHPOBAHHOTO ITOIX0/1,
BKITIOUAIOIIIET0 METO/bI IETEKTUPOBAHUS TOUEUHBIX BBIOPOCOB M KJIACTEPHOTO aHaJM3a, IS TOBHIIICHHS Ha-
NIEKHOCTH BBISIBIICHUS aHOMAIUN PAa3IMIHON MPUPOJIBI B YMHBIX YHEPTOCETSIX.

BMmecte ¢ TeM MOKHO OTMETUTH CIECAYIOLIHE JAOMYILEHHS U OTPAaHUYCHHUS] METOIOJIOTHH U €€ arpoOalum:

® pe3ynbTaThl OCHOBAaHBI HA CHHTETHUECKUX JJAHHBIX, CreHepupoBaHHbIX B 1[/], 4To HakmanbiBaeT orpaHu-
YeHHS Ha TIPSIMYIO0 SKCTPAIOJISAIUIO BEIBOJAOB HA peallbHbIC MMPOU3BOJICTBEHHBIC YCIOBHS HM3-32 BO3MOXKHBIX
OTJIMYMI B XapakTepe U pa3HOO0pa3nu peasbHbIX aHOMAJUI;

® B X0J1e OOY4EHHs aITOPUTMOB HE OBLIH NCIIOJIH30BAHBI aBaAPUITHBIE PEXKUMBI, YTO CO3IAET ONPENEICHHOE
OrpaHMYCHHE Ha 0000IAIOIIYIO CTOCOOHOCTH MOJIENEH MPH KiacCU(PUKAIMN HEYTPOKAIOIINX OTKIOHECHHIH;

® TECTHPOBAHKE MTPOBEICHO B KOHTPOINPYEMOM Cpefie ¢ OTpaHuIeHHBIM Ha0OPOM CIIEHApHEB, YTO HE UCKITIO-
YaeT HeOOXOIMMOCTH JONOJIHUTEIFHOM BaMIAMK B YCIIOBUSIX PEallbHOTO BPEMEHH M Ha PEasIbHBIX JaHHBIX;

® 1CIIOJIb3yEeMbIE METOJIbI KITACTEpU3AIMK U OOHAPYKEHHSI BHIOPOCOB MPEATIONAraloT ONpe/IeliCHHbIC CTa-
THCTHUYECKHE CBOMCTBA JAHHBIX M MOTYT TpeOOBaTh aAaITaIl[H 110]] CIENU(DUKY KOHKPETHBIX CHCTEM.

3aKjaoueHune

Taxum 00pa3oM, B CTaThe M3JI0KEHA METOAOJIOTHS aHanmu3a yrpo3 Wb Ha ocrose 11/], Bimrouaromas dop-
manmzanuio KOC u npoctpancTsa yrpo3 Mb, 6e3onacHoe MoaeTupoBaHue aTak, FTeHEPaLui0 CHHTETUYECKUX
JIAHHBIX 1 00y4YeHUe cUcTeM 00HAPYKEHHS aHOMAITUI — MHIUKATOPOB Pean3aliii yrpo3. JKCIIepUMEHTa IbHAS
[IPOBEPKa METOIOJIOTHH, [TPOBEICHHASI HA MOJIEJIN YMHOHM SHEProCeTH, II0Ka3aa, YTo aIrOpUTMbI, 00y4eHHbIE
WCKITIOUMTENILHO Ha TAHHBIX, CTEHEPUPOBaHHBIX B LI/], 7éMOHCTPpHUPYIOT BBICOKYIO TOYHOCTH (3HAUCHUE METPUKHU
Fl-score nocturaet 0,96) B BBISIBIICHHH PEAKUX U pPaHEe HEM3BECTHBIX yTPO3.

KiroueBbIM perMyI11eCTBOM METOIOIOT MU SIBIISIETCS €€ TPOAKTUBHBIN XapaKTep, MO3BOJISIOMINI TOTOBUTHCS
K yrpo3aM JIo X (PaKTUYECKOTO MPOSBICHUS B pealIbHBIX CUCTEMAaxX 3a CYET MOJICTHPOBAHUS pa3HOOOPa3HBIX
cuenapues B L /I. 310 obecnieunBaet 6e3omacHOCTS (00yueHune 0e3 prucka st HHQPacTpyKTypsbl), SPPEeKTHBHOCTD
(cokparlieHue BpeMEHH PEeaKIHH, TIOBBIIICHUE MTOJTHOTHI U TOYHOCTH IETEKTHPOBAHUS ) M YHUBEPCAILHOCTD (TIpH-
MEHUMOCTb K 00BbEKTaM KpPUTHUECKOH HHPPACTPYKTYPBI, HHTEPHETY BEIEeH, 00Ia4HBIM cpesiam).

[epcniekTHBEI TabHEHIINX UCCIICAOBAaHUMN BKITtOUaroT uHTerpanuto ¢ SIEM/SOAR-mnardopmamu jijist aBro-
MaTu3aluy pearupoBaHys U CII0JIb30BAHUE TCHEPATUBHOTO HCKYCCTBEHHOTI'O MHTEILIEKTA AJIsl CO3AaHus Oosee
penpe3eHTaTuBHBIX crieHapueB artak B LIJ[. Takum oOpa3om, nmpeanokeHHass METONOJIOT s OTKPBIBACT MYTh
K CO3JIaHHIO A/IaNITHBHBIX CUCTEM 0€30I1aCHOCTH, CITIOCOOHBIX MPOTHBOCTOSTH YBOIIOIMOHUPYIOIIUM YTPO3aM
B cioxkHbIX KOC.
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Kpemens E. B. Be6-KOHCTpYHpPOBaHUeE : 3JICKTPOH. y4e0.-MeTOA. KOMIUTeKe 1t cretl. 6-05-0533-06 «Marte-
matuka» / E. B. Kpemens, 0. A. Kpemens ; BI'Y. Onexrpon. TexcroBsie nan. Munck : BI'Y, 2025. 224 c. : nin.
bubmmorp.: ¢. 223-224. Pexxum moctyma: https://elib.bsu.by/handle/123456789/335960. 3arm. ¢ skpana. Jler.
B BI'Y 13.10.2025, Ne 011313102025. TexcT : 27€KTPOHHEIH.

DNeKTpOoHHBIN yueOHO-MeTommueckuii komruieke (Y MK) o yuebnoit muctumiae «Bed-koHCTpyrpoBaHue)
MpeaHa3HaueH IS CTYACHTOB criennaabHOCTh 6-05-0533-06 «Maremarukay. 9Y MK conepXUT TEeKCThI JISKITHA,
TUTaHBI TAOOPATOPHBIX 3aHATHH, TepeueHb KOHTPOIBHBIX BOITPOCOB, CITUCKH PEKOMEHOBAHHOW JTUTEPATYPHI.

VIK 004.6(075.8)

Kpemenw 0. A. Ba3bl JaHHBIX : JIEKTPOH. y4e0.-MeTO/A. KOMITIEKC s crell.: 6-05-0533-06 «Marematukay,
6-05-0533-07 «Maremaruka u koMmmbiotepHbie Hayku» / FO. A. Kpemens, E. B. Kpemens, A. A. [lepromes ; BI'Y.
OnekTpoH. TekcToBble JaH. MuHck : BI'Y, 2025. 469 c. : un. bubnuorp.: c. 467-468. Pexum nocryma: https://
elib.bsu.by/handle/123456789/335972. 3arn. ¢ skpana. Jlern. B BI'Y 13.10.2025, Ne 011413102025. Texcer :
IEKTPOHHBIN.

OneKkTpoHHBIN yueOHO-MeTomuecknii Komrieke (3YMK) no yuebnoii qucnuruae «ba3bl JaHHBIX) Tpea-
Ha3HA4YeH JJISl CTYAECHTOB criennanbHocTelt 6-05-0533-06 «Marematukay, 6-05-0533-07 «MaremaTnka 1 KOM-
MBIOTEpHBIE HAayKu» (podumuzanun «Maremarukay, «ICKycCTBEeHHBIH HHTEUIEKT U MaTeMaTndecKkasi SKOHO-
MuKa»). DYMK conepKuT TEKCTHI JIEKIUH, MTaHbl Ta00PATOPHBIX 3aHATHH, TEpeueHb KOHTPOJIBHBIX BOTIPOCOB,
CITUCKH PEKOMEH0BAaHHON JINTEPATYPHI.
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OnexTpoHHbIl yueOHo-MeToandeckuii komieke (QYMK) mo yuebnoii mucunmnnune «{uddepenuuansapie
Y MHTETpaJIbHbIe YpaBHEHM» MpeHa3HaueH JJIs CTY/IEHTOB crennaibHocTH 6-05-0533-04 «KommnbrorepHas
¢uzuka». B DYMK npuBeieH KpaTkuil TeOpeTHUECKUI MaTeprall, HEOOXOUMBIi JUIsi THTETPUPOBAHMS 1 aHa-
JI32 OCHOBHBIX THITOB AU epeHIMaIbHBIX YPaBHEHUI; TaHBI OCHOBBI TEOPUH yCTOWYNBOCTH, HHTETPATbHBIX
YpaBHEHUH U BApUALIMOHHOTO UCYUCIICHUS; Pa300paHo peleHre OONBIIOr0 KOJTMYECTBA TUIIOBBIX 33/1a4; Pe-
JIOKEHBI 33/1a4U [Tl CAMOCTOSITEIIBHOTO PEIICHHS.
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Kosnosckaa U. C. YpaBHeHUs] MaTeMaTHYeCKOil (U3UKH : 3JICKTPOH. yueO.-METO. KOMIUIEKC JUIS CIell.
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DneKTpoHHBIH yuyeOHO-MeTonuueckuii kommieke (OYMK) o yueOHOM qucHMILTHHE « YpaBHEHUsS Mare-
MaTU4ecKol (HU3MKM» pa3padoTaH B COOTBETCTBHH C 00pa30BaTeNbHBIM CTAHAAPTOM 1-i CTyNEeHH BBICIIETO
oOpazoBanus A crieruaibHocTH 6-05-0533-09 «[Ipuknagnas MareMaTHKa» U IpeAHa3Ha4YeH A1 HH(opMa-
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[IHOHHO-METOIUICCKOTO 00ECTICYCHUS TIPETIOIaBaHMsI TUCIIUTUINHBI « YPAaBHCHHSI MAaTEMaTHUCCKON (hHU3HKNY
JUISL CTYAICHTOB aHHOU criennanbHOCTH. B OYMK comepskutcst KOHCTIEKT JICKIIUM, TepEUeHb JIa00paTOPHBIX
3aHATHUI C MaTepHaiaMu JIsl pabOoThI, 3aaHHsI TI0 YIPABISIEMOI CaMOCTOsTEIHbHON padoTe.

VAK 004.42:004.738.5(075.8)

Fbapsenos C. A. Beb-porpaMMupoBaHue : dIEKTPOH. y4ue0.-MeTo/I. KoMIUIeKC /i crell.: 6-05-0533-07 «Ma-
TEeMaTuKa ¥ KOMIBIOTepHbIE HayKn», 6-05-0533-08 «KommbproTepHas MareMaTika U CUCTEMHBIN aHan3y /
C. A. bapsenos ; BI'Y. DnekTpoH. TekcToBble 1aH. MuHck : bI'Y, 2025. 267 c. : ni., Tabn. bubnmorp.: ¢. 264-265.
Pexxum noctyma: https://elib.bsu.by/handle/123456789/337482. 3arn. ¢ skpana. [den. 8 bI'Y 21.11.2025,
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