БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского

тосударственного университета

А.Д.Король

27 июня 2025 г.

Регистрационный № 3487/м.

«ЗЕЛЕНЫЕ» ТЕХНОЛОГИИ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

Учебная программа учреждения образования по учебной дисциплине для специальности высшего образования:

7-06-0531-01 Химия

Профилизация: Химический дизайн новых материалов

Учебная программа составлена на основе ОСВО 7-06-0531-01-2023 и учебного плана № M44-5.5-42/уч. от 23.05.2025.

СОСТАВИТЕЛЬ:

Т.А.Савицкая, профессор кафедры физической химии химического факультета Белорусского государственного университета, доктор химических наук, профессор

РЕЦЕНЗЕНТ:

Т.Н.Невар, заместитель директора по научной и инновационной работе ГНУ «Институт физико-органической химии НАН Беларуси», кандидат химических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой физической химии и электрохимии БГУ (протокол № 15 от 19.06.2025);

Научно-методическим советом БГУ (протокол № 11 от 26.06.2025)

Заведующий кафедрой

Е.А.Стрельцов

T.B. Kolawseps-Patrunenae

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — сформировать у студентов представления о содержании и соотношении понятий «зеленая» экономика и «зеленая» промышленность, декаплинге, концепции химического лизинга, принципах зеленой химии и технологии, современных тенденциях использования принципов зеленой химии на предприятиях химической и фармацевтической промышленности и конкретных примерах инновационных разработок в области «зеленых» технологий в мире и Республике Беларусь.

Задачи учебной дисциплины:

- сформировать у студентов иерархически выстроенную систему базовых представлений, раскрывающих концепции «зеленой» экономики и «зеленой» химии;
- обеспечить формирование на основе приобретенных базовых знаний научного мировоззрения, позволяющего развивать инновационные технологии для химической промышленности, которые безопасны для окружающей среды и здоровья как населения, так и персонала производственных предприятий.

Место учебной дисциплины в системе подготовки специалиста с углубленным высшим образованием.

Учебная дисциплина относится к модулю «Перспективные химические технологии и материалы» компонента учреждения образования.

Учебная программа составлена с учетом межпредметных связей с учебной дисциплиной «Зеленая химия».

Требования к компетенциям

Освоение учебной дисциплины «"Зеленые" технологии в химической промышленности» должно обеспечить формирование следующих компетенций:

Специализированные компетенции

Использовать современные концепции строения материи, методы химического материаловедения, молекулярной инженерии для описания свойств функциональных материалов с различной структурной организацией.

Предлагать области применения новых материалов и технологий химической и фармацевтической отрасли, в научной и инновационной деятельности

В результате освоения учебной дисциплины студент должен:

знать:

основное содержание и соотношение понятий «зеленая» экономика и «зеленая» промышленность;

- основы концепций декаплинга и химического лизинга;
- основные законодательные документы по безопасному обращению с химическими веществами;
 - принципы зеленой химии и технологии;
- современные тенденции использования принципов зеленой химии на предприятиях химической и фармацевтической промышленности;

– конкретные примеры инновационных разработок в области «зеленых» технологий в мире и Республике Беларусь;

уметь:

- провести анализ осведомленности предприятия о «зеленой» химии и её принципах;
- информировать специалистов предприятия о возможностях «зеленой» химии для повышения энерго- и ресурсоэффективности технологического процесса;
- использовать принципы «зеленой» химии и технологии для разработки «зеленых» технологических процессов.

иметь навык:

- анализа осведомленности предприятия о «зеленой» химии и её принципах;
 - выдачи рекомендаций по внедрению концепции химического лизинга;
- эффективного использования в технологических процессах и научных исследованиях принципов «зеленой» химии и технологии;
- оценки и прогнозирования уменьшения воздействия химических веществ на окружающую среду и человека для достижения целей устойчивого развития.

Структура учебной дисциплины

Дисциплина изучается в 1 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины ««Зеленые» технологии в химической промышленности» отведено для очной формы получения высшего образования — 114 часов, в том числе 38 аудиторных часов, лекции — 20 часов, семинарские занятия — 18 часов. Из них:

Лекции -20 часов, семинарские занятия -6 часов +6 часов ДОТ, управляемая самостоятельная работа (УСР) -2 часа +4 часа (внеаудит.).

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

РАЗДЕЛ 1. КОНЦЕПЦИЯ «ЗЕЛЕНОЙ» ЭКОНОМИКИ И «ЗЕЛЕНОЙ» ПРОМЫШЛЕННОСТИ КАК ОСНОВА УСТОЙЧИВОГО РАЗВИТИЯ

Тема 1.1 Основные определения и стратегии

Определение понятий «зеленая» экономика и «зеленая» промышленность» Концепция соотношение ними. ЮНИДО между «зеленой» промышленности для устойчивого развития. Двухкомпонентная стратегия «зеленой» промышленности. Декаплинг. Преимущества «зеленой» промышленности. Химический лизинг как инновационная бизнес-модель. Отличие модели химического лизинга от классической схемы торговли товаром. Выгоды модели для производителя и потребителя. Примеры проектов химического лизинга.

Тема 1.2 «Более чистое производство» как актуальная стратегия развития мировой промышленности

Проблемы современного химического производства: нестабильность процессов, отходы, ограниченность углеводородного сырья и источников энергии. Реализация в химической промышленности концепции «Более чистое производство», обеспечивающей защиту окружающей среды, потребителя и работника при одновременном повышении эффективности, увеличении прибыли и конкурентоспособности. Переход от административных методов к методам «зеленой химии». Программа мировых производителей химической продукции «Ответственная забота» («Responsible Care») и ее вклад в устойчивое развитие. Глобальная Стратегия Управления Продуктом (Global Product Strategy, GPS) как часть программы «Ответственная забота». Понятие жизненного цикла продукта.

Тема 1.3 Законодательство в химической промышленности, регулирующее охрану окружающей среды

Системы экологического менеджмента: ISO 14001, европейский экоменеджмент и аудит (EMAS). Регулирование рационального использования химических веществ. Законодательные документы, регламентирующие охрану окружающей среды в химической промышленности: требования к химической продукции Chemicals Policy, REACh (Registration, Evaluation, Authorisation and Restriction of Chemical substances), Согласованная на Глобальном Уровне Система Классификации и Маркировки Химической Продукции (Globally Harmonized System of Classification and Labeling of Chemicals, GHS). Экомаркировка.

РАЗДЕЛ 2. «ЗЕЛЕНЫЕ» ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

Тема 2.1 Принципы зеленой химии и зеленого инжиниринга

Исторические предпосылки, этапы и направления развития «зеленой» химии. Принципы «зеленой» химии и примеры их реализации в технологических процессах. Принципы «зеленого» инжиниринга и их использование

промышленными предприятиями. Основные метрики «зеленого» синтеза и «зеленой» технологии. Внедрение принципов «зеленой» химии и «зеленого» дизайна на предприятиях химической и фармацевтической отрасли.

Тема 2.2 «Зеленый» дизайн химических процессов

устойчивой карта химической промышленности. Технологические аспекты внедрения «зеленых» химических процессов. Новое аппаратное оформление процессов. Принципы технологических интенсификации технологических процессов: увеличение массотеплопереноса, оптимизация продолжительности реакции. Классические реакторы периодического и проточного действия. Недостатки классических реакторов. Новые виды аппаратов в технологических процессах: реакторы с вращающимся диском, каталитические мембранные реакторы, микрореакторы. противоточные Многофункциональные реакторы: реакторы, хроматографические экстракция, реакторы. Реакционная перегонка, кристаллизация. Примеры химических процессов в новых видах реакторов. Зеленые растворители в химической и фармацевтической промышленности. 12 принципов «зеленого» дизайна химических процессов. Дизайн более безопасный по своей природе.

Тема 2.3 «Зеленые» технологии в Республике Беларусь

Отличительные особенности экологических инноваций. Реализация принципов «зеленой» химии в процессах конверсии биомассы в платформенные молекулы. Биоразлагаемая упаковка: классификация, проблемы, инновации и перспективы развития. Современное состояние производства химических волокон в Республике Беларусь. Целлюлоза как самый распространенный биополимер и растворители целлюлозы. Общая схема процесса получения гидратцеллюлозного волокна. Альтернативные вискозному новые технологические процессы. «Зеленый» процесс получения гидратцеллюлозных волокон, разработанный в БГУ. «Зеленая» химия на предприятиях текстильной промышленности.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

-		Количество аудиторных часов				0.8		
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	Концепция «зеленой» экономики и «зеленой» промышленности как основа устойчивого развития	8						
1.1	Основные определения и стратегии	2		2 ДОТ			2	Эссе
1.2	«Более чистое производство» как актуальная стратегия развития мировой промышленности.	2		2				Экспресс-опрос
1.3	Законодательство в химической промышленности, регулирующее охрану окружающей среды	4		2 ДОТ				Выступление с презентацией
2	«Зеленые» химические технологии	12						
2.1	Принципы зеленой химии и зеленого инжиниринга	4		2 ДОТ			4 (вн.)	Выступление с презентацией
2.2	«Зеленый» дизайн химических процессов	4		2				Устный опрос
2.3	«Зеленые» технологии в Республике Беларусь	4		2				Эвристический диалог
	Итого:	20		12			6	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

1. Green Chemistry: Process Technology and Sustainable Development / Tatsiana Savitskaya, Iryna Kimlenka, Yin Lu [et al.]. - Signapore: Springer jointly published with Zhejiang University Press, 2022. – 149 p. ISBN 978-981-16-3745-2.

Дополнительная литература

- 1. Введение в "зеленую" химию: Беларусь и страны Вышеградской четверки: опорный конспект лекций для студ. спец. "Химия" (по направлениям) / [авт.: Т. А. Савицкая и др.]; БГУ, Международный Вышеградский Фонд. 2-е изд., пересмотр. Минск: Издательский центр БГУ, 2016. 151 с.
- 2. Локтева Е.С. Методы реализации процессов «зеленой» химии: учебное пособие / Е.С. Локтева. М.: Изд-во Триумф, 2021. 270 с. URL: https://elibrary.ru/download/elibrary_45676542_43182504.pdf
- 3. Зелёная химия как инструмент устойчивого развития : учебное пособие / Атласкин А.А., Атласкина М.Е., Воротынцев А.В. [и др.]; сост. Н.П. Тарасова, А.Г. Ишков, С.О. Гоманова. М.: Неправительственный экологический фонд имени В.И. Вернадского, 2024. 292 с.: ил.
- 4. Савицкая, Т. А. Биоразлагаемые композиты на основе природных полисахаридов / Т. А. Савицкая ; БГУ. Минск : БГУ, 2018. 207 с.
- 5. Малышева, Т. В. Методология организации малоотходных химикотехнологических систем на принципах "зеленой" химии / Т. В. Малышева, А. И. Шинкевич; Минобрнауки России, ФГБОУВО "Казанский национальный исследовательский технологический университет". Казань: Казанский национальный исследовательский технологический ун-т; Курск: Университетская книга, 2022. 218 с.
- 6. Andraos, John. Reaction Green Metrics: Problems, Exercises, and Solutions / by John Andraos. Boca Raton; London; New York: CRC Press: Taylor & Francis Group, 2019. 592 c.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Текущий контроль уровня знаний, обучающихся может осуществляться с использованием следующих средств диагностики:

- 1. Эвристические диалоги по отдельным темам;
- 2. Экспресс- и устные опросы;
- 3. Эссе:
- 4. Выступление с презентацией.

Формой промежуточной аттестации по дисциплине «Зеленые химия» учебным планом предусмотрен экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая

возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

- экспресс- и устные опросы -25 %;
- 3cce 25 %;
- эвристический диалог -25%;
- выступление с презентацией -25 %.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (модульно-рейтинговой системы оценки знаний) 60% и экзаменационной отметки 40%.

Примерный перечень задан для управляемой самостоятельной работы

Тема 1.1. Основные определения и стратегии (2 ч)

Задание 1. Дать определение понятий «зеленая» экономика и «зеленая» промышленность» и соотношение между ними. Сформулировать концепцию ЮНИДО по «зеленой» промышленности для устойчивого развития и двухкомпонентную стратегию «зеленой» промышленности. Написать эссе «Концепция «зеленой» экономики и «зеленой» промышленности как основа устойчивого развития»

(Форма контроля - эссе)

Тема 2.1. Принципы зеленой химии и зеленого инжиниринга (4 ч)

Задание 2. Сформулировать стратегию «дизайна, более безопасного по своей природе». Проанализировать, как она соотносится с двенадцатью принципами зеленой инженерии. Привести примеры «зеленых» технологий, разработанных в учреждении БГУ «НИИ физико-химических проблем».

(Форма контроля –выступление с презентацией)

Примерная тематика семинарских занятий

- 1. Химический лизинг как инновационная бизнес-модель.
- 2. Более чистое производство» как актуальная стратегия развития мировой промышленности.
- 3. Законодательство в химической промышленности, регулирующее охрану окружающей среды.
- 4. Зеленые технологи в химической и фармацевтической промышленности.
 - 5. Зеленые технологии в Республике Беларусь.

Описание инновационных подходов и методов

к преподаванию учебной дисциплины

Линейный (традиционный) метод (лекция, семинарские занятия); Активные (интерактивные) методы:

проблемно-ориентированное обучение PBL (Problem-Based Learning). Обучающиеся приобретают знания и навыки при решении реальных, открытых проблем. Учебный процесс строится на основе практических заданий, а не традиционного изложения материала, что способствует более глубокому пониманию и развитию навыков критического мышления;

командно-ориентированное обучение TBL (Team-Based Learning). Обучение, основанное на использовании малых групп, дает возможность сначала изучить учебный материал, а на занятии применить полученные знания, умения и навыки при помощи последовательности действий, включающей индивидуальную работу, командную работу, а также мгновенную обратную связь:

научно-ориентированное обучение RBL (Research-Based Learning). Исследование становится центральным инструментом образовательного процесса. Вместо традиционного усвоения готовых знаний, студенты активно участвуют в исследовательской деятельности, что способствует более глубокому пониманию материала и развитию навыков критического мышления.

Методические рекомендации по организации самостоятельной работы

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск и обзор литературы и электронных источников по заданной теме;
- изучение материалов, размещенных на образовательном портале https://educhem.bsu.by/ (дисциплина «Зеленые технологии в химической промышленности») и на сайте химического факультета https://chemistry.bsu.by/index.php/ru/zelenaya-khimiya.;
 - подготовка к семинарским занятиям.

Внеаудиторные учебные занятия проводятся c использованием образовательной образовательного электронной среды портала https://educhem.bsu.by/ сайта химического факультета И https://chemistry.bsu.by/index.php/ru/zelenaya-khimiya.

Электронный образовательный контент по учебной дисциплине размещается на образовательном портале https://educhem.bsu.by/ и на сайте https://chemistry.bsu.by/index.php/ru/zelenaya-khimiya.

Доступ к ресурсам учебной дисциплины обучающихся осуществляется с использованием авторизации посредствам учетных записей.

Примерный перечень вопросов к экзамену

1. Определение понятий «зеленая» экономика и «зеленая» промышленность» и соотношение между ними.

- 2. Концепция ЮНИДО по «зеленой» промышленности для устойчивого развития. Двухкомпонентная стратегия «зеленой» промышленности.
 - 3. Кривая Кузнеца и декаплинг.
- 4. Химический лизинг как инновационная бизнес-модель. Отличие модели химического лизинга от классической схемы торговли товаром. Примеры проектов химического лизинга.
- 5. Проблемы современного химического производства: нестабильность процессов, отходы, ограниченность углеводородного сырья и источников энергии. Реализация в химической промышленности концепции «Более чистое производство.
- 6. Программа мировых производителей химической продукции «Ответственная забота» («Responsible Care») и ее вклад в устойчивое развитие.
- 7. Глобальная Стратегия Управления Продуктом (Global Product Strategy, GPS) как часть программы «Ответственная забота». Понятие жизненного цикла продукта.
- 8. Системы экологического менеджмента: ISO 14001, европейский экоменеджмент и аудит (EMAS).
- 9. Законодательные документы, регламентирующие охрану окружающей среды в химической промышленности: требования к химической продукции Chemicals Policy, REACh (Registration, Evaluation, Authorisation and Restriction of Chemical substances).
- 10. Согласованная на Глобальном Уровне Система Классификации и Маркировки Химической Продукции (Globally Harmonized System of Classification and Labeling of Chemicals, GHS).
 - 11. Экомаркировка. Проблемы и перспективы.
- 12. Исторические предпосылки, этапы и направления развития «зеленой» химии. Принципы «зеленой» химии и примеры их реализации в технологических процессах.
- 13. Новое аппаратное оформление технологических процессов. Принципы интенсификации технологических процессов: увеличение массо- и теплопереноса, оптимизация продолжительности реакции.
- 14. Классические реакторы периодического и проточного действия. Недостатки классических реакторов. Новые виды аппаратов в технологических процессах: реакторы с вращающимся диском, каталитические мембранные реакторы, микрореакторы.
- 15. Многофункциональные реакторы: противоточные реакторы, хроматографические реакторы. Реакционная перегонка, экстракция, кристаллизация. Примеры химических процессов в новых видах реакторов.
- 16. Зеленые растворители в химической и фармацевтической промышленности.
 - 17. 12 принципов «зеленого» дизайна химических процессов.
 - 18. Концепция дизайна более безопасного по своей природе.

- 19. Отличительные особенности экологических инноваций. Реализация принципов «зеленой» химии в процессах конверсии биомассы в платформенные молекулы.
- 20. Биоразлагаемая упаковка: классификация, проблемы, инновации и перспективы развития.
- 21. Современное состояние производства химических волокон в Республике Беларусь.
- 22. Целлюлоза как самый распространенный биополимер и растворители целлюлозы. Общая схема процесса получения гидратцеллюлозного волокна.
- 23. Проблемы растворения целлюлозы и ее известные растворители. Альтернативные вискозному процессу процессы получения гидратцеллюлозных волокон.
- 24. Зеленый» процесс получения гидратцеллюлозных волокон, разработанный в БГУ.
 - 25. Зеленая» химия на предприятиях текстильной промышленности.
- 26. Дорожная карта устойчивой химической промышленности. Технологические аспекты внедрения «зеленых» химических процессов.
- 27. Принципы «зеленого» инжиниринга и их использование промышленными предприятиями.
 - 28. Основные метрики «зеленого» синтеза и «зеленой» технологии.
- 29. Внедрение принципов «зеленой» химии и «зеленого» дизайна на предприятиях химической и фармацевтической отрасли.
- 30. Выгоды модели химического лизинга. Примеры проектов химического лизинга.
- 31. Сформулируйте принципы зеленой химии и укажите возможности их использования на предприятиях химической промышленности.
- 32. Регулирование рационального использования химических веществ. Законодательные документы, регламентирующие охрану окружающей среды в химической промышленности.
- 33. Технологические аспекты внедрения на предприятиях зеленых химических процессов.
- 34. Классические реакторы периодического и проточного действия и проточные реакторы.
 - 35. Охарактеризуйте зеленые технологии, разработанные в БГУ.
 - 36. Принципы создания безотходных технологий.
- 37. Ионные жидкости и глубокие эвтектические растворители. Применение в зеленых технологиях химической промышленности.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей учебную
с которой		программы	программу (с указанием
требуется		учреждения высшего	даты и
согласование		образования по учебной	номера протокола)
		дисциплине	
Учебная			
дисциплина			
не требует			
согласования			

Заведующий кафедрой физической химии и электрохимии, д.х.н., профессор

Е.А.Стрельцов

19.06.2025

дополнения и изменения к учебной программе уо

на	/	учебный год
114	,	у тоспын год

	пи у теоный тод							
№ п/п	Дополнения и из	менения	Основ	зание				
V								
у чеона	ая программа пересмотрен	на и одоорена на (протокол № _	заседании кафед от	цры _202_ г.)				
Завелу	ющий кафедрой							
УТВЕН	РЖДАЮ							
	факультета							