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Abstract: In this paper, we investigate a retrial tandem queueing system with a finite number of 
queues. Each queue consists of a finite buffer and a single server with phase-type distributed service 
times. Customers arrive at the system according to a Markovian arrival process (MAP). At any queue, a 
customer that finds both the server busy and the buffer full enters a common orbit and makes repeated 
attempts to rejoin the first queue after exponentially distributed time intervals. This system models 
telecommunication networks with linear topology that implement retransmission protocols for lost 
data packets. We provide a complete mathematical analysis for the two-queue system with an infinite- 
capacity orbit, deriving the ergodicity condition, stationary state distribution, and key performance 
characteristics. For systems with an arbitrary number of queues, we develop a comprehensive solution 
approach that combines queueing theory methods, discrete-event simulation, and machine learning 
techniques to predict the mean sojourn time. We implement and compare multiple machine learning 
methods, evaluating their predictive performance through extensive numerical experiments.
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1. Introduction

Modern telecommunication networks have become critical infrastructure components in 
contemporary society. The efficient operation of these networks relies heavily on accurate 
mathematical modeling techniques. Consequently, queueing theory methods have received increasing 
attention in telecommunications research. A particularly active research direction involves analyzing 
queueing networks by studying their fundamental building blocks under realistic assumptions about 
arrival processes and service mechanisms. Within this domain, two-stage queueing systems have
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attracted significant interest as they represent both an important subclass of linear-topology networks 
and effective models for network segments in general topologies [1,2].

The literature contains numerous studies on two-stage queueing systems. Early work primarily 
examined systems with Poisson input processes (see, e.g., [3]). However, modern telecommunication 
traffic exhibits non-stationarity and correlation that cannot be adequately captured by Poisson models. 
More sophisticated mathematical models for such traffic were introduced by Neuts [4] and 
Lucantoni [5] through the batch Markovian arrival process (BMAP) and its single-arrival variant 
MAP. These have become the predominant models for correlated bursty traffic, leading to numerous 
analytical studies of tandem queueing systems with MAP arrivals [6-8 ], BMAP arrivals [9] or marked 
MAP (MMAP) arrivals [10] in recent decades.

While retrial mechanisms are inherent in many telecommunication systems (e.g., TCP’s 
retransmission protocol), relatively few studies have addressed retrial tandem queueing systems with 
non-MAP arrivals [11, 12] or BMAP/MAP arrivals [13-15]. The mathematical analysis of retrial 
systems presents greater challenges than conventional queueing systems due to the spatial 
inhomogeneity of their underlying Markov chains [16]. Comprehensive reviews of early retrial queue 
research (pre-2008) can be found in [17 ,18], with MAP/BMAP models proving particularly valuable 
for modern network design and performance evaluation [19-21 ]. Most existing work assumes retrials 
only occur from the first station, with blocked customers at subsequent stations being lost. Our work 
addresses the more general case of a common orbit serving all stations. To our knowledge, 
only [22-24] have considered such systems.

In [22], for a tandem queueing system with a finite arbitrary number of stations, the authors 
elaborate on the approximation procedures to find the mean sojourn time. No restrictions are imposed 
on the distributions characterizing the input arrivals, service times, and inter-retrial times. The 
assumption is that the blocking probability at every station is known and fixed. Based on results for 
the system with two stations, the authors conclude that the approximation works well under light 
traffic. The paper [23] is devoted to a tandem queueing system with two single server stations with a 
common orbit for retrials and no buffers. The service times at the first server have a general 
distribution, and the service times at the second server are distributed exponentially. Assuming that 
the retrial rate is extremely small, the authors prove that the scaled version of the number of 
customers in the orbit asymptotically follows a diffusion process, which is further utilized to obtain an 
approximation to the number of customers in the orbit in the stationary state.

The system in [24] is similar to one studied in [23], but the input is MMPP (Markov-modulated 
Poisson arrivals), and the service times at the first server are exponentially distributed. The authors 
obtain the necessary condition for the Markov chain describing the system behavior to be ergodic and 
the asymptotic distribution of the scaled version of the number of customers in the orbit in case the 
retrial rate is extremely small.

In the present paper we consider the tandem (multi-station linear topology) model with a common 
orbit and an arbitrary number of stations. In contrast to known publications, the paper proposes a new 
model of a multi-phase queuing system of large size with an orbit and retrial facility. The novelty of the 
model is presented by the following aspects: 1) The input is MAP, which is more general than MMPP; 
2) service times have PH distribution; 3) the system stations have finite buffers. The common orbit 
mechanism handles all blocked customers uniformly: whether arriving externally at the first station or 
transitioning internally from previous stations, any customer encountering a full buffer joins the orbit
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and must restart service from the first station. This architecture models wireless networks with linear 
topologies, extending the framework of [25] with retrial capabilities while excluding cross traffic.

Unlike the papers listed above, we propose the combined solutions and analyze the model having 
an arbitrary number of stations by combining the methods of queueing theory, simulation tools and 
machine learning methods. As the investigation of retrial tandem queueing system with more than 
two stations is of considerable difficulty, the system analysis by means of queueing theory methods is 
given here for the case of two stations. The math part of the analysis is based on the matrix analytical 
method. In the second part, for the system with arbitrary finite number of stations, we study employing 
machine learning methods to predict the mean sojourn time of system. Machine learning applications 
in queueing theory are well-established [26-28 ]. A tandem queueing system closely related to our 
model has been studied using machine learning methods [29]; however, each system requires careful 
method selection and parameter tuning. The paper is organized as follows: Section 2 presents the 
problem formulation and mathematical model. In Section 3 we provide the closed-form solution for 
the case of two stations by means of queueing theory methods and present the algorithm to calculate 
the performance measures. In Section 4 we apply the machine learning methods to predict the mean 
sojourn time for the systems with an arbitrary number of stations. We also provide the comparison 
analysis of the analytical and machine learning results. Section 5 contains the conclusion to the paper.

2. Problem statement

In this paper we consider a tandem queuing system with a finite number of stations and a common 
orbit (Figure 1). The input arrivals to the system of MAP type; each station consists of a single server 
with a finite buffer in front of it, and the service times of each server have a phase-type (PH) 
distribution. The PH distribution provides a versatile modeling framework that generalizes many 
common distributions used in queueing theory. As demonstrated in [30], PH distributions can 
approximate any positive-valued distribution with arbitrary accuracy, making them particularly 
valuable for modeling realistic service time distributions.

Station 1 Station 2 Station K

Orbit

Figure 1. Tandem queueing system with a common retrial orbit.

A tandem queueing system consists of N  stations and a common orbit for retrials, N  > 2. Station 
i is a single server queueing system with finite buffer of size Ki. Customers arrive at the first station 
according to a Markovian arrival process (MAP) which is specified by the underlying process (Markov
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chain) vt, t > 0, with the state space {0,1, . . . ,  W} and (W + 1) x (W + 1) matrices D0 and D1. In
the MAP, customers can arrive only at the transition moments of process vt, t > 0. The rates of vt, 
t > 0 transitions accompanied by the generation of a customer are specified by the matrix D 1. “Idle” 
transitions of the underlying process not accompanied by a generation of a customer are specified by 
the off-diagonal entries of the matrix D0. The matrix D0+ D 1 is an infinitesimal generator of the process 
vt, t > 0. The average rate Л of arrivals is defined as Л = 9D1e, where 9 is a vector of the stationary 
distribution of the process vt, t > 0. This vector is calculated as the unique solution of the system 
9(D0 + D 1) = 0 , 9e = 1. Here and below, e is a column vector consisting of ones, and 0 is a row vector 
consisting of zeros. A more detailed description of MAP as a partial case of BMAP and its properties 
can be found in [5,30].

The service time of a customer by the k-th server has a PH distribution with an irreducible 
representation (fik, S k), k = 1, N. This time can be interpreted as time until the underlying Markov 
chain m(k), t > 0, with a finite state space {1, . . . ,  Mk, Mk + 1} reaches the single absorbing state Mk + 1 
given that the initial state of this process is chosen within the states 1 , . . . , Mk according to the 
stochastic row vector = (fi^ , . . .  ,ySkMk)). Transition rates of the process m® within the set 
{1 , . . . , Mk} are defined by the sub-generator Sk, and transition rates into the absorbing state (which 
lead to a service completion) are given by the entries of the column vector S0k) = - S ke . The service 
rate is calculated as uk = -[fikS~kle]~l and average service time is bk = u -1,k  = 1,N. More 
information about PH distribution can be found in [30,31].

The system operates under the following service discipline:

•  First Station Arrivals:
-  If the server is idle, service begins immediately,
-  If the server is busy but buffer space is available, the customer joins the buffer queue,
-  If both server and buffer are occupied, the customer enters the infinite-capacity orbit.

•  Orbital Behavior:
-  Customers in orbit make independent retrials after exponentially distributed time intervals,
-  Each retrial attempts to access either:

* The first station’s server (if available), or
* Its buffer (if server busy but space available).

•  Inter-station Transitions (k = 1,..., N -  1):
-  Upon completing service at station k, the customer:

* Immediately starts service at station k + 1 if its server is idle,
* Joins station k + 1’s buffer if server busy but space available,
* Enters the common orbit if station k + 1’s buffer is full.

•  Service Completion:
-  Customers reaching station N exit the system after service completion,
-  Orbital customers persist until successfully completing all N service stages.

Thus, each customer in the orbit, no matter which station it came from, makes repeated attempts to 
get to the first station at random time intervals, exponentially distributed with the parameter where 
i is the total number of customers in orbit. We assume that a 0 = 0, a i ^  to for i ^  to. Such a 
dependence includes, in particular, the linear retrial strategy ai = ia, a  > 0.
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3. Analysis of two stations model

Our primary objective is to derive key performance metrics, particularly focusing on the mean 
sojourn time. The subsequent sections develop our analytical approach, where we analyze the model 
by means of queueing theory methods. Below we consider the stochastic process describing the system 
behavior and show that it is an asymptotically quasi-Toeplitz Markov chain (AQTMC) [32]. This 
allows us to apply the algorithm elaborated in [32] to calculate the stationary state distribution and get 
the performance characteristics. Due to the complexity of the analysis with an arbitrary K, below we 
present results for the system with two stations, K = 2. In Section 4, the results obtained for K = 2 are 
used to verify the simulation model for arbitrary K, and both results from the analytical solution and 
simulation are used for machine learning tools to get results for an arbitrary number of stations.

3.1. Markov Chain 

Let at time t:

• it be a number of customers in the orbit, i > 0,
• j t be a number of customers at the first station, j t = 0, K1,
• nt be a number of customers at the second station, nt = 0, K2,
• vt be the state of the underlying process of the MAP, vt = 0, W,
• m(k) be the state of the PH service process on the k-th station server, m(k) = 1, M(k), k = 1,2.

The process of the system operation is described by a regular irreducible Markov chain ^t, t > 0, 
with state space

П = {(i, j, n, v), i > 0, j  = 0, n = 0, v = 0, W} ( J  

{(i, j, n, v, m(1)), i > 0, j  = 0, Kb n = 0, v = 0, W, m(1) = 1, M(1)} ^

{(i, j, n, v, m(2)), i > 0, j  = 0, n = 0, K2, v = 0, W, m(2) = 1, M(2)} ^

{(i, j, n, v, m(1), m(2)), i > 0, j  = 0, K1, n = 0, K2, v = 0, W, m(1) = 1, M (1), m(2) = 1, M (2)}.

In what follows, we assume that the states of the Markov chain under consideration are ordered in 
lexicographical order and form an infinitesimal generator Q of the Markov chain. Let us denote by 
Qn> the matrix of transition rates of the Markov chain from the states corresponding to the level i of 
the countable component it to the states corresponding to the level i' , i, i' > 0. Matrix Qi i/ consists 
of blocks Qi,i' (j , j ' ), j , j ' = 0, K1, containing the rates of transitions from the states corresponding to 
the levels i, j  of components it, j t to the states corresponding to the levels i', j ' of these components. 
Matrix Qii' (j , j ' ) consists of blocks Q('n;n)(j, j ' ), n, n' = 0, K2, containing the rates of transitions of 
the underlying process of the MAP and the PH service processes on the first and the second servers 
from the states corresponding to the levels i, j , n of components it, j t, nt to the states corresponding to 
the levels i', j ', n ' of these components. Then the infinitesimal generator Q has the following block 
structure:

Q = Qi,i' = Qi,i' (j, j ' ) = Qin,n' )(j, j ' ) . (1)
i,i ' >0 j j'=0,K1, i,i ' >0 n,n '=0,K2, j, j'=0,Kb i,i ' >0

In order to describe the matrix Q, we use the following notations:
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• I  is an identity matrix, O is a zero matrix, In is an identity matrix of size n x  n, On is a zero matrix 
of size n x n, Omxn is a zero matrix of size m x  n,

• diag+{a1, a2, . . . ,  an} is a matrix that consists of (n + 1) x (n + 1) blocks (not necessarily square) 
whose over-diagonal blocks are equal to the matrices listed in the brackets and the remaining 
blocks are zero,

• diag- {a1, a2, . . . ,  an} is a matrix that consists of (n + 1) x (n + 1) blocks whose sub-diagonal blocks 
are equal to the matrices listed in the brackets and the remaining blocks are zero,

• 6(i, j)  is the Kronecker symbol.

The infinitesimal generator Q of the Markov chain %t, t > 0 has a block tridiagonal structure:

fQ0,0 Q0,1 O O O . . .
Q1,0 Q1,1 Q1,2 O O . . .

Q = O Q2,1 Q2,2 Q2,3 O . . .
O O Q3,2 Q3,3 Q3,4 . . .

. . ".

with the non-zero blocks Qiti> also have a block tridiagonal structure and are defined by the following 
matrices:

Qi,i- 1(j, j  -  1) = O, i > 1, j  = 1, K 1 ,

Qi,i- 1 (j, j ) = O, i > 1, j  = 0, K1 ,
Qi,i- 1 (0, 1) = aidiag{Iw ® fa , Iw ® A  ® Im2}, i > 1,

/  “4̂  ^
K2

Qi,i- 1( j  + 1) = a iIWR, i > 1, j  = 1  K1 -  1,

Qi,i(1, 0) = diag+{Iw ® S01} <g>A, Iw ® S 0 ® Im2 }, i > 0,
K2- 1

Qi,i( j, j  -  1) = diag+{Iw ® S^ A  <S>02, Iw ® S^ A  <S> Im2 }, i > 0, j  = 2, Kb
K2- 1

Qi,i(0, 0) = diag{D0, Dtp Ф S 2} + diag {Iw ® S p , / w ® S pA } -  ®iI , i > 0,
K2 K2-1

Qi,i( j, j ) = diag{D0 Ф S 1, D0 ® S 1 ® S 2}+
K2

diag- {IwM1 ® S02), Iwm1 ® S p A } -  [1 -  h(j, A )]® ^, i > 0, j  = 1, Kb
K2- 1

Qi,i(0, 1) = diag{D1 <g>01, D 1 <g> A  ® IM2 }, i > 0,
/  ^

K2
Qi,i(j, j  + 1) = diag{D1 <g> IM1, D 1 <g> Im1 <S> Im2 }, i > 0, j  = 1, K1 -  1,

/  “4̂  ^
K2

Qi,i+1(1, 0) = diag{OWM1xW, OWMiM2xWM2, IW ® S01) ® IM2 }, i > 0,
4>’ V

K2- 1
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Qi,i+1( j, j  -  1) -  diag{Ow(R-Mim2), Iw ® s ^ A  ® Im2 }, i > 0, j  -  2  K1,

Qi,i+1(j, j)  -  O, i > 0, j  -  1, K  -  1,
Qi,i+1 (K1, K1) -  diag{D1 <S> IM1, D1 ® Im1 m2 }, i > 0,

K2
Qii+1(j, j  + 1) -  O, i > 0, j  -  1, K  -  1,

where R -  M1(1 + M2K2).
Explanation: It is seen from formula (1) that an infinitesimal generator Q of the Markov chain %t, t > 0 
consists of zeroes and blocks Qi:i> (j, j ')  containing rates of transitions from the states corresponding to 
the levels i, j  of the chain components it, j t to the states corresponding to the levels i', j ' of these 
components.

Blocks Qi,i-1(j, j ')  describe the rates of transitions of the Markov chain £t, t > 0, which lead to a 
decrease in the number of customers in the orbit by one and a change in the number of customers 
at the first station from j  to j '.  Let j '  -  j  -  1. As it follows from the description of the queue 
under consideration, the transitions from the states corresponding to the levels i, j  of it, j t to the states 
corresponding to the levels i -  1, j  -  1 and i -  1, j  of these components are impossible. Therefore,
Qi,i-1(j, j  -  1) -  O, Qi,i-1 (j, j)  -  O.

Blocks Qi,i-1( j, j  + 1) describe the rates of transitions of the Markov chain £t, t > 0 which entails the 
successful retry from the orbit to the first station. If the first station is empty (j -  0), such transitions 
are accompanied by the starting of the initial phase for the service on the first server according to the 
probabilistic vector f i1.

Blocks Qi,i(j, j ')  describe the rates of transitions of the Markov chain £t, t > 0 that do not lead to a 
change of the number of customers in the orbit. Let j '  -  j  - 1 .  If j  -  1, the transitions are accompanied 
by the completion of the service of a customer on the first server (the matrix S[)1)) and the transmission 
of this customer to the second station. If the server of the second station is idle (n -  0), the customer 
goes to the initial phase of the PH service process on the second server according to the probabilistic 
vector в 2 and starts its service. Otherwise, the customer is buffered. In the case j  > 1 the released 
server of the first station is occupied by a customer from the buffer. This customer goes to the initial 
phase for the PH service process on the first server according to the probabilistic vector f i1 and starts 
its service. In the case j '  -  j, transition rates of the Markov chain depend on the level j:

(1) j  -  0. The matrix Qi,i(0 ,0) contains the rates of transitions of the Markov chain £t, t > 0 caused 
by:
- Idle transitions of the underlying process of the MAP (the matrix D0), if n -  0;
- Idle transitions of the underlying processes of the MAP or the PH service on the second server 
(the matrix D0 Ф S 2) or transitions which are accompanied by the completion of the service on 
the second server (the matrix s 02)) , if n -  1;
- Idle transitions of the underlying processes of the MAP or the PH service on the second server 
(the matrix D0 Ф S 2) or transitions which are accompanied by the completion of the service on the 
second server and installation of the initial phase for the next service on this server (the matrix 
S ^ A ) , if n > 1.

(2) 0 < j  < K1. The matrix Qi,i(j, j) contains the rates of transitions of the Markov chain ^t, t > 0 
caused by:
- Idle transitions of the underlying processes of the MAP or the PH service on the first server (the
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matrix D0 Ф S 1), if n = 0;
- Idle transitions of the underlying processes of the MAP or the PH service on the first or the 
second server (the matrix D0 Ф S 1 Ф S 2) or transitions which are accompanied by the completion 
of the service on the second server (the matrix s02)), if n = 1;
- Idle transitions of the underlying processes of the MAP or the PH service on the first or the 
second server (the matrix D0 Ф S 1 Ф S 2) or transitions which are accompanied by the completion 
of the service on the second server and installation of the initial phase for the next service on this
server (the matrix S02)e 2), if n is the square matrix whose entry (i, j ) is the

(2)product of the i-th entry of vector S0 by the j-th entry of vector в 2,

s Jr’A ((s c0))< W  j)i, j=1,M2

Blocks Qi,i+1( j, / )  describe the rates of transitions of the Markov chain %t, t > 0 that leads to an 
increase in the number of customers in the orbit by one.

Blocks Qi,i+1(j , j ), Qi,i+1(j , j  + 1), j  = 0, K1 -  1, consist of zeroes. This follows from the description 
of the queue under consideration.

Blocks Qi,i+1( j, j  -  1), j  = 1, K1, contain the rates of transitions of the Markov chain £t, t > 0 that 
occur when the second station is completely occupied at the moment of the service completion of a 
customer on the first station (the column vector S01}). Then this customer is forced to go into the orbit, 
and the initial phase for the next service is installed on the first server (the row vector в 2).

Blocks Qi,i+1(K1, K1) contain the rates of transitions of the Markov chain £t, t > 0 caused by an 
arrival of a customer in the MAP (the matrix D 1). This customer is forced to go into orbit since the 
first station buffer is full upon its arrival.

Corollary 1. The Markov chain £t, t > 0, is an asymptotically quasi-Toeplitz Markov chain (AQTMC) 
defined in [32].

Proof. Let T, be a diagonal matrix with diagonal entries defined as the absolute values of the diagonal 
entries of the matrix Qi:i, i > 0. According to [32], the corollary will be proven if we show that limits

Y0 = lim T -1 QU- 1, Y = lim T -1 Qu + I, Y2 = lim T -1 Q,i,i+1

exist and matrix Y0 + Y1 + Y2 is stochastic.
Note that the matrices Qi,i(Kb K1 -  1), Qi,i(Kb K1), Qi,i+1(Kb K1), and Qi,i+1(Kb K1 -  1) do not 

depend on i and K1. Henceforth we will use the notations A, B, C for these matrices. Namely,

A = Qi,i(K1, K1 -  1), B = QifK1, K1) + Qi,i+1(K1, K1), C = Qi,i+1(K1, K1 -  1).(2)

Then, after some algebra, we obtain the following expressions for the matrices Y0, Y1, Y2:

O IWR O . . . O
O O IWR . . . O

O O O . . . IWR
l o O O ...  o  J
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O O O \

O O O
O T -1A T -1C + 1)

O . .. O O 4

O . .. O O
O . .. O T -1B,

where T is a diagonal matrix formed by the moduli of the diagonal entries of the matrix C .
It is easy to check that the matrix Y0 + Y1 + Y2 is stochastic. Thus, the corollary is proved. □

1

2

3.2. Ergodicity condition

The ergodicity condition for the AQTMC %t, t > 0, can be formulated in terms of the matrices 
Y0, Y1, Y2. Following [32], we first obtain an expression for the generating function Y(z) of these 
matrices.

Lemma 1. The matrix generating function Y(z) = Y0 + Y1z + Y2z2 has the form

OWR IWR O . .. O O
O O IWR . .. O O

Y (z) =
O O O . .. O IWR

{ O O O ...  T -1 Az z[T-1(C + Bz)] + z f

where matrices A , B, C are defined in (2).

Theorem 1. (i) The Markov chain , t > 0 is ergodic if the following inequality holds:

1 ( K2-1 ,
d < 2  1̂ 0 + yn(/Mj ® eM2)]S01} + y K2(eM1 ® /m2)S02) (3)

n=1

where vector y = (y 0,y 1, . . . ,  y Kf ) is the unique solution o f the system

y V = 0, ye = 1 (4)

where matrix V has the form

V = diag+{S01}e1 ® P2, ® IM2 }
K2- 1

+diag{S 1 , S 1 <8>S 2, S 1 <S> S 2 + S01)e ® i m2} + diag {im1 ® S02), Sm1 ® > 2)А };
K2- 1 K2- 1

(ii) The Markov chain £t, t > 0 is non-ergodic if the inequality (3) taken with the opposite sign holds.
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Proof. Matrix Y(1) is reducible. Let us denote by Y{N}(1) its normal form (see [33]):

z[T-1(C + Bz)] + zI T -1 Az O ... O O
i wr O O ... O O

Y {N}(z) = О i wr O . . . O O

, O O O . . . i wr o,

It is easy to see that matrix Y{N}(1) contains only one irreducible stochastic diagonal block. The 
corresponding block of matrix Y{N}(z) has the form

z[T-1(C + Bz)] + zl T -1 Az
Y(z) =

-1

x IWR О

From ( [32], Theorem 2), it follows that the Markov chain %t, t > 0 is ergodic if

[det(z/ -  ?(z))]z=1 > 0. (5)

Using the block structure of matrix T(z), we can reduce the determinant in (5) to the following form:

det(z/ -  T(z)) = det(zT 1)det[-z(C + Bz) -  A]. (6)

At z = 1, the second determinant on the right side of (6) is zero due to the properties of an infinitesimal 
generator. Note that det(zT-1) > 0 for z = 1. Therefore, inequality (5) is equivalent to the following 
inequality:

[det(-z(C + Bz) -  A)];=1 > 0. (7)

Following the proof of Theorem 2, [32], we can show that inequality (7) is equivalent to

x(C + 2B)e < 0

where x is the unique solution of the system

x (C + B + A ) = 0, xe = 1 .

Consider vector x in the form

x = (в <g> У0, в <g> У1, . . . ,  в <g> y K2)

(8)

(9)

(10)

where vector y 0 is of order M1, and vectors y 1, . . . ,  y K2 are of order M 1M2.
Next, we substitute vector x in the form (10) and the expressions for matrices A, B, C defined in (2) 

into (9). Taking into account that e(D0 + D 1) = 0, ве = 1, after some algebra we obtain (4) for vector 
y = (y0,y 1, . . . , y K2). Thus, system (9) for vector x is reduced to (4) for vector y.

Now consider inequality (8). Substituting vector x in form (10) and matrices B, C defined by (2) 
into (8) and taking into account the relation eD 1e = A, after some algebraic transformations we obtain 
the inequality (3) equivalent to (8).

Thus, the statement (i) of the theorem is proven.
Taking into account the statement (i), we immediately prove statement (ii) of the theorem by using 

the results of [32], Theorem 2. □
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Corollary 2. In the case o f the tandem system without buffers in front o f the servers and exponential 
distributions o f service times at both the stations:

(i) the sufficient condition for the Markov chain %t, t > 0 ergodicity is

Л < - ^ ;  (11)
P1 + Pi

(ii) the sufficient condition for the Markov chain %t, t > 0 non-ergodicity is inequality (11) taken 
with the opposite sign.

Proof. of the corollary follows from Theorem 1, given that K1 = K2 = 1, Mk = 1, S k = -pk , Pk = 1, k =
1, 2.

Note that the system, defined in Corollary 2, coincides with the system investigated in [24] if we 
assume that the input arrivals are not a MAP, but its special case -  an MMPP. Paper [24] provides the 
necessary condition for the system stability in form (11). Here we have proven that inequality (11) is 
also sufficient for the Markov chain %t, t > 0 to be ergodic.

Moreover, under the opposite sign inequality (11) is turning into the sufficient condition for non- 
ergodicity of the Markov chain. □

3.3. Stationary distribution and performance measures

Let us denote by pi, i > 0, vectors of the stationary probabilities of the Markov chain %u t > 0, 
corresponding to state i of the countable component. These vectors are of order W [1 + M2K2 + (M1 + 
M1M2K2)K1]. To find the vectors p i, i > 0, we use a special algorithm for calculating the stationary 
distribution of asymptotically quasi-Toeplitz Markov chains presented in [32].

Algorithm 1. (1) Calculate matrix G as the minimal non-negative solution of matrix equation G = 
Y (G).

(2) Calculate matrices Gi0-1, Gi0_2, . . . ,  G0 using the back recursion equation

Gi ( Qi+1,i+1 Qi+1,i+2Gi+1) Qi+1,i,

i = i0 -  1, io -  2, . . . ,  0, with the boundary condition Gi = G, i > i0, where i0 is a non-negative
integer such that the inequality ||Gi0 -  G|| < e holds for some positive e (calculation accuracy).

(3) Calculate matrices QUi = QUi + Q i^G i, Qu +1 = Qu+u i > 0, where Gi = G, i > i0.
(4) Calculate matrices Fi, i > 1 using the recurrent formula F0 = I, Fi = F i- 1 (Qi- 1,i(- ( Qi,i)- 1, i > 1.
(5) Calculate vector p0 as the unique solution to system p0(- Q0,0) = 0, p0 £ i=0 F ie = 1.
(6) Calculate vectors p i as p i = p0Fi, i > 1.

To calculate the vectors p i, i > 0, we need to truncate the number of vectors to calculate (step 5). 
Truncation level can be max{i0, N*}, where N* is chosen such that |pN. -  pN*- 1| < e .

Having calculated the stationary distribution p i, i > 0, we can obtain a number of performance 
measures of the system under consideration and apply Little’s Law to obtain the mean sojourn time in 
the whole system.

• Stationary distribution of the number of customers in the orbit p i = p ie, i > 0.
• Average number of customers in the orbit L = £  i=1 ip ie.
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• The stationary distribution of the number of customers at the first station or at the second station 
can be calculated from the joint distribution q,( j, n), i > 0, j  = 0, K1, n = 0, K2 of the number of 
customers in the orbit at the first and second stations. Here, qi(j, n) is a probability that there are i 
customers in the orbit, j  customers at the first station, and n customers at the second station. The 
expressions for probabilities qi(0 ,0), qi( j, 0), qi(0, n), qi( j, n) are calculated by using the following 
formulas:

qi(0 ,0) = pi 0T ew , i > 0,
0W (M2 K2 +RK1)

qi(0, n) = p

qi( j, 0) = pi

rtT0W[1+M2(n-1)] 
eWM2

0 TVUW[M2 (K2-n)+RK1 ] V 
0T
0W[1+M2 K2 +R( j—1)]

i > 0, n = 1, K2,

eWM1
0W

, i > 0, j  = 1, K:1,

qi( j, n) = Pi

W [M1 M2K2+R(K1- j)]

R( j-1)+M 
eWM1 M2

0T
W [1+M2 K2+R( j— 1) +M1 (1+M2 (n-1))]

. i > 0, j  = 1, K1, n = 1, K2.
W[M1 M2 (K2-n)+R(K1 - j)]

• Stationary distribution of the number of customers at the first station
TO K2

f  '  '  Aj  = 2  Pi ^  qi(j  n), j  = 0, K1.
i=0 n=0

• Average number of customers at the first station

K1
1L1 = j

j=1

• Stationary distribution of the number of customers at the second station
TO K1

q
(2) qi( j, n), n = 0, K2.

i=0 j=0

• Average number of customers at the second station

K2

L2 nqn2).(2)
n= 1

• Average sojourn time of customers in the system, by Little’s theorem: W = (L + L1 + L2)T 1.

4. Perform ance evaluation of tandem  queueing systems with a  common retrial orb it and 
a rb itra ry  num ber of single server stations using machine learning methods

In practical applications involving computer networks, such as those discussed in [25], it is essential 
to consider systems with more than two stations. When dealing with multiple stations, mathematical
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analysis becomes challenging, necessitating the use of Monte Carlo discrete event simulation to model 
the queueing process. The accuracy of the simulation model is verified using numerical methods for 
the case of two stations. Depending on the parameters of the queuing system and the required number 
of samples, the simulation process can take a considerable amount of time to complete. In this section, 
we investigate the use of machine learning methods to predict the mean sojourn time of a tandem 
queueing system with a common orbit based on its parameters. Previously, a limited attempt at using 
machine learning methods for systems with Poisson arrivals and exponentially distributed service times 
had been studied in [34].

4.1. Generation o f synthetic dataset

We have developed a simulation program for a tandem queuing system with a common orbit, 
utilizing Markov arrival processes (MAP) for input arrivals and phase-type (PH) distributed service 
times. Unlike the theoretical system described above, our simulated system can accommodate an 
arbitrary number of stations while incorporating a finite number of places in the orbit and a constant 
retrial policy. This setup closely mimics the retrial processes found in real computer networks. The 
simulation program requires the following input parameters to characterize the queuing system:

• Matrices D0, D1 represent MAP arrivals,
• Number N  of stations,
• Matrices S i, Д  represent PH service times at i-th station, i = 0, N ,
• Buffer size Ki at i-th station, i = 0, N ,
• Orbit retrial rate a,
• Number Korbit of places at orbit

and outputs various performance characteristics of the queueing system, such as mean sojourn time, 
average packet loss rate, average number of packets in the system, etc.

In order to train machine learning models, we need a dataset with a large number of data points 
(X, y ), where X  corresponds to the input parameters of the simulation program and y  is the mean 
sojourn time. This dataset is obtained by performing simulation on various randomly generated input 
parameters:

• Number N  of stations -  uniform discrete random variable on [2,15];
• Size of matrices D0, D1 -  uniform discrete random variable on [1,16];
• Size of matrices S i, Д  -  uniform discrete random variable on [1,16];
• Buffer size Ki -  uniform discrete random variable on [0,32];
• Number of places at orbit, Korbit -  uniform discrete random variable on [0,512].

For non-diagonal entries of stochastic matrices D0, D 1, S i (i.e. transition rates) and orbit retrial rate 
a, to make the dataset more varied, we use the following two ways:

• Method 1. The non-diagonal entries of matrices D0, and D 1 are generated as uniform continuous 
random variables on the range [1,1024]. The non-diagonal entries of matrices S i, the transition 
rates S(0) into absorption, and the orbit retrial rate a  are generated as uniform continuous random 
variables on the range [2,2048];
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• Method 2. The non-diagonal entries of matrices D0, and D1 are generated as ep; the non-diagonal 
entries of matrices S i, the transition rates S(0) into absorption, and the orbit retrial rate a  are 
generated as 2ep, where p  is a uniform continuous random variable on the range [-2.5,2.5]

Then, we regularize the input parameters, by dividing all matrices D0, D 1, Si, and orbit retrial rate a  
by a factor equal to Л (the average rate of arrivals). This step ensures all inputs will have the same arrival 
rate equal to 1. Note that by multiplying all transition rates by a common factor m, all non-temporal 
characteristics of the queueing process remain the same, only the temporal characteristics (such as 
mean sojourn time) are changed by a factor m. Therefore, there is no downside to this regularization 
step; and the upside is that the machine learning algorithms will work more effectively.

We then collect and divide the simulation results data into the following datasets:

• Dataset300k: Dataset of 200000 data points (X, y) generated by method 1 and 100000 data points 
generated by method 2 for training purpose;

• Test60k: A dataset of 60000 data points (X ,y) generated by method 1 for testing purpose;
• Sample: A small non-random dataset of 32 data points (X, y), all have Poisson arrivals (D0 = 

[ -1 ] , D 1 = Ц ) ,  exponentially distributed service times (Si = [ -1 ] , Д  = Ц ) ,  and orbit retrial 
rate a  = 1, for the purpose of testing the generalization ability of machine learning models 
on unseen data. In theory, the data points in this set can be randomly generated by the above 
procedures; however, the chance is improbable in practice.

The final step of data preparation is dimension reduction. As matrices are high-dimensional data, 
using them directly in training may lead to ineffective learning results. Therefore, we employ the 
approximation procedure described in [35] to reduce the matrices D0, and D 1 into 5-dimension tuples 
(m1, m2, m3,11, 12) and matrices S i,Д  into 3-dimension tuples (m®, m2), m3)).

Where mk is the k-th moment of MAP

mk = k!n(-D 0) ke, k > 1.

n  is the solution of the system
n(-D0) 1D 1 = n, 
ne = 1.

1k is the k-th lags of MAP

Ik =
T2n (-D 0)-1[(-D 0)-1 P !]k(-D 0)- 1e -  1 

T2n (-D Q)-2e -  1
, k > 1.

m f  is the k-th moment of PH distribution at i-th station

m f = Щ  (-S  )-ke, k > 1.

We perform training with three types of machine learning methods: gradient boosting, random 
forest and artificial neural network. We do not experiment with support vector machine (SVM), which 
is also a powerful classical machine learning method [36], as the computational complexity of the 
SVM method can be from quadratic to cubic in relation to the number of data samples, and hence it 
is impractical for our case. Meanwhile, the training time complexity of gradient boosting and random 
forest methods is only O(n log(n)), and of neural network is O(n), where n is the number of data 
samples.

AIMS Mathematics Volume 10, Issue 5, 10650-10674.



10664

4.2. Gradient boosting

Boosting is a technique in machine learning, where an ensemble of weak prediction models are 
used to train stronger models (hence the name boosting) [37]. Gradient boosting is a machine learning 
method that is based on boosting technique and has applications in many fields. In this paper, we 
use the machine learning programming library Scikit-learn to train gradient boosting models for the 
problem.

As the experiments in [34] had shown that training models for prediction of sojourn time with mean 
squared error (MSE) loss function is not as effective as training with mean squared log error (MSLE), 
as sojourn times can have a wide range of values, from very small to very large. Therefore, in our 
experiments, we train two types of models, one that predicts the mean sojourn time y  of the queueing 
system and one that predicts the natural logarithm of the mean sojourn time ln(y). Using the MSE 
criterion to train the second type has the same effect as using the MSLE criterion:

1 N 1 N
MSE(y, ln(y)) = n  (Уj -  ln(yj))2 = n  j) -  ln(yj))2,

j=1 j=1

1 N
MLSE(y,y) = n  (ln(yj + 1) -  ln(yj + 1))2.

j=1

Because the sojourn time is strictly positive, its logarithm is always well defined. As all machine 
learning programming libraries support the MSE loss function, but not every one of them has MSLE 
(for example, the gradient boosting implementation in Scikit-learn), training the model to predict the 
logarithm of the target value is a valid alternative.

Correspondingly, for the evaluation of trained models, we use the absolute value of the log accuracy 
ratio as the evaluation score: Score = | ln(y) -  ln(y)| = | ln У |.

We train the gradient boosting models with default parameters, a learning rate = 0.01, least squared 
criterion, and 10000 training iterations. From the evaluation results in Table 1, we can see that the 
model, trained to predict the logarithm of mean sojourn time ln(y), works significantly better in all 
cases.

Table 1. Evaluation results of Gradient Boosting models.

Dataset
Training without 

Log-transform target
Training with 

Log-transform target
Mean Score a Mean Score a

Dataset300k 0.5988 1.8435 0.0790 0.1351
Test60k 0.5659 1.8155 0.0900 0.2021
Sample 5.1667 5.2363 0.1807 0.1241

In Figure 2, we show the evaluation scores of gradient boosting model, trained with the logarithm 
transform of the target value, during the training process. We can see that the training process is stable, 
with the gradual decreasing of the error rate on both the training set (Dataset300k) and the test set 
(Test60k). For the sample set, due to its higher difference with the training set, the decreasing of the
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error rate is slower, but overall, there is no overfitting phenomenon (i.e., the error rate on the training 
set is decreasing, but the error rate on the test set is increasing).

Figure 2. Evaluation results of Gradient Boosting model trained with Logarithm transform 
of target value during training process.

4.3. Random Forest

Random Forest is a popular method that belongs to the class of ensemble machine learning 
techniques. By combining the results of multiple randomized decision trees, the random forest 
method can achieve strong performance and reduce the tendency of overfitting (i.e., performing well 
on seen data but poorly on unseen data) that is often present in single decision trees.

Similar to gradient boosting, we will use the implementation available in the Scikit-learn library 
to train models using default parameters, with a learning rate of 0.01, the least squares criterion, and 
various numbers of estimators (or trees). The evaluation results are presented in Tables 2 and 3.

Table 2. Evaluation results of Random Forest models trained without Logarithm transform 
of target value.

Models trained without Log-transform

Dataset
Number of estimators

100 200 300 400
Score a Score a Score a Score a

Dataset300k 0.0551 0.1603 0.0551 0.1591 0.0551 0.1587 0.0551 0.1581
Test60k 0.1176 0.2693 0.1179 0.2695 0.1181 0.2703 0.1177 0.2688
Sample 0.2696 0.2660 0.2675 0.2918 0.2768 0.2618 0.2623 0.2675

500 600 700 800
Score a Score a Score a Score a

Dataset300k 0.0551 0.1580 0.0551 0.1582 0.0552 0.1585 0.0551 0.1579
Test60k 0.1180 0.2694 0.1179 0.2696 0.1179 0.2694 0.1177 0.2686
Sample 0.2693 0.2586 0.2660 0.2563 0.2672 0.2579 0.2731 0.2693
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Table 3. Evaluation results of Random Forest models with Logarithm transform of target 
value.

Models trained with Log-transform 
Number of estimators

Ю0 200 300 400
Score a Score a Score a Score a

Dataset300k 0.0467 0.0914 0.0460 0.0903 0.0458 0.0897 0.0457 0.0894
Test60k 0.1097 0.2357 0.1090 0.2348 0.1089 0.2344 0.1088 0.2349
Sample 0.2207 0.1823 0.2274 0.1766 0.2120 0.1790 0.2249 0.1834

500 600 700 800
Score a Score a Score a Score a

Dataset300k 0.0456 0.0893 0.0456 0.0891 0.0455 0.0892 0.0455 0.0891
Test60k 0.1085 0.2343 0.1086 0.2348 0.1084 0.2343 0.1085 0.2343
Sample 0.2259 0.1846 0.2261 0.1839 0.2287 0.1917 0.2193 0.1807

As shown in Tables 2 and 3, the models trained using the logarithmic transformation of the target 
value perform better with random forest, although the improvement is not as significant as that seen 
with gradient boosting. Additionally, increasing the number of estimators-which is akin to increasing 
the number of training iterations in gradient boosting-does not enhance the performance of the 
random forest models. Therefore, when training random forest models, it is advisable not to set the 
number of estimators too high, as this can result in very large model sizes (for example, 20 GB with 
800 estimators) and consequently longer prediction times. Furthermore, a comparison of the results in 
Table 1 with those in Table 3 indicates that random forest exhibits a higher tendency for overfitting, as 
evidenced by its superior accuracy on the training set compared to gradient boosting (~ 4.6% vs. 
~ 7.9%), but worse on unseen datasets (Test60k and Sample). One of the downsides of using a 
random forest model is its significantly large size. For instance, with the default number of estimators 
set to 100, the model can reach a size of 2.6 GB. This large size is primarily due to the default 
parameters in the Scikit-learn library, which do not impose any limits on the depth of the decision 
trees (parameter maxDepth = 0). As a result, when working with a large training dataset, the decision 
trees grow extensively, leading to a considerable increase in the overall model size. To mitigate this 
issue and reduce the model’s size, we can set the parameter maxDepth > 0, at the cost of lower 
accuracy (Table 4).

Table 4. Random Forest models trained with Logarithm transform target value, number of 
estimators = 100, varying maxDepth.

Maximum Tree Depth

Dataset

Model size
Dataset300k Test60k Sample

Score a Score a Score a
4 0.5205 0.5744 0.4781 0.5450 0.6057 0.6072 243 KB
8 0.2601 0.3397 0.2419 0.3417 0.4361 0.3284 3.49 MB
16 0.1153 0.1429 0.1399 0.2500 0.2657 0.2069 209 MB
32 0.0476 0.0905 0.1098 0.2358 0.2028 0.1580 2.34 GB
64 0.0467 0.0915 0.1094 0.2350 0.2234 0.1580 2.60 GB

0 (Unlimited) 0.0467 0.0914 0.1097 0.2357 0.2207 0.1823 2.60 GB
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4.4. Neural Network

Artificial neural networks (ANNs) are currently the most widely used machine learning method, 
applicable across various fields. Although ANNs are one of the oldest machine learning techniques, 
their practical training on large datasets has only become feasible in recent decades. This is largely 
due to advancements in computer hardware that enhance matrix computation capabilities. As a result, 
deep neural networks with a high number of parameters can now be trained effectively, allowing them 
to achieve superior predictive performance compared to other methods.

For training our neural network models, we utilize PyTorch, a library that is more specialized for 
developing neural network architectures, rather than using Scikit-learn as we did with gradient boosting 
and random forest. Our network is designed with three hidden layers, each consisting of 1,024 neurons 
(as shown in Figure 3). Based on previous experiments and findings from [34], which indicated that 
models using the logarithmic transformation of the target variable produced better predictions, we will 
only train one type of model this time (i.e., using the logarithm of the target value), instead of two 
types as in previous experiments.

Hidden layers

1024 x 1 1024 x 1 1024 x 1 l x l

Figure 3. Neural Network model structure.

Initially, we used the standard ReLU activation function between each of the hidden layers. 
However, we encountered a problem during training: the loss value became excessively high due to 
gradient exploding, rendering the model untrainable. A straightforward solution to this issue is to 
change the activation function to a logarithmic variant of ReLU [38]:

NLReLU( x) = ln(ReLU(x) + 1)
= ln(max(0, x) + 1)

We train the neural network models using the AdamW optimizer and the mean squared rrror (MSE) 
loss function, with a constant learning rate of 10-4 and a batch size of 1024, over 10000 epochs. 
Throughout the training process, the loss value decreases steadily without any sudden spikes (see 
Figure 4). We save the model's state at regular intervals during training and then perform validation on 
both the Test60k and Sample datasets (refer to Figure 5).

The validation results indicate that the network generalizes well on the Test60k dataset. However, 
the validation scores on the sample dataset exhibit instability during training, although there are
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instances where the model achieves good predictive results. In Table 5, we present specific validation 
values from several training epochs.

From Table 5 and Figure 5, it is evident that the model at epoch 6912 is sufficiently robust to be 
considered as the final result, rather than the latest epoch, as further training beyond epoch 6912 does 
not yield improvements. Additionally, the results demonstrate that the neural network has a stronger 
generalization ability compared to gradient boosting and random forest, both of which fail to achieve 
an error rate of less than 10% on the sample dataset.
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Figure 4. Neural Network training loss.

Figure 5. Evaluation results of Neural Network model at certain training epochs

Table 5. Evaluation results of Neural Network model at certain training epochs.
Epoch

Dataset
5670 6912 8448 9344 10112

Score a Score a Score a Score a Score a
Test60k 0.0733 0.2068 0.0707 0.1950 0.0761 0.2048 0.0741 0.1986 0.0779 0.1950
Sample 0.0646 0.0936 0.0576 0.1005 0.0659 0.1317 0.0646 0.0716 0.1402 0.0955
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4.5. Case o f two stations system

For comparison purposes, Tables 6 and 7 present the average sojourn time calculated using various 
methods for a simple system with two stations. The system features an input arrival process described 
by a Markov arrival process (MAP) (D0, D1), service time at the first station modeled as a phase-type 
(PH) distribution (S1, в 1), a buffer size at the first station denoted as K1, service time at the second 
station also modeled as a PH distribution (S2,в 2), a buffer size at the second station represented as K2, 
and a fixed retrial rate a . From the ten numerical examples provided, it is evident that machine learning 
methods frequently perform well in predicting the mean sojourn time for the two-station system with 
an infinite-size orbit (where the orbit size is sufficiently large to function similarly to an infinite one).

However, there are instances where the prediction errors from all three machine learning methods 
are notably high, such as in the third row of Table 6. Additionally, we observe that the random forest 
model often produces considerably larger prediction errors compared to the other methods, as shown in 
Table 7. In contrast, the neural network and gradient boosting models tend to exhibit fewer significant 
errors than the random forest model.

To investigate this further, we examined 1,000 examples, the results of which are summarized in 
Table 8. Overall, the neural network model outperformed the others. While the random forest model 
resulted in more predictions with small errors (< 10%) than the gradient boosting model, it also had 
a higher number of samples with unacceptable errors (> 90%). Interestingly, the gradient boosting 
model had the fewest samples with small errors, as well as the fewest samples with extremely high 
errors.

Table 6. Numerical results of various methods in the case of system with two stations.

^ , D1 s  1, A S2, в a K1 K2 Analytical Simulation Neural Grad. Rand. 
Network Boosting Forest

-1.42 0.11
6.66 -13.0

-18.2 9.87
2.07 4.26

-4.30 3.16
1.40 12.7

5.37 29 7 1.2728 1.2643 1.2115 1.2595 1.1379
"0.56 
1 . 70

0.75
4.64 [0.532 0.468] [0.528 0.472]

-2.80 
1 . 02

2.31
-1.42

-19.6
0.229

2.07 ' 
-1.42

"-2.64
1.65

1.52 ' 
-13.7

0.11 0.38
0.27 0.13

9.77 26 13 0.5908 0.5852 0.5773 0.8313 0.6633

0.797 0.203 0.286 0.714

-3.57 1.17
0.12 -0.43

"0.44 1.96" 
0.20 0.11

-19.62 0.45
0.52 -0.91

-11.2 10.9
0.96 -1.99

16.70 16 3 5.6972 5.7862 6.5020 6.5473 7.4541

[0.238 0.762] [0.745 0.255]

12.36 9.47
0.53 -1.80

-7.39 0.38
0.54 -1.38

-7.65 6.21
1.06 -19.31

3.72 17 28 2.4771 2.4712 4.0656 3.0351 3.1902
"0.17
0.80

2.72
0.46 [0.471 0.529] [0.578 0.422]

-4.98
0.16

1 . 06 
-1.39

"-7.01
0.53

6.83 ' 
-4.39

"-4.83
20.86

1.62 ' 
-34.07

0.48 28 17 1.3501 1.3516 1.4492 1.1897 1.3931
1.62 2.30
1.02 0.21

[0.095 0.905] [0.870 0.130]
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Table 7. Numerical results of various methods in the case of system with two stations (cont.).
Neural Grad. Rand.a K1 K2 Analytical Simulation Network Boosting ForestD0 D1 S 1 P1 S 2 в2

-1.49 1.11 -15.01 0.65 [-5.17 2.74
0.37 -2.09 0.56 -1.25 2.17 -3.57

[0.25 0.13] 0.336 0.664
[
0.512

]
0.4881.03 0.69 L J L J

-4.70 0.10 -9.94 0.47 -16.33 0.17
0.79 -4.28 8.12 -22.09 22.50 -22.85

1.01 3.59" [0.764 0.236] [0.526 0.474]
1.58 1.91 L J L J

-2.60 0.21 [-2.95 2.64 -10.73 10.39
4.95 -6.09 0.67 -7.26 0.72 -23.36

[0 13 2 26] [
0.769

]
0.231

[
0.869

]
0.1310.62 0.52 L J L J

-1.61 0.57 -30.94 20.60 [-10.58 8.67
2.78 -3.38 12.13 -14.44 1.10 -6.17

[0 85 0 19] [
0.653

]
0.347

[
0.959

]
0.0410.39 0.21 L J L J

-2.32 0.25 [-9.52 5.35 [-10.56 0.21
0.14 -2.38 0.33 -3.49 0.84 -7.07

[0 09 1 97] [
0.598

]
0.402

[
0.816

]
0.1842.00 0.25 L J L J

4.58 3 9 3.1472 3.1502 3.6450 3.9505 6.7534

0.20 8 15 0.2851 0.2850 0.5385 0.4195 0.8624

0.54 8 27 3.3706 3.3382 3.0185 3.1438 5.6815

2.05 32 18 0.5825 0.5831 0.5566 0.5317 0.5701

5.36 25 27 0.9635 0.9804 0.7594 0.8355 1.4875

Table 8. Verification results on 1000 examples.

Neural
Network

Gradient
Boosting

Random
Forest

Number of examples with error < 10% 532 347 474
Number of examples with error > 50% 66 90 89
Number of examples with error > 90% 35 25 43

4.6. Comparison o f training and execution time

The primary motivation for applying machine learning methods to queueing theory problems is to 
enhance execution speed, albeit with some sacrifices in accuracy. For instance, generating a single 
sample in the datasets used in the aforementioned experiments takes an average of 4 seconds of 
simulation time. While this duration may seem minimal, simulating large datasets comprising 
hundreds of thousands or even millions of samples could take days or weeks. As illustrated in Table 9, 
even the slowest machine learning methods are significantly faster than traditional simulations.

However, this substantial speedup comes at a cost. Machine learning methods require more memory 
for loading models and incur higher computational costs during the training process. Table 10 provides 
a summary of model sizes and training time costs for each method. Most models, except for the neural 
network, were trained on an Intel Xeon E5-2680 CPU. The neural network model, on the other hand, 
was trained using an NVIDIA RTX 3070 Ti GPU.
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Table 9. Comparison of average execution time of methods for one data point.
Method Execution time 

(seconds)
Simulation 4

Gradient Boosting 2 x 10-4
Random Forest 1 x 10-7
Neural Network 3 x 10-5

Table 10. Comparison of model size and training time of machine learning methods.
Method Model size Training iterations Total training time

Gradient Boosting 34.5 MB 10000 143 secs
Random Forest 2.6 GB 100 306 secs

Neural Network (GPU) 24.8 MB 10000 13 hours

It is important to note that since gradient boosting and random forest are ensemble-based methods, 
the model size increases with the number of training iterations (i.e., the number of decision trees). In 
contrast, the size of the neural network model remains constant with respect to the number of training 
iterations; it is determined solely by the number of trainable parameters (layers and weights) in the 
model. As a result, we can train the neural network model for extended periods without impacting its 
size.

5. Conclusions

In this paper, we examined a multiphase queueing system with a finite number of stations and a 
common orbit. The incoming arrivals to the system are of the Markovian arrival process (MAP) type, 
and each station consists of a single server with a finite buffer. The service times for each server follow 
a phase-type (PH) distribution.

For the system with two stations and an infinite orbit, we derived the ergodicity condition, stationary 
distribution, and several performance indicators. In contrast, for the system with an arbitrary number of 
stations and a finite orbit, we employed various machine learning methods to predict the mean sojourn 
time of the system.

Overall, all methods demonstrated the capability to learn the problem effectively. Among these, 
gradient boosting and random forest-both ensemble methods based on decision trees— stand out for 
their ease of use, requiring minimal parameter tuning. Meanwhile, while neural networks necessitate 
more design choices to ensure a stable training process, they can potentially provide superior prediction 
performance.
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