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We analyze heat transfer and Casimir forces involving a nonreciprocal nanoparticle. By dissecting
the resulting expressions into reciprocal and nonreciprocal contributions, we find that the particle’s
self emission contains ++ and −− terms, i.e., the particle’s reciprocal (+) and nonreciprocal (−)
parts couple to the respective parts of its surrounding. In contrast, the heat transfer to the nanopar-
ticle from the surrounding contains −+ and +− contributions, which we find to persist at equal
temperatures. For two nanoparticles, such persistent transfer is found to require one particle to be
nonreciprocal and the other to be anisotropic. The propulsion force for the nanoparticle, for which
our results agree with previous work, is dominated by ±∓ terms, making it distinct from forces
found for reciprocal particles. The amplitude of the propulsion force can be orders of magnitude
larger than gravitational forces. Despite being distinct, we find the ±∓ terms to be bound by ±±
terms, a consequence of passivity of the objects. For the force, this bound limits the efficiency in a
heat engine setup, as observed for parallel plates before.

I. INTRODUCTION

The Casimir effect, an attractive force between two
perfectly conducting plates at zero temperature, was first
described in 1948 [1]. In 1956, this force was experimen-
tally measured for the first time [2], and the theory was
expanded to dielectrics at nonzero temperature [3], where
thermal fluctuations contribute. In thermal equilibrium,
a free energy can be found, from which forces can be cal-
culated [4–8]. Progress in experimental methods made it
possible to measure these forces for different objects with
high precision [9–11].

With the development of fluctuational electrodynam-
ics [12, 13], calculation of the Casimir force and of ra-
diative heat transfer out of thermal equilibrium became
possible. This led to the scattering approach [14–18]. For
systems with objects of simple geometries, like spheres,
plates, or cylinders, analytical formulas for force and heat
transfer were found [14, 16, 17, 19–24]. Numerical meth-
ods have been developed, which allow for more general
setups [25–29]. Several experiments on heat transfer have
been performed [30–33], nonequilibrium forces have been
measured using an atomic cloud over a dielectric sub-
strate [34].

Allowing for optical nonreciprocity leads to interest-
ing new phenomena [35–38], such as angular dependence
of heat transfer [39]. It has been shown that there is a
nonzero “persistent” heat current for three nonreciprocal
spheres at equal temperature [40], as well as propulsion
forces, i.e., forces pointing in translationally invariant di-
rections, of various types [41–44]. While such forces seem
to be more dominant in cases of nonreciprocity, they can
also be found for reciprocal, anisotropic particles [45],
and torques have been found as well [44, 46, 47]. In
Ref. [41], a general bound between propulsion force and
heat transfer was derived, which is relevant for the effi-
ciency of heat engine setups.

In this manuscript, we analyze heat transfer and
propulsion forces specifically for nonreciprocal particles.

We find that, for the self emission of the particle, the par-
ticle’s nonreciprocity (described by the − term defined
below) couples to the nonreciprocal part of the surround-
ing. In other words, in a reciprocal surrounding, the heat
radiation of the particle is only sensitive to its reciprocal
part (described by the + term). Furthermore, we find
persistent heat current between two particles at equal
temperature; this setup requires one particle to be non-
reciprocal and the other one anisotropic. For the propul-
sion force, the particle’s nonreciprocity couples to the
reciprocal part of the surrounding, but not to its nonre-
ciprocal part. The magnitude of the propulsion force for
a nonreciprocal particle near a planar surface can be large
compared to its gravitational force. While force and heat
transfer carry ±∓ terms that yield qualitatively different
behavior due to nonreciprocity, these terms are bound in
magnitude by ±± contributions. These bounds rely on
the passivity of the media involved.

The paper is structured as follows: We give general
formulas and discuss resulting properties for heat transfer
in Sec. II. In Sec. III, we introduce the used dielectric
properties of anisotropic or nonreciprocal nanoparticles.
Resorting to the example of two nanoparticles, the self
emission is analyzed in Subsec. IVA, and heat transfer
in Subsec. IVB. In the latter, we show that there can be
a nonzero heat transfer at equal temperature. The force
acting on the nanoparticle is introduced and analyzed
in Sec. V. We compute the lateral force explicitly for
the example of a nonreciprocal particle in front of an
isotropic plate (Sec. VI), finding that this force can be
large compared to the gravitational force. Finally, we
derive and discuss relations and bounds between heat
transfer and lateral forces in Sec. VII. We conclude in
Sec. VIII.
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II. GENERAL RELATIONS FOR HEAT
TRANSFER

A. Recalling formulas for arbitrary objects

We consider two objects, described by permittivity
and permeability tensors εi(r, r′;ω) and µi(r, r

′;ω) [i =
{1, 2}], which can depend on positions r, r′, and fre-
quency ω. We introduce the corresponding potential
[5], Vi = ω2/c2(εi − I) + ∇× (I − µ−1

i )∇×, where

I = Iδ(3)(r − r′) is the identity operator (with I be-
ing the 3× 3 identity matrix), and c is the speed of light
in vacuum. Note that Vi is only nonzero if both spatial
arguments lie within object i. For operator A(r, r′;ω)
[below being potential, scattering operator, or Green’s
tensor], we define,

AI =
A− A†

2i
, (1)

where † implies the adjoint operator, i.e., transpose and
complex conjugation. For A = Aij(r, r

′), (Aij(r, r
′))T =

Aji(r
′, r), i.e., the transpose involves matrix transpose

and permutation of spatial arguments. Note that care
should be taken regarding the transpose in other repre-
sentations, e.g., in plane wave basis [48]. AI is by con-
struction Hermitian. We are in this manuscript inter-
ested in effects caused by nonreciprocity, recalling that
for reciprocal systems, A† = A∗ and AI = Im[A].

The radiative heat transfer, i.e., the heat emitted by
object 1 at temperature T1 and absorbed by object 2,
is [49, 50]

H
(2)
1 =

2

π

∫ ∞

0

dωΘ(ω, T1) Tr
{
V1IG†V2IG

}
, (2)

where Θ(ω, T1) = ℏω
[
exp

(
ℏω

kBT1

)
− 1

]−1

is the mean

energy of the emitted photons, with ℏ and kB being
Planck’s and Boltzmann’s constants, respectively. G is
the Green’s function (or tensor) of the two objects [17],

G = (I+G0T2)(I−G0T1G0T2)
−1(I+G0T1)G0, (3)

where G0 is the free Green’s function. We introduced the
scattering operators Ti, recalling [5, 17],

Ti = Vi(I−G0Vi)
−1. (4)

In the above equations, operator notation is under-
stood, i.e., operator multiplication includes integration
over a joint coordinate and summation over a joint in-
dex [17]. When spatial arguments are given explicitly,
e.g., Eqs. (20) or (32) below, summation over indices is
understood.

The heat radiation, or self emission, of object 2 at
temperature T2, i.e., the heat emitted by object 2 and
(re)absorbed by itself in the presence of object 1, is given
by [51] [49, 50]

H
(2)
2 =

2

π

∫ ∞

0

dωΘ(ω, T2) Tr
{
V2I

(
GI −G†V2IG

)}
. (5)

H
(2)
1 ≥ 0 and H

(2)
2 ≥ 0 if ViI ≥ 0, as assumed throughout

in this manuscript, and expected for passive objects.

B. Self emission of a small object: two distinct
terms

We aim to study self emission for the case where ob-
ject 2 is small, and expand Eq. (5) in linear order of the
scattering operator of object 2, using Eqs. (4) and (3).
Keeping only terms linear in T2, we obtain

H
(2)
2 =

2

π

∫ ∞

0

dωΘ(ω, T2) Tr {T2IG1I} , (6)

where G1 = G0 + G0T1G0 is the Green’s function with
only object 1 present. For reciprocal objects, Eq. (6)
reproduces Eq. (18) in Ref. [52].
Further insight is gained by decomposing operator A

into symmetric and antisymmetric parts, indicated by
the superscripts “+” and “−”, respectively,

A± =
1

2

(
A± AT

)
, (7)

where T implies the matrix transpose and permutation
of spatial arguments. For reciprocal objects, T, V and G
are symmetric, i.e., the antisymmetric parts vanish.
Using cyclic property of the trace, and Tr[A] = Tr[AT ],

it is straightforward to show that the trace of the product
of a symmetric and an antisymmetric operator vanishes.
We thus have Tr

{
T−
2IG

+
1I

}
= Tr

{
T+
2IG

−
1I

}
= 0. The self

emission in Eq. (6) is thus the sum of two terms,

H
(2)
2 =

2

π

∫ ∞

0

dωΘ(ω, T2)
[
Tr

{
T+
2IG

+
1I

}
+Tr

{
T−
2IG

−
1I

}]
.

(8)
Equation (8) states that, if the surrounding of particle 2
is reciprocal, then only its reciprocal part contributes to
the self emission. In other words, if the surrounding is
reciprocal, the nonreciprocity of object 2 cannot be rec-
ognized in its self emission. The second term can only
be finite if both the surrounding as well as object 2 are
nonreciprocal. While the first term is nonnegative, i.e.,

Tr
{
T+
2IG

+
1I

}
≥ 0, (9)

the second one can have either sign, with the only appar-
ent condition of

Tr
{
T−
2IG

−
1I

}
≥ −Tr

{
T+
2IG

+
1I

}
, (10)

resulting from Tr {T2IG1I} ≥ 0. We will explicitly study
the self emission for the configuration of two nonrecipro-
cal particles in Subsec. IVA below.

C. (Persistent) heat transfer for two small objects

For heat transfer, it is insightful to expand to linear
order in both Ti, yielding

H
(2)
1 =

2

π

∫ ∞

0

dωΘ(ω, T1) Tr
{
T1IG†

0T2IG0

}
. (11)
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The operator G†
0T2IG0 has, in general, a symmetric and

an antisymmetric part. Using that T2I = T†
2I and G†

0 =
G∗

0, we find(
G†

0T2IG0

)+

= Re
[
G†

0(T
+
2I + T−

2I)G0

]
, (12)(

G†
0T2IG0

)−
= i Im

[
G†

0(T
+
2I + T−

2I)G0

]
, (13)

showing that heat transfer, in contrast to self emission,
carries all combinations of ± contributions. It is further-
more interesting to note that

Tr
{
T±
1IG

†
0T

±
2IG0

}
= Tr

{
T±
2IG

†
0T

±
1IG0

}
, (14)

showing that the ±± terms are symmetric (reciprocal)
in particle indices. Reciprocity in indices cannot, in gen-
eral, be proven for heat transfer [53], and it is interesting
to investigate the conditions for persistent heat transfer
for two objects at equal temperature (recall that such
current has been found for three objects [40]), i.e., we

consider the difference of H
(2)
1 (T ) and H

(1)
2 (T ),

H1→2(T ) = H
(2)
1 (T )−H

(1)
2 (T ) =

2

π

∫ ∞

0

dωΘ(ω, T ) Tr
{
T1IG†

0T2IG0 − T2IG†
0T1IG0

}
.

(15)

Decomposing T1 and T2 into symmetric and antiymmet-
ric parts, according to Eq. (7), yields

H1→2(T ) =
2

π

∫ ∞

0

dωΘ(ω, T )

× Tr
{
T+
1IG

†
0T

−
2IG0 − T+

2IG
†
0T

−
1IG0

}
. (16)

This equation shows that, as indicated above, it is only
the ∓± terms that can contribute to H1→2(T ). We will
in Subsec. IVB provide more explicit formulas for per-
sistent current to elucidate more requirements for it to
occur.

III. ELECTROMAGNETIC RESPONSE OF
NONRECIPROCAL OR ANISOTROPIC

NANOPARTICLES

To exemplify general quantities and properties dis-
cussed in the previous section, we consider nonmagnetic
point particles for which the scattering operator T can
be approximated in terms of the electric polarizability
operator α (see Appendix B)

T = 3
ω2

c2
(ε − I) (ε + 2I)−1

=
3

R3

ω2

c2
α

=
3

R3

ω2

c2
↔
αδ(3)(r− r′), (17)

where
↔
α and R are the particle’s polarizability ma-

trix and radius, respectively. In the last step, we

have assumed the local form for the permittivity ten-

sor, ε(r, r′;ω) =
↔
ε (ω)δ(3)(r − r′). We consider in

this manuscript the matrix
↔
ε to be of the following

form [40, 41, 48, 54],

↔
ε =

εp 0 0
0 εd εs − iεf
0 εs + iεf εd

 , (18)

with all entries, in general, frequency dependent. For
εs = 0, Eq. (18) corresponds to a nonreciprocal medium,
for example, a magneto-optical material with external
magnetic field along the x direction [55] (see the sketch
in Fig. 1, and Eq. (C2) for a specific example).
The case of εf = 0 with εs finite corresponds to

a reciprocal, but anisotropic medium. Specifically, if
εs+ εp = εd, the given form can correspond to a uniaxial
material with optical axis pointing along the bisecting
line between y and z axes.

The condition
↔
ε I ≥ 0 yields simple conditions for its

entries, which we will not spell out here.

For the given choice of
↔
ε , the polarizability matrix

↔
α

takes the form

↔
α =

αp 0 0
0 αd αs − iαf

0 αs + iαf αd

 , (19)

with the entries [as functions of the entries of the permit-
tivity matrix (18)] specified in Appendix C. They have

the same physical interpretation as the entries of
↔
ε .

We note that the reciprocal version of
↔
α with finite off-

diagonal elements may also be found for a nonspherical
object made of isotropic material [45, 56].

IV. EXAMPLES: HEAT TRANSFER FOR TWO
PARTICLES

A. Self emission of a particle in the presence of
another one

Let us consider two particles placed at positions r1 = 0
(i.e., at the origin) and r2 = (x, r cosφ, r sinφ)T , de-
scribed by cylindrical coordinates (r, φ, x), with x being
the reference axis, see Fig. 1. We denote the interparticle
vector d ≡ r2, i.e., their distance is d = |r2| =

√
r2 + x2.

In this setup, using operator (17) in Eq. (6) and assum-
ing that the Green’s function hardly varies within the
volumes of the particles, we get for the self emission of
particle 2

H
(2)
2 =

8

c2

∫ ∞

0

dωΘ(ω, T2)ω
2 Tr

{
↔
α2IG1I(r2, r2)

}
. (20)

As discussed in Sec. II B, there are two distinct contribu-
tions, coupling symmetric and antisymmetric parts of the
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FIG. 1. The system of two spherical particles with polariz-

ability matrices
↔
α1 and

↔
α2, introducing the cylindrical coor-

dinates (r, φ, x) to describe the position of particle 2, with
particle 1 at the origin. We denote d the vector connecting
their centers, pointing at particle 2 (not shown for visibil-
ity), with |d| ≡ d being the interparticle distance. External

magnetic field B may give rise to antisymmetric parts of
↔
αi,

making the particles optically nonreciprocal.

particles’ polarizabilities, respectively, such that Eq. (20)
can be written as

H
(2)
2 =

8

c2

∫ ∞

0

dωΘ(ω, T2)ω
2

×
[
Tr

{
↔
α

+

2IG
+
1I(r2, r2)

}
+Tr

{
↔
α

−
2IG

−
1I(r2, r2)

}]
.

(21)

Equations (20) and (21) are so far valid for an arbitrary
object 1, and we now turn to a point particle 1 with the
Green’s tensor [52]

G1(r, r
′) = G0(r, r

′) + 4π
ω2

c2
G0(r, r1)

↔
α1G0(r1, r

′), (22)

where the traces are evaluated in Appendix D.
Note that the vacuum part [stemming form G0 in

Eq. (22)] of the self emission in Eqs. (20) or (21) is pro-
portional to the volume of particle 2, whereas the inter-
action part [stemming form the second term in Eq. (22)]
is proportional to the product of particle volumes.

In this subsection (i.e., for self emission), we consider
the particles to be isotropic (αis = 0); the generalization
to anisotropic particles is given in Appendix D. We start
by reminding the reader of the self emission for the case
of reciprocal media.

1. Reciprocal particles

For reciprocal particles (αif = 0, αid = αip ≡ αi),
only the ++ term in Eq. (21) is finite. The self emission

becomes

H
(2)
2

rec
= H

(2)
2,vac
rec

+
4

πd6

∫ ∞

0

dωΘ(ω, T2) Im[α2]

× Im

[
α1e

2iω
c d

(
3− 6i

ω

c
d− 5

ω2

c2
d2 + 2i

ω3

c3
d3 +

ω4

c4
d4
)]

,

(23)

where the vacuum part (i.e., without particle 1 present)
is [52]

H
(2)
2,vac
rec

=
4

πc3

∫ ∞

0

dωΘ(ω, T2)ω
3 Im[α2]. (24)

The effect of particle 1 in Eq. (23) is insignificant for the
far field, i.e., large d, but can be significant in the near
field, where d ≪ λT2 [with λT2 = ℏc/(kBT2) being the
thermal wavelength], see Fig. 2. In this limit,

lim
d≪λT2

H
(2)
2

rec
= H

(2)
2,vac
rec

+
4

π

∫ ∞

0

dωΘ(ω, T2) Im[α2]

×
{
Im[α1]

3

d6
+Re[α1]

22

15d

ω5

c5

}
. (25)

The first term in brackets in Eq. (25), scaling as d−6

and being positive, corresponds to the heat transfer from
particle 2 to particle 1 (compare to, e.g., Eq. (23) in
Ref. [52]). The second term, which scales as d−1, and
which is the leading term for small d for a nonabsorbing
particle 1, can be of either sign, and it describes the effect
of particle 1 on the heat transfer from particle 2 to the
environment.

2. Nonreciprocal particles: B and d parallel

We assume nonreciprocity to occur because of an ex-
ternal magnetic field B pointing along the x axis (see
Fig. 1), which gives rise to the polarizability tensor in
Eq. (19), with αf finite and αs = 0 for both particles.
In this case, the self emission depends on the relative
angle between B and d, as was also observed for the
heat transfer in Ref. [39]. For small B, as shown in Ap-
pendix F, it carries an isotropic term ∼ B2 and a term
∼ (d×B) · (d×B), reminiscent of the dependence found
for the heat transfer [39]. For symmetry reasons, the self
emission does not depend on the azimuthal angle φ (see
Fig. 1).

We start with the case where particle 2 is placed on
the x axis, i.e., d || B or d×B = 0, probing the isotropic
term. Using Eqs. (21) and (D1), we find

H
(2)
2

∥B
= H

(2)
2,vac+

2

πd6

∫ ∞

0

dωΘ(ω, T2)

×
∑

m={p,d,f}

Im[α2m] Im
[
α1mg∥m

(ω
c
d
)]

,

(26)
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where the functions g
∥
m are given by

g∥p(x) = 4e2ix
(
1− 2ix− x2

)
, (27a)

g
∥
d(x) = g

∥
f (x) = 2e2ix

(
1− 2ix− 3x2 + 2ix3 + x4

)
.

(27b)

The self emission of particle 2 in vacuum reads,

H
(2)
2,vac =

4

3πc3

∫ ∞

0

dωΘ(ω, T2)ω
3 Im[α2p + 2α2d], (28)

which, in the absence of the magnetic field, reduces to
Eq. (24). For d ≪ λT2

, Eq. (26) reduces to

lim
d≪λT2

H
(2)
2

∥B
= H

(2)
2,vac +

4

π

∫ ∞

0

dωΘ(ω, T2)

{
1

d6
(
2 Im[α2p]

× Im[α1p] + Im[α2d] Im[α1d] + Im[α2f] Im[α1f]
)
+

4

3d3
ω3

c3

×
(
Im[α2p] Re[α1p]− Im[α2d] Re[α1d]− Im[α2f] Re[α1f]

)}
.

(29)

In contrast to the self emission for reciprocal particles
in Eq. (25), an additional power law d−3 appears in
Eq. (29). As above, the term d−6 corresponds to the heat
transfer from particle 2 to particle 1, while the term d−3

describes heat transfer to the environment, stimulated by
particle 2 without absorbing itself. Due to the different
power law, this term, at small d, is larger compared to
Eq. (25). Interestingly, it appears due to the diagonal
entries of the polarizabilities not being equal, and it also
obtains a contribution from nonreciprocal parts.

The diagonal entries of the polarizabilities in Eq. (26),
i.e., m = {p,d} correspond to the ++ term in Eq. (21),
while m = f corresponds to the −− term. We remind

that, if
↔
αiI ≥ 0, the self emission is positive, the term

++ is positive, while the term −− can have either sign.

Notably,
↔
αiI ≥ 0 requires |Im[αif]| ≤ Im[αid], showing

that Im[αif] and the −− term can have either sign.

3. Nonreciprocal particles: B and d perpendicular

For the perpendicular alignment, the terms ∼ B2 and
∼ (d×B) · (d×B) contribute. We find in this case the

same form as Eq. (26), with the functions g
∥
m replaced

by

g⊥p (x) = e2ix
(
1− 2ix− 3x2 + 2ix3 + x4

)
, (30a)

g⊥d (x) = e2ix
(
5− 10ix− 7x2 + 2ix3 + x4

)
, (30b)

g⊥f (x) = 4e2ix
(
−1 + 2ix+ 2x2 − ix3

)
. (30c)

The near-field limit for the perpendicular case reads as

lim
d≪λT2

H
(2)
2

⊥B

= H
(2)
2,vac +

4

π

∫ ∞

0

dωΘ(ω, T2)

{
1

2d6
(
Im[α2p]

× Im[α1p] + 5 Im[α2d] Im[α1d]− 4 Im[α2f] Im[α1f]
)

− 2

3d3
ω3

c3
(
Im[α2p] Re[α1p]− Im[α2d] Re[α1d]

− Im[α2f] Re[α1f]
)}

. (31)

As for the parallel case, the ++ and −− contributions are
separated, as dictated by Eq. (21). Here, the term −−
carries an overall minus sign, i.e., the leading term for
small d is negative for particles made of same material,
see Eq. (31).
Notably, comparing the cases of parallel and perpen-

dicular, we conclude that, for the special configuration

with angle such that (d×B) · (d×B) = B2d2

3 , the lead-
ing term for small d of the −− term vanishes.

4. Numerical example

Figure 2 shows the self emission for parallel and per-
pendicular cases using Eqs. (C2) to model the dielectric
tensor, corresponding to n-doped InSb particles. As the
reference situation for normalization, we choose particle 2
in isolation and with magnetic field strength B = 0, i.e.,
Eq. (24). Normalized in this way, the self emission does
not depend on the size of particle 2, but it depends on the
size of particle 1 (if present), which we fix to R1 = 10 nm.
The main plot of Fig. 2 shows the self emission as a

function of d for fixed B = 10 T, alongside with the re-
sult for B = 0 (no magnetic field). The self emission
shows the expected increase when d is sub-micron, ulti-
mately scaling as d−6. In this limit, the finite magnetic
field B either enhances or reduces the particle emission:
It is enhanced for the parallel case and reduced for the
perpendicular. This is because, in this limit, both ++
and −− terms are positive for the parallel case, while
the −− term is negative for the perpendicular case [com-
pare Eqs. (29) and (31)]. For large d, the self emission,
as expected, converges to the result in isolation with or
without (the reference case) B present.
In the inset of Fig. 2, we show the dependence on B.

If particle 1 is absent, the self emission is suppressed by
the field B, changing noticeable around B ≈ 2 T, and
being roughly a factor of 1.5 smaller when B = 10 T.
In agreement with the main plot, the B-dependence in
the presence of particle 1 is different for the parallel and
perpendicular alignment. For the former case, the heat
radiation increases as B increases. For the latter case,
the radiation is suppressed, and the dependence on B is
nonmonotonic, featuring a minimum at B ≈ 2.3 T.
The self emission is an even function of B, and, for

small B, all curves are of order B2, compare Eqs. (F5).
Notably, terms linear in B are absent due to the absence
of ±∓ terms in Eq. (21).
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FIG. 2. Two nonreciprocal particles, modelled by n-doped InSb in an external magnetic field B = 10 T, with interparticle
distance d. Shown is the heat radiation of particle 2 at temperature T2 = 300 K, normalized by the result in the absence
of particle 1 and B = 0. R1 = 10 nm. Shown are the cases of B parallel (∥B) and perpendicular (⊥B) to the interparticle
vector d, as well as the cases of zero field (B = 0) and the heat radiation without particle 1 (“Vacuum”). Also shown are the
individual (++) and (−−) parts, as labeled. Solid line at a value of 1 is included as a guide to the eye. Inset: Dependence on
the magnetic field for d = 0.1 µm, where the solid and dashed lines correspond to no field and no particle 1, respectively.

B. Persistent heat transfer for two particles in
thermal equilibrium

As mentioned in Subsec. II B, Eq. (16) allows, in prin-
ciple, for a finite persistent current for two particles. We
aim to study it more explicitly for the case of two point
particles. In this limit, Eq. (16) reads

H1→2(T ) =
64π

c4

∫ ∞

0

dωΘ(ω, T )ω4

×
[
Tr

{
↔
α

+

1IG∗
0(r1, r2)

↔
α

−
2IG0(r1, r2)

}
− Tr

{
↔
α

+

2IG∗
0(r1, r2)

↔
α

−
1IG0(r1, r2)

}]
, (32)

which is proportional to the volumes of the two particles.
As noted in Eq. (16), only the ±∓ terms contribute. No-

tably, for
↔
α1 =

↔
α2, H

1→2 vanishes.

While it is expected that one of the particles must be
nonreciprocal, it is surprising that the other particle must
be anisotropic. This can be seen explicitly by simplifying
Eq. (32) further for the special choice of Eq. (19), where

we find

H1→2(T ) =
16r2 cos(2φ)

πc3d5

∫ ∞

0

dωΘ(ω, T )ω3

× (Im[α1s] Im[α2f]− Im[α2s] Im[α1f]) . (33)

Recall, from Fig. 1, r and φ are the radial and azimuthal
coordinates of particle 2.
We note that H1→2(T ) in Eq. (33) is proportional to

cos(2φ), its amplitude and sign changes with φ, i.e.,
when precessing d around B. |H1→2(T )| is maximal
for φ = {0, π/2, π, 3π/2}) and it vanishes for φ =
{π/4, 3π/4, 5π/4, 7π/4}.
Due to the factor r2, the current also vanishes when

d || B, i.e., the particles are aligned with the magnetic
field.
H1→2(T ), resulting from ±∓ contributions, is linear

in the magnetic field for small B, and it thus changes
sign with changing the direction of B. These observa-
tions agree with a general structure of the transfer in
Eq. (F6b), (n · d)(n×B) · d, with n the optical axis of
the anisotropic medium.
While it is well understood that there can be a net heat

flow in a system involving at least three nonreciprocal
bodies at the same temperatures [40], Eq. (33) implies
such a flow between 2 bodies, which to our knowledge
was not observed previously.
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With all temperatures equal, net radiation from any
particle must vanish [41]. For the observed persistent
transfer for two particles, the particles must thus ex-
change energy with the environment. If H1→2 is positive,
there must be positive energy transfer from particle 2 to
the environment, and there must be be positive energy
transfer from the environment to particle 1. Although
not computed explicitly here, they must equal in magni-
tude the result in Eq. (33).

Eq. (33) carries the temperature dependent distribu-
tion Θ(ω, T ) as a pre-factor. One may however also at-
tribute such persistent transfer for zero point fluctua-
tions. This has to be investigated in future work.

V. FORCE ON A NONRECIPROCAL
PARTICLE: GENERAL FORMULAS AND

PROPERTIES

We consider object 2 opposite object 1 which is trans-
lationally invariant in direction y, see the sketch in Fig. 3
for the case of a sphere opposite a plate. We are inter-
ested in the force acting on object 2 pointing along the y
axis, i.e., a lateral, or propulsion, force [41, 42, 44, 45, 57].
In this setup, this force vanishes at thermal equilib-
rium [54]. It also vanishes in setups with spatial sym-
metry, thus relying on anisotropy or nonreciprocity. For
different temperatures of the objects (T1 and T2) and the
environment (Tenv), it can be written as [17]

F (2)
y (T1, T2, Tenv) = F

(2)
1,y (T1) + F

(2)
2,y (T2)

− F
(2)
1,y (Tenv)− F

(2)
2,y (Tenv), (34)

where F
(2)
1,y is the interaction force, arising from fluctu-

ations inside object 1, and F
(2)
2,y is the self force due to

fluctuations inside object 2 [17]. The last two terms of
Eq. (34) allow for a finite environment temperature, and
Eq. (34) uses that the force vanises when all temperatures
are equal [17].

We adapt the methods of Refs. [17, 41] to find the
forces in linear order in T2. The self force is

F
(2)
2,y (T2) =

2

π

∫ ∞

0

dω

ω
Θ(ω, T2)Tr {i∂yT2IG1I} ,

=
2

π

∫ ∞

0

dω

ω
Θ(ω, T2)Tr

{
i∂yT+

2IG
−
1I + i∂yT−

2IG
+
1I

}
.

(35)

∂y is the derivative with respect to y. In the second line,
we used that ∂y is antisymmetric and that it commutes
with G1 due to translational invariance. The second line
shows that only the ±∓ terms contribute to the self force,
similar to the persistent heat current in Eq. (32) and in
contrast to the self emission in Eq. (21). This implies
that the self force, in the first order of T2, requires non-
reciprocity, in agreement with the previous findings that
a propulsion force for reciprocal anisotropic objects ap-
pears only in the second order [45]. Equation (35) also

FIG. 3. A reciprocal isotropic semi-infinite (occupying the
half-space z ≤ 0) plate at temperature T1 and a small sphere
made of magneto-optical material at temperature T2 with ra-
dius R at distance d to the plate. The environment is at
temperature Tenv. Due to the external magnetic field B in
the x direction, the sphere is optically nonreciprocal.

states that there are two possible scenarios: A nonrecip-
rocal particle with a reciprocal surrounding, as studied
in Ref. [44] and as considered below, and a reciprocal
particle in a nonreciprocal surrrounding, as studied in
Ref. [42]. There is no additional term when both of them
are nonreciprocal.
The interaction force reads

F
(2)
1,y (T1) =

2

π

∫ ∞

0

dω

ω
Θ(ω, T1)Tr

{
i∂yT2IG1V1IG†

1

}
=

2

π

∫ ∞

0

dω

ω
Θ(ω, T1)

[
Tr

{
i∂yT−

2I

(
G1V1IG†

1

)+
}

+Tr

{
i∂yT+

2I

(
G1V1IG†

1

)−
}]

. (36)

In the last equality, we have split the force into products
of symmetric and antisymmetric operators. This shows
that also the interaction force is a sum of two distinct
terms. However, the antisymmetric part ofG1V1IG†

1 does
not require nonreciprocity of object 1, so that this force
can also exist for two reciprocal objects, as seen in the
second term of Eq. (40) below. Compare also Eqs. (12)
and (13) above.
We continue by exemplifying these relations for a par-

ticle near a planar surface.

VI. EXAMPLE: LATERAL FORCE FOR A
NONRECIPROCAL PARTICLE NEAR AN

ISOTROPIC PLATE

We investigate the propulsion force acting on a small
nonreciprocal particle placed near a planar surface, the
latter made of reciprocal and isotropic material (see
Fig. 3). This setting has been calculated in Ref. [44].
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While reproducing the results of Ref. [44], we add the
possibility for T1 ̸= Tenv [58], we provide new quantita-
tive results for specific materials, and we discuss bounds
of the force below. The case of a small reciprocal object
in front of a nonreciprocal plate was analyzed in Ref. [42].

A. Dielectric plate

We consider a dielectric plate and start with the self
force in Eq. (35). In the point particle limit for object
2, we use Eq. (17) for the scattering operator T2, and
Eq. (19) for the polarizability matrix. The Green’s func-
tion of the plate, G1, can be written via the plane waves
and Fresnel reflection coefficients rN1 and rM1 (see, e.g.,
Eq. (B21) in Ref. [52]). Using this, the trace in Eq. (35)
can be performed, and we obtain

F
(2)
2,y (T2) =− 4

∫ ∞

0

dω

ω
Θ(ω, T2)

×
{∫ ∞

0

dk⊥
2π

k3⊥Im
[
rN1 e2ikzd

]
Im[α2f]

}
,

(37)

where kz =
√
ω2/c2 − k2⊥. Only the electric Fresnel co-

efficient [17, 52]

rN1 =
ε1

√
ω2

c2 − k2⊥ −
√
ε1

ω2

c2 − k2⊥

ε1

√
ω2

c2 − k2⊥ −
√
ε1

ω2

c2 − k2⊥

, (38)

with ε1 = ε1(ω) being the permittivity of the plate, con-
tributes to the force. Equation (37) agrees with Eq. (8.2)
in [44]. The force involves α2f, showing that it corre-
sponds to the second term in Eq. (35). As expected, the
first term in Eq. (35) does not contribute for a reciprocal
plate. The force in Eq. (37), as well as the interaction
force in Eq. (40), is proportional to the volume of the
particle.

For small distance, the integral over k⊥ in Eq. (37) can
be done to yield

lim
d≪λ2

F
(2)
2,y (T2) =− 3

4πd4

∫ ∞

0

dω

ω
Θ(ω, T2)

× Im

[
ε1 − 1

ε1 + 1

]
Im[α2f]. (39)

The force in Eq. (39) is proportional to R3/d4, and it is
thus, from these, of similar type compared to perpendicu-
lar forces between a nanoparticle and a plate [14, 17, 24].
The same scaling is also found for the small frequency
limit in Eq. (8.8) in Ref. [44]. In contrast, the lateral force
for an ellipsoid near an isotropic plate is of second order
of the ellipsoid’s polarizability, yielding a force ∼ R6/d7

[45]; In the considered limit of R ≪ d, the force ∼ R3/d4

for a nonreciprocal particle is thus expected to be larger
than the force ∼ R6/d7 for a reciprocal ellipsoid.

From Eq. (36), the interaction force, in the point par-
ticle limit, yields

F
(2)
1,y (T1) =− 4

∫ ∞

0

dω

ω
Θ(ω, T1)

×
{
−

∫ ∞

ω
c

dk⊥
2π

k3⊥e
−2|kz|dIm

[
rN1

]
Im [α2f]

+

∫ ω
c

0

dk⊥
2π

k3⊥
1

2

(
1− |rN1 |2

)
Im[α2s]

}
.

(40)

Equation (40) contains two terms, corresponding to the
two terms in Eq. (36). The first term involves α2f, i.e.,
the nonreciprocal component. It is a near field term, and
it will dominate at small distance. The second term in-
volves α2s, i.e., it gives a force for a reciprocal anisotropic

particle. This term is fueled by (G1V1IG†
1)

−, which, for a
reciprocal plate, however, only contributes via propagat-
ing modes. For small d, this term does not contribute,

lim
d≪λ1

F
(2)
1,y (T1) =

3

4πd4

∫ ∞

0

dω

ω
Θ(ω, T1)Im

[
ε1 − 1

ε1 + 1

]
Im[α2f]

= − lim
d≪λ1

F
(2)
2,y (T1). (41)

The last line emphasizes that interaction force and self
force are equal in magnitude and opposite in sign at small
distance.
The total force is obtained according to Eq. (34). Fig-

ure 4 shows this force for a particle made of n-doped
InSb [see Eqs. (C2)] near a dielectric surface, the latter
modeled by

ε1(ω) = 1 +
C1ω

2
1

ω2
1 − ω2 − iγ1ω

. (42)

Here, C1 = 2, ω1 = 1.15 × 1014 rad s−1, and γ1 = 7 ×
1010 rad s−1 are used, which we found to optimize the
overlap with Im[α2f] in the frequency integral. The figure
uses T1 = 300 K, T2 = 10 K, and Tenv = 0 K.
For small distances d between plate and particle, and

especially for large temperature, the force can be large
compared to the gravitational force. The choice of mate-
rials is crucial for obtaining a force of significant magni-
tude.

B. Perfectly conducting plate

Notably, the second term in Eq. (35) in principle allows
a propulsion force for an isolated particle in free space,
using G+

0 = G0. However, for a spherical particle with
magnetic field pointing in x direction, the force in y direc-
tion vanishes by geometric symmetry (for completeness,
we mention that there is no force in x-direction either).
A simple way to break the symmetry is by introducing a
mirror, i.e., by evaluating Eq. (37) in the limit of a per-
fectly reflecting plate (note that, in this case, there is no
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FIG. 4. Propulsion force acting on a small sphere modeled
by n-doped InSb at a distance d = 100 nm from a recip-
rocal isotropic semi-infinite plate [see Fig. 3 and Eq. (42)],
as a function of field strength B. The temperatures of the
plate, sphere, and environment are T1 = 300 K, T2 = 10 K,
and Tenv = 0 K, respectively. Orange dots indicate the force,
while the black circles represent the near-field limit obtained
from Eqs. (39) and (41). The force is normalized by the grav-
itational force Fg, with density of the sphere ρ = 5.78 g/cm3.
Inset depicts the force as a function of temperature T1 at fixed
B = 10T.

interaction force). This yields

lim
|ε1|→∞

F
(2)
2,y (T2) = − 1

4πd4

∫ ∞

0

dω

ω
Θ(ω, T2)Im[α2f]

×
[
3 sin

(
2
ω

c
d
)
− 6

ω

c
d cos

(
2
ω

c
d
)
− 4

(ω
c
d
)2

sin
(
2
ω

c
d
)]

.

(43)

Equation (43) corresponds to Eq. (8.11) in Ref. [44].
Again, we are interested in the distance behaviour. In
the far field, the asymptotic form of Eq. (43) is

lim
d≫λ2

lim
|ε1|→∞

F
(2)
2,y (T2) =

1

πc2d2

∫ ∞

0

dω

ω
Θ(ω, T2)

× Im[α2f] sin
(
2
ω

c
d
)
. (44)

This yields an oscillatory behavior, decaying to zero with
distance d, which reiterates that a sphere in isolation feels
no propulsion force. For small distance d,

lim
d≪λ2

lim
|ε1|→∞

F
(2)
2,y (T2) = − 8

15π
d

∫ ∞

0

dω

ω
Θ(ω, T2)Im[α2f].

(45)
Unlike for plates with finite conductivity, this force does
not diverge for small d, being, instead, linear in d for
small distance.

The force in Eq. (43) is maximal at a certain distance,
which can be found using a simple toy model,

Im[α2f(ω)] = α0δ(ω − ω0), (46)

with α0 and ω0 positive. For this model, the self force is

F
(2)
2,y (T2) =

1

4πc4
Θ(ω0, T2)ω

3
0α0f

(ω0

c
d
)
, (47)

0 2 4 6 8 10
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FIG. 5. Function f(x) defined in Eq. (48) and showing the
distance dependence of the propulsion force (47) acting on a
nonreciprocal small sphere [modeled by Eq. (46)] in front of
a perfectly reflecting plate.

with

f(x) =
1

x4

[
−3 sin(2x) + 6x cos(2x) + 4x2 sin(2x)

]
.

(48)
The dimensionless f(x) as a function of dimensionless
x = ω0d/c is plotted in Fig. 5. In the near-field limit
(small x), f(x) = −32x/15, while in the far-field limit
(large x), f(x) = 4 sin(2x)/x2, corresponding to using
Eq. (46) in Eqs. (45) and (44), respectively. The maximal
absolute value of f(x) appears at x ≈ 5/4.
While the sphere experiences a finite force, the y com-

ponent of the force acting on the perfectly conducting
plate is zero. The sphere, in this case, thus exchanges
momentum with the environment.

VII. BOUND FOR FORCE IN TERMS OF HEAT
TRANSFER

A. General

We show in Appendix E that, if object 1 is translation-
ally invariant in direction y, one has a Fourier decompo-
sition along y,

G1I(y − y′) =

∫
dky
2π

Ĝ1I, (49)

with Ĝ1I nonnegative if V1I ≥ 0. We thus write for self
emission and self force from Eqs. (6) and (35), respec-
tively,

H
(2)
2 =

2

π

∫ ∞

0

dωΘ(ω, T2)

∫
dky
2π

Tr
{
T2IĜ1I

}
, (50)

F
(2)
2,y = − 2

π

∫ ∞

0

dω

ω
Θ(ω, T2)

∫
dky
2π

kyTr
{
T2IĜ1I

}
.

(51)
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As Tr
{
T2IĜ1I

}
≥ 0, the above yields a bound relation

between spectral self force f
(2)
2,y (ω) and spectral self emis-

sion h
(2)
2 (ω) (compare Ref. [41]),∣∣∣f (2)

2,y (ω)
∣∣∣ c ≤ h

(2)
2 (ω)

c

ω
kmax
y . (52)

As kmax
y is typically set by the inverse distance, this anal-

ysis yields a very similar bound between force and energy
loss as found in Ref. [41] for two parallel plates.

For heat transfer and interaction force, starting from
Eqs. (2) (expanded in linear order in T2) and (36), the
relation analogous to Eq. (52) can be found:∣∣∣f (2)

1,y (ω)
∣∣∣ c ≤ h

(2)
1 (ω)

c

ω
kmax
y . (53)

B. Illustration for a particle near a plate

Here we aim to explicitly compare the propulsion force
acting on a nonreciprocal particle above a reciprocal
isotropic plate to the heat absorbed by the particle. For
an illustration, we consider the near-field limit, where the
self and interaction parts of the force and heat transfer
are equal in absolute value and take simple forms. The
self force is given by Eq. (39), while the self emission can
be found from Eq. (21) (recall that it is independent of
α2f, as only the ++ term contributes due to the plate’s
reciprocity),

lim
d≪λT2

H
(2)
2 =

1

4πd3

∫ ∞

0

dωΘ(ω, T2)

× Im

[
ε1 − 1

ε1 + 1

]
Im[α2p + 3α2d], (54)

which can be easily compared with Eq. (39). Indeed, for
a passive material, Im[α2p] ≥ 0 and Im[α2d] ≥ |Im[α2f ]|,
such that for the spectra of Eqs. (39) and (54) we have∣∣∣f (2)

2,y (ω)
∣∣∣ c ≤ h

(2)
2 (ω)

c

ω

1

d
. (55)

Since, in the near field, kmax
y ≈ 1/d [41], Eq. (55) re-

produces the general result of Eq. (52) and provides an
explicit application.

VIII. CONCLUSION

We derive and analyze general formulas for heat trans-
fer and forces involving nonreciprocal nanoparticles. We
find that the reciprocal (+) and nonreciprocal parts (−)
of the particle couple distinctly to reciprocal (+) and
nonreciprocal parts (−) of its surroundings.
The self emission of a nonreciprocal nanoparticle con-

tains ++ and −− terms. We exemplify these for two
nonreciprocal nanoparticles, finding that the self emis-
sion shows pronounced dependence on the angle between

the vector d connecting the particles and the pseudovec-
tor (e.g., magnetic field) B giving rise to nonreciprocity.
This is different to the case of reciprocal anisotropic parti-
cles studied before [59, 60], where the angular dependence
is governed by the particle axis (a director) n. Despite
this, there is apparently no striking difference between
reciprocal and nonreciprocal cases for self emission.

Heat transfer, in contrast, contains a −+ term, which
yields a so-called “persistent” current in a situation with
all temperatures equal. While it had been observed be-
fore [40] for three particles, we here observe it for two
nonidentical particles. Notably, it relies on the nonre-
ciprocity of one of the particles and the anisotropy of the
other, and occurs only for specific angles between d, n,
and B.

The propulsion force for a nonreciprocal particle in a
translationally invariant surrounding is dominated by the
−+ contribution, so that it is distinct from the force for a
reciprocal particle [45]: It is proportional to the particle
volume, while for a reciprocal particle, it is proportional
to the volume squared. We find that, for a nonreciprocal
particle above a plate [44], the force can be orders of
magnitude larger than the gravitational force, so that we
expect it to be experimentally detectable.

Despite the distinct properties of the mentioned −+
terms in transfer and force, these are not independent
of the ++ or −− terms. The heat transfer, including
the −+ term, is bound by the ++ and −− term of the
self emission. For the propulsion force in a reciprocal
surrounding, the −+ term is bound by the ++ term in
the heat transfer. This bound limits the efficiency of this
setting as a heat engine [41], and among other things, it
rests on the passivity of the involved objects.

Future work will investigate the consequences of per-
sistent heat current, and also explore ways to break the
bound between force and heat transfer. One possibility
may be by considering settings without translational in-
variance such as periodic modulations. Also, particles
with magnetic susceptibility or time or space varying
magnetic fields may allow for new phenomena and open
new possibilities.
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Appendix A: Free Green’s function

The free Green’s function is known in closed form as
[52]

G0(r, r
′) =− 1

3

c2

ω2
Iδ(3)(r− r′)

+
ei

ω
c d

4πd5
c2

ω2

[
d2pI + q(r− r′)⊗ (r− r′)

]
,

(A1)

where p and q are functions of ω
c d,

p ≡ p
(ω
c
d
)
= −1 + i

ω

c
d+

ω2

c2
d2, (A2a)

q ≡ q
(ω
c
d
)
= 3− 3i

ω

c
d− ω2

c2
d2, (A2b)

and d = |r− r′|.

Appendix B: Point particle limit

In the point particle limit, we are able to express the
scattering operator in terms of the polarizability, which
is usually a better known quantity. We assume a spher-
ical nonmagnetic particle small compared to all other
length scales of the system, namely all thermal wave-
lengths λTi

= ℏc/(kBTi), the particle’s skin depth, and
the distances to other objects. In this point particle
limit, the free Green’s function inside the particle can
be approximated by only the local term [the first term
in Eq. (A1)] [56, 61], and the scattering operator of the
particle simplifies to

T = V
(
I+

1

3

c2

ω2
V
)−1

. (B1)

Using V = ω2

c2 (ε − I) in Eq. (B1), we obtain

T = 3
ω2

c2
(ε − I) (ε + 2I)−1

. (B2)

For a small particle, ε is assumed to be local and ho-

mogeneous, i.e., ε(r, r′;ω) =
↔
ε (ω)δ(3)(r − r′), such that

Eq. (B2) can be written as

T(r, r′) = 3
ω2

c2

(
↔
ε − I

)(
↔
ε + 2I

)−1

δ(3)(r− r′). (B3)

The scattering operator of a small particle is hence local
and homogeneous. However, it is in general nondiagonal,

as we made no assumptions about
↔
ε . Equation (B3)

thus holds for anisotropic [56] as well as magneto-optical
nonreciprocal small particles [62]. In case of an isotropic

and reciprocal particle (
↔
ε ∝ I), Eq. (B3) reduces to

Eq. (10) in Ref. [52]. Introducing the polarizability tensor

↔
α =

(
↔
ε − I

)(
↔
ε + 2I

)−1

R3, (B4)

where R is the particle radius, and the polarizability op-

erator, α(r, r′) =
↔
αδ(3)(r − r′), Eq. (B3) can be written

as

T(r, r′) =
3

R3

ω2

c2
↔
αδ(3)(r− r′) =

3

R3

ω2

c2
α(r, r′). (B5)

Appendix C: Permittivity and polarizability tensor
of the small particle

The entries of the polarizability tensor Eq. (17) can
be determined in terms of the entries of the permittivity
tensor Eq. (18) as

αp =
εp − 1

εp + 2
R3, (C1a)

αd =

[
1− 3(εd + 2)

(εd + 2)2 − (ε2s + ε2f )

]
R3, (C1b)

αs =
3εs

(εd + 2)2 − (ε2s + ε2f )
R3, (C1c)

αf =
3εf

(εd + 2)2 − (ε2s + ε2f )
R3. (C1d)

In numerical computations, we choose the following

model for
↔
ε [40, 41, 48, 54]:

εp = ε∞ − ω2
p

ω(ω + iωτ )
, (C2a)

εd = ε∞ − ω2
p(ω + iωτ )

ω[(ω + iωτ )2 − ω2
B ]

, (C2b)

εf = − ωBω
2
p

ω[(ω + iωτ )2 − ω2
B ]

, (C2c)

εs = 0, (C2d)

where ωB is the cyclotron frequency due to the exter-
nal magnetic field breaking reciprocity; ωp and ωτ are
the plasma and damping frequency, respectively, and ε∞
is the high-frequency dielectric constant. For the mate-
rial of the particle we choose n-doped InSb, for which
ωp = 7.4 × 1014 rad s−1, ωτ = 6.3 × 1012 rad s−1,
and ε∞ = 15.7 [40]. The value of ωB = 2.2 × 1012 ×
B rad s−1 is varied throughout computations via the
variation of the magnetic field strength B. For any B,
the skin depth corresponding to any direction (estimated
as 1/(k Im

√
ε{p,d,f}), is found to be larger than 400 nm,

such that we can use a particle with R ≈ 50 nm or smaller
for the point particle limit to be valid.

Appendix D: Traces for the self emission of a point
particle

Splitting the Green’s function of particle 1 and the
polarizability of particle 2 in their symmetric and anti-
symmetric parts, we compute the two traces in Eq. (21):
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4π
ω2

c2
d10 Tr

{
↔
α

+

2IG
+
1I(r2, r2)

}
= 4π

ω2

c2
d10

1

6π

ω

c
(Im[α2p] + 2 Im[α2d])

+ Im[α2p] Im
{
e2i

ω
c d

[
α1p

(
pd2 + qx2

)2
+ (α1d + α1s sin(2φ)) q

2x2r2
]}

+ Im[α2d] Im
{
e2i

ω
c d

[
α1pq

2x2r2 + α1d

(
2p2d4 + 2pqd2r2 + q2r4

)
+ α1s

(
pd2 + qr2

)
qr2 sin(2φ)

]}
+ Im[α2s] Im

{
e2i

ω
c d

[
α1pq

2x2r2 sin(2φ) + α1d

(
pqd2 + q2r2 sin(2φ)

)
r2 + α1s

(
2p2d4 + 2pqd2r2 + q2r4 sin2(2φ)

)]}
,

(D1a)

Tr
{
↔
α

−
2IG

−
1I(r2, r2)

}
=

1

2π ω2

c2 d
8
Im[α2f] Im

{
α1fe

2iω
c dp

(
pd2 + qr2

)}
, (D1b)

where r2 and x2 are the squared interparticle distances
perpendicular to and along the x axis (the direction of
the magnetic field), respectively, and φ is the azimuthal

angle in the yz plane (see Fig. 1); d =
√
r2 + x2 is the full

distance. p and q are given by Eq. (A2). The first term
in Eq. (D1a) corresponds to the self emission in vacuum,
i.e., without particle 1

Appendix E: Positivity of Fourier transforms

Consider an operator A = A(y − y′), which is Her-
mitian and nonnegative, and translationally invariant in
direction y. Due to translational invariance, its Fourier
transform along y, Ã(ky), is a function of one wavenum-
ber ky only,

A(y − y′) =

∫
dky
2π

Ã(ky)eiky(y−y′). (E1)

The inverse of this relation is

Ã(ky) =
∫

d(y − y′)A(y − y′)e−iky(y−y′)

=
1

L

∫
dydy′e−ikyyAeikyy

′
=

1

L
FAF†. (E2)

We defined F = Ie−ikyy, and introduced the formally
infinite length L of the system along y. Eq. (E2) shows

that Ã is nonnegative if A is. The same holds for

Â = eikyyÃe−ikyy
′
. (E3)

Appendix F: Tensorial structure for small B

In this section, we will analyze the tensorial structure
of the expressions in the main text. For small values of
B, the polarizability tensors take the form (the Einstein
summation convention is assumed)

αij = α(d)δij + α(s)ninj + α(a)ϵijkBk, (F1)

or in shorter form,

↔
α = α(d)I + α(s)↔n + α(a)

↔
B, (F2)

where ni is the ith component of the optical axis n, giv-
ing rise to the symmetric off-diagonal elements, and Bk

is the kth component of the magnetic field vector B, re-
sponsible for the antisymmetric part.

The free Green’s function [see Eq. (A1)] takes the form

G0,ij = G
(d)
0 δij +G

(s)
0 didj , (F3)

or

↔
G0 = G

(d)
0 I +G

(s)
0

↔
d , (F4)

with with di being the ith component of the vector con-
necting the two arguments of the Green’s function.

For the self emission of a particle near a second one,
we have, from Eqs. (20) and (22), terms of the form

Tr
(
↔
α1

↔
G0

↔
α2

↔
G0

)
. We are interested in the dependence

on the magnetic field. We analyze only the −− term. In
this term, the summands ∼ ϵijkBk from both particles
must contribute. We thus have the terms

Tr

[
↔
B

↔
d
↔
B

↔
d

]
= ϵijkBkdjdlϵlmrBrdmdi = 0, (F5a)

Tr

[
↔
B

↔
d
↔
BI

]
= ϵijkBkdjdlϵlmrBrδmi

= −(d×B) · (d×B), (F5b)

Tr

[
↔
BI

↔
BI

]
= ϵijkBkδjlϵlmrBrδmi = −2B2. (F5c)

The self emission in presence of a second particle thus
carries an isotropic term ∼ B2, and a term ∼ (d ×B) ·
(d × B), corresponding to the first and second term in
Eq. (D1b), respectively.

For the persistent current, accoring to Eq. (32), the +−
terms, i.e., the symmetric part of one particle and the an-
tisymmetric part of the other one, contribute. Therefore,
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we collect the terms

Tr

[
↔
n
↔
d
↔
B

↔
d

]
= ninjdjdlϵlmrBrdmdi = 0, (F6a)

Tr

[
↔
n
↔
d
↔
BI

]
= ninjdjdlϵlmrBrδmi = (n · d)(n×B) · d,

(F6b)

Tr

[
↔
nI

↔
BI

]
= ninjδjlϵlmrBrδmi = 0. (F6c)

Equation (F6b) shows that the persistent current is of
form (n · d)(n ×B) · d. It thus vanishes if n is perpen-
dicular to d, or if any pair of n, B, and d is parallel, in
agreement with Eq. (33).
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