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ABSTRACT

This article provides an overview of the latest results in the field of improving the properties of multiatomic inorganic oxide compounds for
scintillators. A possibility to control the spatial distribution of nonequilibrium carriers in the ionization track by creating a compositional
disorder in the crystalline matrix is in focus. Managing the disorder at the nanoscale level creates an opportunity for the efficient energy
loss by carriers during thermalization, smaller spatial dispersion, and, consequently, more efficient binding into excitons and, further, an
increase in the scintillation yield. The methods to produce multicationic crystalline scintillation materials have been discussed. The effective-
ness of the approach is confirmed for both activated and self-activated scintillation materials.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238695

I. INTRODUCTION

Nowadays, in the field of the research and development of the
materials for photonics, there is a tendency to produce and evaluate
more complex systems that generate optical photons: crystalline
materials,1–4 organic composites,5,6 metal-organic systems,7 and
nano-sized luminescence objects built into various matrices.8

Apparently, it is tricky to categorize that simple crystalline systems
have exhausted the potential for improvement, but they do not
provide wide opportunities for manipulating their luminescent
properties. Most of them quite rarely provide the possibility of tar-
geted adjustment of the properties of materials of the same struc-
tural type and similar composition for use in different devices
utilizing the generation of optical photons. Designing the materials,
which accounts for a number of applications, significantly reduces
the costs and is highly demanding. Among a variety of materials
for photonics, oxide crystalline compounds are of particular

interest. They are highly manufacturable and are widely used to
obtain laser properties due to the stimulated luminescence9 or to
produce photons in a wide spectral range due to spontaneous lumi-
nescence under various types of excitations.10–13 The excitation of
luminescence by ionizing radiation in such materials, that is, scin-
tillation and cathodoluminescence, is increasingly used, especially
in imaging and diagnostic systems, radiography, and scientific
research.14–20 As a rule, such materials are subject to a special
requirement: radiation resistance21 of scintillation parameters when
operating in an ionizing radiation environment. In just over a
century of development of scintillation materials, it has been possi-
ble to reliably identify several structural types of oxide compounds
that are resistant to irradiation with various types of ionizing
radiation.22–28 These are crystalline materials of the garnet struc-
tural type based on trivalent cations, orthosilicate compounds com-
bining three- and four-charged cations, as well as tungstate
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compounds of the scheelite structural type, including two- and six-
charged cations. All the above structural types of materials allow
isovalent and non-isovalent doping, but more importantly, they
form a variety of solid solutions with isostructural substitution. The
latter ability makes it possible to adjust and improve the features of
crystalline compounds of these structural classes for use as scintilla-
tion materials. Recently, reviews on the topic have been pub-
lished.29,30 The authors analyzed the use of increasing the
complexity of the composition of the cationic and anionic sublatti-
ces in crystalline compounds suitable for detecting ionizing radia-
tion to improve primarily the scintillation yield. Over the past two
years, significant achievements have been made, in both experi-
mental results and further development of the theory and capabili-
ties for modeling the processes leading to the formation of an
ensemble of luminescent centers after excitation by ionizing
radiation.31–42 To date, a significant improvement in the scintilla-
tion yield was found in many crystalline compounds with different
activating ions; recently, it has been confirmed in the mixed self-
activated scintillators43 as well.

In this review, we focused on analyzing the physical and
physico-chemical principles for the improvement in scintillation
parameters with increasing complexity of the cationic composition
of a compound, as well as considering changes in the properties of
specific compounds when manipulating their cationic composition.
The conclusions are supported by Monte Carlo simulations, elec-
tron microscopy data, and measurements of photoluminescence
and scintillation properties.

Section II describes the general issues related to the features of
the scintillation process development in crystalline systems with
compositional disorder, as well as the issues of Frenkel excitons
transfer along the diluted gadolinium sublattice. Section III is
devoted to the technological capabilities to produce various multi-
cationic oxide scintillation materials, with a focus on the produc-
tion of transparent ceramics of the garnet structural type and the
results of their properties evaluation. Finally, Sec. IV considers the
limits of the approach and prospects for the next materials, for
which compositional engineering can be useful in terms of improv-
ing scintillation characteristics. Section V concludes the study.

II. EFFECT OF COMPOSITIONAL DISORDER ON THE
INTERACTION OF CRYSTALLINE SYSTEMS WITH
IONIZING RADIATION

A. Control of ionization track parameters

In most cases, the interaction of ionizing radiation with the
medium results in the ionization of the inner shells of the ions that
form it. A random track of nonequilibrium carriers appears. The
spatial distribution of thermalized nonequilibrium carriers deter-
mines the efficiency of transfer of electronic excitation energy to
the ensemble of radiative centers.44 Since the excitation of lumines-
cent centers, as a rule, in oxide compounds includes the stage of
formation of excitonic states,45 it is obvious that the final scintilla-
tion yield is determined by the concentration of excitons in the
track. Therefore, material engineering at the nanoscale to achieve
track parameters that promote the most efficient formation of
exciton states from thermalized nonequilibrium carriers is one of
the priorities. It is important to note that the high ionization

density in the track, which occurs when heavy charged particles,
alpha particles, tritons, or fragments of nuclei are decelerated in
matter, leads to the concentration quenching of excitons, which, as
was also noted by Birks,46 leads to a decrease in the yield scintilla-
tion. The light yield under charged particles depends on the chemi-
cal composition of the material as well.47

Mixing of cations in the matrix by isovalent and isostructural
substitution is characterized by a random distribution of cations in
the corresponding sublattice; thus, compositional disorder occurs.
By such a substitution, there is no change in the structural type of
the compound nor a decrease in the space group of symmetry of
the crystal lattice; that is, crystallinity is preserved. When mixing
cations, the anion sublattice is responsible for maintaining long-
range order in the arrangement of ions in the lattice and, accord-
ingly, vice versa. At the same time, introducing compositional dis-
order into the cation sublattice leads to a significant change in the
distribution of the density of electronic states near the top of the
bandgap. The difference in the formation of the landscape of the
bottom of the conduction band can be revealed by considering
fluctuations of the effective potential in a supercell consisting of
hundreds of primitive cells of a mixed crystal with a random distri-
bution of cations. Fluctuations of the effective potential in the
one-electron approximation of the lower branch in the conduction
band of the crystal, causing scattering of electronic states, can be
constructed by the pseudopotential method according to the
model.48 A two-dimensional cross section of the spatial distribution
of the pseudopotential uð~rÞ binary compounds Y3Al5O12 and
Y3Ga5O12, as well as ternary compounds consisting of an equimo-
lar ratio of Y3Al5O12 и Y3Ga5O12 is shown in Fig. 1. The spatial
distribution of substituting ions was chosen to be uniform, without
clustering. 2D sections are constructed in supercells 15 × 15 × 15 at
z ¼ 15

2 (~aþ~bþ~c)z , i.e., at half their height. The unit cell

FIG. 1. Two-dimensional sections of the spatial distribution of the pseudopoten-
tial u(r→): Y3Al5O12 (upper plane, Eg = 7.01 eV), Y3Ga5O12 (lower plane,
Eg = 5.46 eV), and Y3(Al,Ga)5О12 between them.
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parameters of the binary garnet compounds, the position of ions in
the unit cell, and the bandgaps were taken from Ref. 49.

The amplitude of pseudopotential fluctuations in a ternary
compound is determined by the difference in the bandgaps of
binary compounds. As seen, it reaches fairly large values in a
ternary system consisting of Al3+ and Ga3+ ions. In contrast, in
compounds where heavier cations such as Y and Lu are mixed, the
modulation is not as great since the end compounds Lu3Al5O12

and Y3Al5O12 have bandgap values of Eg = 7.61 and 7.01 eV,
respectively. The same situation is observed in compounds with an
orthosilicate structure when lutetium and yttrium are mixed, since
bandgap values of Lu2SiO5 (LSO) and Y2SiO5 also differ a little;
they are Eg = 7.27 and 7.38 eV, respectively.

The effect of modulation of the effective potential in a compo-
sitionally disordered crystal on the mobility of nonequilibrium car-
riers can be divided into two processes: first, an elastic scattering of
free carriers with kinetic energy above the localization threshold on
potential fluctuations and next, a localization of thermalized carri-
ers in potential wells due to the modulation of the bottom of the
conduction band with the possibility of subsequent activation due
to phonon absorption. When the known relationships between the
spatial dimensions of potential fluctuations and their depth are sat-
isfied, electronic states appear that form a tail of the density of
states. Such localization with wave functions spread over several
ions can be regarded as the appearance of shallow traps induced
either by compositional disorder or defects of different origins
(intrinsic or extrinsic), which can be especially important in mixed
systems. The appearance of tails of density of states results in the
modification of the character of mobility of carriers up to hopping
motion. In both processes, the modulation of the effective potential
leads to a decrease in the diffusion scattering length of free carriers,
an increase in the concentration of bound electron–hole pairs, and,
consequently, an increase in the efficiency of the transfer of elec-
tronic excitations to luminescence centers.

Figure 2 shows random ionization tracks calculated using the
LEPAM software package50 in a Lu2SiO5 (LSO) crystal, which appears
instantly after the photo-absorption of a gamma-quantum with an
energy of 100 keV followed by the cascade of production of secondary
excitations and after the thermalization of carriers in the track.

Figure 3 shows the distribution over distances between ther-
malized carriers, holes, and electrons in crystalline compounds of
Lu2SiO5 and (Lu,Y)2SiO5 (LYSO). As seen, the average value of the
distribution in (Lu,Y)2SiO5 is closer to the Onsager radius, which
causes more effective coupling of the carriers into the pairs.

Note that disorder in the cation sublattice begins to affect the
spatial distribution of carriers already at the stage of their thermali-
zation. This occurs both as a result of scattering on inhomogenei-
ties of the crystal potential and due to the excitation of phonons
localized in these potential wells formed by inhomogeneities.
When electrons are thermalized and have insignificant kinetic
energy, they can also be captured by shallow traps based on inho-
mogeneities and lead to a delay in scintillation or even phosphores-
cence.51 The influence of such defects is eliminated by introducing
a small concentration of aliovalent codoping ions into the material,
which create a center with a relatively deep location relative to the
bottom of the conduction band and a high probability of non-
radiative relaxation.52–54

B. Electronic excitation transport control by changing
the integrity of the gadolinium sublattice in activated
scintillators

Gadolinium-containing scintillators are very attractive from
the point of view of controlling the scintillation properties as
well as managing the sensitivity to various types of ionizing
radiations.55–58 In contrast to the crystals based on Y, La, and
Lu, which have no peculiarities of the electron density states
into the bandgap, the Gd3+-based crystal host has numerous
f-levels (6P, 6I, 6D) creating sub-zones. Moreover, following the
extended Dieke diagram,59 one can suppose that numerous
Gd3+ levels in the energy range above 40 000 cm−1 will provide
a chain of consecutive processes that include effective capture
of nonequilibrium carriers by Gd ions and intracenter relaxa-
tion to the lowest states (6P, 6I). The intracenter relaxation
process is quite short and proceeds within a picosecond.60 So,
besides the lattice self-trapped excitons (STEs) having energy
slightly less than the bandgap energy, a significant part of non-
equilibrium carriers create Frenkel-type excitons (FTEs), which
have a capability for migration along with 6P, 6I, and 8S states
of the Gd3+ sublattice. The increase in the compositional disor-
der due to the dilution of the gadolinium sublattice, i.e., the
transition from ternary to quaternary and then quintuple com-
pounds, inevitably leads to a violation of the integrity of the
gadolinium sublattice. Typically, an interaction associated with
the excited Gd3+ 5d04f7 configuration and Ce3+ activating ions
is described by the dipole–dipole interaction energy transfer. At
the same time, diffusion over the f-states of gadolinium by
hopping occurs due to the dipole–dipole transfer as well.
Therefore, the energy transfer process is a diffusion-controlled
dipole–dipole transfer. In addition, Gd3+→ Ce3+ the exchange
(Dexter) transfer occurs as well.

Let us consider two cases of the change in the composition
of Gd3Al2Ga3O12:Ce (GAGG:Ce): when gadolinium ions are
partly substituted by lightweight or heavy cations. Mixing of
cations influences the ionization process. When diluted by light
yttrium cations, the photoabsorption and ionization still domi-
nate near heavier gadolinium atoms. On the contrary, when the
gadolinium sublattice is diluted by heavier lutetium cations, a sig-
nificant part of photoabsorption and ionization are localized on
these heavy ions. Therefore, in the first case, FTE will dominate
in the excitation transfer to Ce3+ ions, while in the latter case,
STE will make a significant contribution. A Monte Carlo simula-
tion of the transfer processes at the conditions of the migration of
excitations along the Gd sublattice with the broken integrity was
performed in Ref. 36. The incorporation of Lu ions into the Gd
sublattice leads to a deceleration of the transformation of STE
into mobile FTE. Figure 4 depicts the results of a simulation of
the contribution of different transfer mechanisms to the Ce3+

ions from the Gd sublattice and STE and the resulting lumines-
cence kinetics at a few concentrations of Ce3+ ions in GAGG:Ce
and (Gd,Lu)3Al2Ga3O12:Ce (GLAGG:Ce). Typically, GAGG:Ce
has two major components in the scintillation kinetics, and their
decay constants show a reduction with increasing Ce concentra-
tion in the compound. In the compound with the Gd sublattice
diluted by Lu ions, the fraction of both scintillation kinetic
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components is a little dependent on the Ce concentration.
Therefore, slow scintillation kinetics is observed, and it is hardly
removable.61,62

Moreover, the diminished role of the Gd subsystem in the
delivery of electronic excitations to Ce3+ ions causes a drop in LY.
Worth noting, when Gd is completely removed from the crystal
matrix, the ternary Lu–Al–Ga garnet demonstrates LY at the level
of YAG or even worse.63

III. STATE-OF-ART OF THE PRODUCTION AND
EVALUATION OF COMPOSITIOLALLY DISORDERED
OXIDE SCINTILLATORS

A. Production of crystalline multiatomic compounds
with compositional disorder

High-quality multi-cationic crystalline compounds are quite
difficult to obtain by pulling from the melt due to the difference

FIG. 2. A random ionization track in a Lu2SiO5 crystal after the photo-absorption of a gamma-quantum with an energy of 100 keV that appears instantly (a) and after ther-
malization of nonequilibrium carriers (b). A magnified fragment of the spatial distribution of thermalized carriers at the beginning of the track (c) and at the end of the track
(d). Holes are denoted as red dots and electrons are denoted as blue dots.
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in the pressure of saturated vapors in the growth chamber of
various components. Moreover, a gradient of various cations
along the growth axis is expected to occur. An alternative
method for producing the crystalline compound is the produc-
tion of ceramics without melting. This method is effective for
compounds with a cubic space symmetry group, which narrows
the list of potentially suitable compounds. Ceramic production
includes several successive technological processes, which can be
summarized as three stages: powder production of a specified
composition and particles dimensions, compaction, and
sintering.

B. Production of precursors

The commonly used method to produce precursors for manu-
facturing the ceramics of garnet structural-type compounds is
solid-phase synthesis. It is widely used for three- and four-cation
compositions.64 The mixing of oxide powders in ball mills is
carried out for several tens of hours, and then, annealing at temper-
atures above 1000 °C is applied. The advantages of the method are
its simplicity, availability, and scalability, while the result of the
process significantly depends on the microstructure of the starting
powders and the size of their particles. At the same time, long-term
grinding requires careful selection of the material of the grinding
bodies and the lining of the drum to minimize their abrasion and
contamination of the target powders. Certain difficulties may arise
in the presence of easily evaporated components in the mixture, for
example, gallium oxide.65

The next useful method is spray pyrolysis, which is the
process of spraying a solution containing metal cations into a tube
furnace or flame. The major feature of the method is the produc-
tion of particles of a regular spherical shape with a narrow size dis-
tribution using a solution of metal salts: alcoholates and
carboxylates. The disadvantages of the method are technological
difficulties, the high cost of pyrolysis setup, and low productiv-
ity.66,67 In addition, the production of ceramics from powders with
spherical particles requires the application of pressure during sin-
tering due to the small area of their contact with each other.
Moreover, spherical particles can be hollow inside, which compli-
cates the production of ceramics even under hot pressing
conditions.

The solgel method, suitable for obtaining nanoscale oxides,
includes four stages: the fabrication of a sol, concentrating with
subsequent gelation, drying the gel to remove the solvent, and heat
treatment to obtain the target phase. In the case of the production
of nanosized powders of rare earth garnets, the original

FIG. 3. Distribution of distances between holes and the nearest electron for
LYSO and LSO (assuming 1.5 times larger thermalization length), ROns is the
Onsager radius (within an e–h pair directly converted into the exciton).

FIG. 4. Simulation of scintillation kinetics of GAGG (a) and GLAGG (b) on the Ce concentration (indicated). Dashed curves show a contribution of the mechanisms of the
electronic excitations transfer via Gd sublattice and direct transfer from STE at a Ce concentration of 0.5 at. %. The integrals under kinetics are the same as in Ref. 36
[Korzhik et al., Crystals 12(9), 1196 (2022), licensed under a Creative Commons Attribution CC BY 4.0 license].
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components are converted into a solution. Next, an organic reagent
(e.g., ethylene glycol, citric acid, 1,2-ethanediol) is usually added to
the solution, and the latter is gradually evaporated (at a temperature
of about 80 °C) to form a sol, which, upon further evaporation of
the solvent, loses its aggregative stability and turns into a gel. The
obtained gel is dried at temperatures of 90–110 °C and calcined
(usually at temperatures of 800–1100 °C).68,69 This method, includ-
ing its variations such as self-propagating high-temperature synthe-
sis (instead of prolonged heat treatment, the gel is quickly heated to
the temperature required to begin a self-sustaining reaction), and
the Pechini method (in this case, cations enter the gel during com-
plexation) is simple to implement but difficult to scale and unsuit-
able for some systems due to the formation of dense agglomerates
of particles in them.70–72

The precipitation method involves adding a solution contain-
ing metal cations to a precipitant solution (reverse precipitation) or
vice versa (direct precipitation). The resulting precipitate contains
carbonates, hydroxides, or other metal compounds that can be con-
verted to the oxide form by thermal treatment, i.e., precipitation is
a stage preceding solid-phase synthesis. The advantages of the
method are its scalability and high chemical homogeneity of the
product. At the same time, it requires careful control of the synthe-
sis parameters to ensure the complete precipitation of the elements
and the required microstructure. Co-precipitation is widely known
as a method for synthesizing powders of the binary crystalline com-
pounds YAG and LuAG garnets,73–81 as well as for multiatomic
gallium–aluminum doped garnets.82–88

Co-precipitation differs from the other listed methods in that
the required crystalline phase already appears at the stage of prepa-
ration of the powdered compound, which has particles with dimen-
sions even in the nanosize domain. This feature allows for a
significant reduction in the gallium loss due to evaporation in the
form of oxide; gallium is bound in a more complex compound.
Figure 5 shows the images obtained by the scanning electron
microscopy (SEM) of (Gd,Y)3Al2Ga3O12:Ce (GYAGG:Ce) powder
obtained at different processing temperatures for 2 h. The method
of inverse precipitation allows to synthesize powders with weak
agglomeration of particles, which is maintained over a wide tem-
perature range. Weakly agglomerated powders are quickly ground
to fractions necessary for obtaining compacts by pressing or 3D
printing.89

Co-precipitation allows the production of powdered com-
pounds with primary particles of about 50 nm in size and a specific
surface area of 60–70 m2/g. The presence of multiple contacts
between the particles provides high sintering capacity, making it
possible to obtain dense and transparent ceramics without applying
pressure during sintering.

C. Sintering of the ceramics

Optically transparent ceramics may be produced either under
the carefully optimized sintering conditions or by the introduction
of special sintering additive. The latter make the process easier
while may affect scintillation parameters. Sintering conditions
include the temperature, time, and atmosphere of high-temperature
processing of compacts. Sintering of garnet ceramics requires a
temperature of 1600–1800 °C.86,90–92 For compacts made from

co-precipitated powders, the optimal temperature for producing
GYAGG transparent ceramics is ∼1700 °C. Figure 6 shows the SEM
images of GYAGG:Ce ceramics obtained by sintering at different
temperatures.

As seen, the defect-free polycrystalline structure is produced at
a sintering temperature of 1700 °C. In addition, with an increase in
the sintering temperature, an increase in the average grain size of
the ceramics is observed: 0.6 mm at 1500 °C, 1.0 mm at 1600 °C,
and 1.4 mm at 1700 °C.

When using particles with a high specific surface area to
produce ceramics, a stable correlation between the transparency of
the ceramics and the sintering time has not been established,
although this dependence has been obtained in binary and ternary
compounds.93,94 This may be due to the high reactivity of the
powders obtained by the method of inverse precipitation.

A well-known method to produce transparent ceramics is sin-
tering in a vacuum,95,96 which is commonly titled “vacuum-tight.”
However, when sintering gallium-containing compounds in a
vacuum, there is a noticeable loss of this component due to its high
volatility. Evaporation of gallium from the compact results in non-
stoichiometry and leads to a deterioration in the functional proper-
ties of the ceramics. An alternative technique is sintering in an
oxygen atmosphere.97–99 Figure 7 shows the samples of various
multiatomic garnet ceramics obtained by sintering in an oxygen
atmosphere.

Optical transparency is achieved at 2 h of sintering. The bulk
porosity is strongly diminished, resulting in low light scattering. An
advantage of the sintering in oxygen of the compacts made of high-
reactivity powders is clearly seen from Fig. 8. It shows the SEM
images of GYAGG:Ce, Tb ceramics obtained by sintering in air and
in an oxygen atmosphere. Sintering in oxygen allows to reduce the
porosity of the ceramics and increase the average grain size from
0.5 to 1.5 μm. Typical optical transmission of 60% at a wavelength
of 520 nm is achieved.

Worth noting, the ceramics samples consist of differently ori-
ented grains, as seen from electron backscatter diffraction (EBSD)
maps (Fig. 9). However, the presence of numerous boundaries
between crystallites does not lead to a significant decrease in the
optical transmittance of the samples.

The utilization of sintering additives also allows improving the
transmittance of ceramics by modifying their microstructure.
Sintering additives based on silicon and boron100–102 lead to a sig-
nificant increase in the average grain size of the ceramics and
decrease in the proportion of intergranular boundaries in the bulk
of the material. This is due to the formation of a SiO2 melt
(melting point 1600 °C) and a B2O3 melt (melting point 480 °C)
during the sintering process. An active exchange of components
between individual grains of the ceramics is promoted due to the
liquid-phase sintering, as seen in Fig. 10. The average grain size of
the ceramics with the addition of SiO2 and B2O3 increases from 1.4
to 2.6 and 3.1 μm, respectively.

Under certain conditions, low-melting sintering additives can
cause uncontrolled grain growth, worsening the quality of the
resulting ceramics. Therefore, in several studies, the SiO2 additive is
introduced together with a grain growth inhibitor, for example,
MgO,103,104 due to the presence of which active grain growth
occurs more uniformly. Additives based on ZrO2 have a positive
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FIG. 5. SEM images of GYAGG:Ce nanopowders calcined at various temperatures.

FIG. 6. Scanning electron microscopy images of GYAGG:Ce ceramics obtained by sintering at 1500 (a), 1600 (b), and 1700 °C (c).
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FIG. 7. Transparent ceramics of ternary, quaternary, and quintuple garnets: Gd3Al2Ga3O12:Ce (a), (Gd, Y)3Al2Ga3O12:Ce (b), (Gd,Y)3Al2Ga3O12:Ce,Tb (c),
(Gd,Y)3Al2Ga3O12:Tb (d), (Gd,Y,Lu)3Al2Ga3O12:Ce (e), (Gd,Y)3Al2Ga3O12:Ce,Yb ( f ).
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effect on the microstructure of garnet-based ceramics105 as well.
Figure 11 shows the SEM images of GYAGG:Ce samples sintered
with the additives of MgO and ZrO2.

The utilization of the sintering additives might be associated
with noticeable changes in their luminescence properties. It is
known that the addition of MgO allows for a noticeable accelera-
tion of the photoluminescence and scintillation kinetics,106,107 but
it significantly reduces their intensity. For SiO2 additive, the depen-
dence is not so clear-cut, and with the use of relatively small
amounts of the additive, some increase in the scintillation yield was
observed.108,109 The addition of ZrO2 and B2O3 was also studied in
Ref. 110: both additives led to an increase in the optical transpar-
ency of the material without notable affecting the scintillation light
yield and kinetics.

D. Disordered compounds of tungstates with scheelite
structure

Recently, encouraging results have been obtained for self-
activated scintillators of tungstate compounds made in the
powder form, namely, (Pb,Ca)WO4, (Pb,Sr)WO4, and (Pb,Ba)
WO4.

43 Due to the disorder in the cationic subsystem by the
mixing of Pb–Sr and Pb–Ba ions, the scintillation yield was mea-
sured to be significantly high in comparison with the appropriate
binary compounds: PbWO4 (PWO), SrWO4, and BaWO4. The
above ternary tungstates have a high stopping power for ionizing
radiation and can provide the registration of annihilation x rays
with good time resolution, which makes them a very attractive
option to use in positron emission tomography (PET) scanners in

FIG. 8. SEM images of GYAGG:Ce,Tb samples sintered in air (a) and oxygen (b).

FIG. 9. EBSD maps in grain orientation visualization mode (black pixels are zero solutions) at ×5000 magnification for GYAGG:Tb samples with different Tb contents:
(a) x = 0.05, (b) x = 0.10, (c) x = 0.20.
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the time-of-flight (TOF) registration mode.111 At the same time,
it has been established that (Pb,Sr)WO4 (PSWO) does not form
congruently melting compounds.112 Nevertheless, these materials
can be obtained from the melt by crystal growth from the solution
in the melt. Figure 12 shows a sample of (Pb,Sr)WO4 grown in
the PbWO4 solution.

The scheelite structural type of the mixed single crystals was
confirmed by x-ray diffraction measurements. The density of the
(Pb0.5Sr0.5)WO4 was measured to be 7.39 g/cm3. The luminescence
band in mixed tungstates consists of the three strongly overlapped
bands. Figure 13 depicts measured at 150 K photoluminescence
spectra of (Pb0.5Sr0.5)WO4 (Pb0.5Sr0.5)WO4:La and its approxima-
tion by three Gaussian-type bands, the temperature dependence of
integrated luminescence of these components in undoped and
solely doped with La (50 ppm) samples, and samples scintillation
kinetics.

As seen, the band peaked in the vicinity of 2.5 eV is affected
by La codoping. Most probably, it relates to oxygen vacancies, simi-
larly to PWO, in which WO3 defect luminescence was strongly sup-
pressed by the La or Y doping.13 The other bands that contribute
to the profile of the luminescence band might correspond to the
WO4

2− coupled to the different cations: Sr–WO4
2− or WO4

2−–Pb. A
remarkable feature of the luminescence is quite different from
PWO, the temperature dependence of the integrated luminescence
intensity. All three bands’ intensities show the breaking points at
the temperature above 250 K. Thus, the luminescence quenching
due to the thermoionization of excitons remains a weak process
roughly up to the room temperature. This change in the disordered
tungstate is crucially important to obtain a high light yield of the
self-activated scintillator.

To date, the top results in terms of scintillation parameters
have been obtained with single crystals of (Pb0.5, Sr0.5)WO4. These

FIG. 10. SEM images of GYAGG:Ce ceramics produced without sintering additives (a), with the addition of 0.01 SiO2 wt. % (b) and 0.01 wt. % B2O3 (c).

FIG. 11. SEM images of GYAGG:Ce samples produced with the addition of MgO (a) и ZrO2 (b) in the green bodies.
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parameters are given in Table I in comparison with crystals of
PWO and Bi4Ge3O12 (BGO).

E. Disordered phosphates

Compounds of elements of the fifth group, in particular phos-
phates, are also promising for the creation of scintillation materials
along with compounds of ions of the third (Al, Ga) and fourth (Si,
Ge) groups of elements.113–116 Although the scintillation yield in
phosphates based on Lu and, apparently, Y does not exceed
20 000 phot/MeV, the compounds are interesting from the point of
view of confirming the efficiency of exploiting the disorder in inor-
ganic crystalline scintillators. Since mixing phosphorus and heavier
elements of this group in one crystalline system is technologically
quite difficult, the preferred option is to create disordered systems
by diluting the sublattice of the heavy cation in the compound. The
authors117 established an increase in the integral intensity of lumi-
nescence of Eu3+ ions upon dilution of the yttrium sublattice with
scandium ions in the ScxY1−xPO4:Eu

3+ compound. Recently, the
authors118 have established an almost twofold increase in the
quantum yield of intrinsic luminescence in the same crystalline
compound at a Sc/Y ratio of about 1 when excited with 10 eV syn-
chrotron radiation. This makes such mixed compounds very prom-
ising for increasing the scintillation yield, since yttrium-scandium
phosphates form solid solutions with a range of pseudopotential
fluctuations as high as 1 eV.

F. Light weight disordered compounds

The commonly exploited idea of scintillators as “heavy” mate-
rials was constituted by the use of scintillation crystals for
gamma-ray spectrometry, high-energy physics, medical, and secur-
ity inspection equipment. The high density of the scintillator pro-
vides high stopping power for gamma and x-ray radiation and,
therefore, allows making the detector module more compact with
an acceptable cost. For neutron measurements, high density of
materials is more likely to be a disadvantage since higher density
causes higher sensitivity to background gamma quanta.
Commercially available materials used for neutron detection 6LiI:

FIG. 12. (Pb0.5Sr0.5) WO4 single crystal produced by the crystallization in the
solution of PbWO4.

FIG. 13. PSWO (solid) and PSWO:La (dashed) luminescence excited at
280 nm and measured at 150 K and its approximation by three
Gaussian-type bands; (a) temperature dependence of the PSWO and
PSWO:La luminescence bands integrated intensity in the spectral range
300–650 nm at 280 nm excitation; (b) comparison of room temperature
measured scintillation kinetics (c).
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Eu,119 Gd3Al2Ga3O12:Ce,
120 Cs2LiYCl6:Ce,

121,122 CdWO4,
123 pow-

dered scintillators ZnS:Ag mixed with neutron converter 6LiF,124

and Gd2O2S:Tb
125 have a relatively high stopping power for

gamma-radiation. In this context, lightweight inorganic scintillation
materials combining light cations and anions and allowing isova-
lent doping with rare earth ions are of interest. Lanthanum chloride
LaCl3:Ce

126 meets this criterion and has proven itself well for
detecting fast neutrons. Table II summarizes some properties of rel-
atively light inorganic compounds that satisfy the selection crite-
rion.

*Zeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ωiZn
i

n

r
,

where ω is the mass fraction of an element with atomic number Zi,
n = 4.127

First, consider LiAlO2 having the lowest effective charge of
the compound. In tetragonal LiAlO2, aluminum atoms have tetra-
hedral coordination with oxygen atoms. This type of coordination
is not suitable for the localization of rare earth ions. However, the
LiAlO2 compound exists in three possible allotropic forms:
low-temperature LiAlO2 (up to 400 °C); intermediate LiAlO2

(400–800 °C); and LiAlO2, stable at high temperatures (>1000 °C).
Perhaps, it is possible to introduce RE ions into the rhombohe-
dral LiAlO2, in which aluminum atoms have octahedral coordina-
tion. However, since this compound is actually intermediate and
does not exist at low temperatures, no successful attempts to
introduce a rare earth ion into the LiAlO2 matrix have been
observed. Self-activated scintillators based on LiAlO2 have a low
light yield for neutron detection, amounting to 7000 ph/neutron.
When doped with copper, the light yield can be increased to
9000 ph/neutron.128 Obviously, the use of fluorides does not have
much promise because fluoride-based materials have a wide
bandgap and, as a consequence, a reduced scintillation yield.13

li3YCl6 is a very attractive compound, but it is also considered a
promising solid-state electrolyte.128 From the point of view of the
combination of low density and high light yield of scintillations,
nitrides LiCaAlN2 and LiCaAl3N4 are of interest: their bandgap is
less than 3 eV, and the effective charge is 16.3 and 14.8, respec-
tively. These matrices have shown excellent characteristics as
phosphors.129

Next in density from the above listed set of the materials are
silicates. The scintillation properties of these materials when acti-
vated by Eu2+ ions have been confirmed by the authors.130,131 The
group of compounds Li2AESiO4, where AE =Mg, Ca, Sr, and Ba, is
of particular interest. One of the advantages of this group is the
possibility of growing a single-crystal material.132 Increasing the
light yield of Li2CaSiO4 seems possible by creating compositional
disorder. Note that in the series of Li2AESiO4 compounds,
Li2CaSiO4 has the widest bandgap, so the dilution of the Ca2+ sub-
lattice with Mg2+, Sr2+, and Ba2+ ions seems promising. Of course,
with an increase in the number of ions “heavier” than calcium, the
effective charge of the compound will also increase.

An expected issue in the creation of compositionally disordered
lightweight silicates is the mutual solubility of ions in the matrix.
In the series Li2MgSiO4→ Li2CaSiO4→ Li2SrSiO4→ Li2BaSiO4, the
crystal structure changes with modification in the symmetry of the
lattice of the compounds: Li2MgSiO4 is monoclinic, Li2CaSiO4 is
tetragonal, Li2SrSiO4 is trigonal, and Li2BaSiO

4 is hexagonal. All this
indicates that the mutual solubility of the AE ions (Ca2+, Mg2+, Sr2+,
and Ba2+) in the Li2AESiO4 matrix is limited, unlike cubic matrices
with a garnet structure, in which oxides similar in chemical proper-
ties and structure dissolve in each other almost unlimitedly.133 At
the same time, the spectroscopic parameters in mixed compounds
are quite difficult to predict. Figures 14(a) and 14(b) show the
luminescence and its excitation spectra measured at room tempera-
ture in the compounds Li2CaSiO4, Li2Sr0.1Ca0.9SiO4, and Li2SrSiO4

activated by Eu2+ ions. At a small fraction of Ca ions, which were
substituted by Sr ions, luminescence spectra do not show many

TABLE I. Comparison of parameters of PWO, PSWO, and BGO scintillators.

Sample Density (g/cm3) Effective charge (Zeff) Light yield (ph/MeV)
Scintillation band
maximum (nm)

Scintillation kinetics
components (ns)

PWO 8.28 76 100 420 6
PSWO 7.39 71 13 500 430 500
BGO 7.13 75 8200–9000 505 300

TABLE II. Lightweight inorganic materials that are promising for creating scintillators
for neutron detection.

Compound
Density
(g/cm3)

Eg
(eV)

Concentration of atoms
interacting with neutrons

(сm−3) Zeff*

LiI:Eu 4.08 4.23 1.83 × 1022 52.3
LaCl3 3.8 3.65 2.69 × 1022 49.5
CeCl3 3.9 4.3 2.86 × 1022 50.4
LiYO2 4.1 4.01 1.93 × 1022 35.6
LiYSiO4 3.65 5.11 1.17 × 1022 32.4
Li3YCl6 2.45 6.47 1.37 × 1022 li 2.74 × 1022 Cl 28.9
LiGdCl4 3.7 0.91 7.28 × 1021 li 7.27 × 1021 Gd

2.91 × 1022 Cl
54.2

γ-LiAlO2 2.64 4.59 2.4 × 1022 11.0
LiCaAlF6 2.86 7.64 9.15 × 1021 14.3
Li2MgSiO4 2.48 4.94 2.29 × 1022 13.2
Li2CaSiO4 2.86 5.19 2.35 × 1022 16.2
Li2SrSiO4 3.43 4.64 2.13 × 1022 31.3
Li2BaSiO4 3.88 4.39 2.17 × 1022 48.6
LiCaAlN2 2.91 2.78 1.72 × 1022 16.3
LiCaAl3N4 2.99 3.02 9.78 × 1021 14.8
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changes, whereas a strong red shift of the luminescence is observed
in the Ca free compound.

This gives hope that the introduction of disorder into the
cation sublattice in the lightweight compounds gives a spare for
manipulation and future improvement of scintillation properties, as
has been established for compounds of the garnet structural type.

IV. PORSPECTS OF THE METHOD

A question that requires further investigation is the confirma-
tion of the universality of the method for all types of scintillation
materials, including cross-luminescent species. Until now, non-
isovalent doping has been intensively studied in these materials,
and only recently, the results have appeared on BaFCl activated by
Eu2+ with a scintillation yield of more than 10 000 photons/
MeV.134,135 The yield of the cross-luminescence in an undoped
mixed material under excitation by ionizing radiation has not been
analyzed. It can only be assumed that the modulation of the
bottom and top of the valence band in the material would lead to
some spectral shift of cross-luminescence, but it is difficult to judge
the change in the scintillation yield. At the same time, the available
experimental data on activated and now self-activated scintillators
show that careful optimization of the technological aspects of the
multicationic material production promotes successful progress in
improving their scintillation properties. The fact that most of the
results in the area of interest were obtained for Al–Ga garnets indi-
cates the greatest technological development of compounds of this
structural class. Among the technologies to produce garnets, we
note the promise of the ceramic method for obtaining the material,
while the single-phase contamination, transmittance, and preserva-
tion of the concentration of activators in the required valence state
are ensured by both the chosen method for obtaining precursors
and the sintering conditions. The developed technological chain

can be supplemented and improved, but it should be understood
that the listed properties must be ensured. So far, there are no
visible limitations on increasing the amount of RE ions in the
matrix while maintaining substitution isomorphism. However, an
obvious limitation is the need to maintain the integrity of the
system for excitation transfer along the cationic RE ions subsystem.
Gd3+ ions cope well with this role in many matrices; however, the
dilution of its sublattice has a lower limit. The combination of RE
ions and yttrium in the lattice is more aimed at changing the stop-
ping power of the matrix for ionizing radiation or at adjusting the
resonance conditions of excitation transfer. In garnets, formed by
3+ cations, the major contribution to the modulation of the con-
duction band bottom is made by the random distribution of Al
and Ga ions localized in tetrahedra and octahedra. From this point
of view, silicate garnets, i.e., garnets based on 2+ and 4+ cations,
abundant in nature, are of certain interest. One of the advantages
of such materials is a smaller forbidden zone, which can act as an
additional factor in increasing the scintillation yield.

V. CONCLUSIONS

This review summarizes the evidence of the compositional
disordering of the crystalline matrices of the oxide scintillation
materials, activated and self-activated, to improve their scintillation
parameters. A few effects of the compositional disorder in the crys-
talline system have been highlighted. First is a change in the land-
scape of the top and bottom regions of the valence and conduction
bands, which are adjacent to the bandgap. Second, managing the
modulation of bandgap at the subnanoscale level promotes the effi-
cient energy loss by carriers during thermalization, their smaller
spatial dispersion, and, consequently, more efficient binding into
excitons and, further, an increase in the scintillation yield.

This approach was generalized for activated and self-activated
inorganic scintillators and supported by the results on the lumines-
cence and the scintillation properties improvement obtained with
scintillation crystalline compounds of the garnet and scheelite
structural types. It is shown that this way of engineering the com-
pound’s composition may result in an increase in the yield of scin-
tillation, a shortening in the kinetics of scintillation, or a
combination of both. This is due to the increasing role of geminate
pairs of nonequilibrium carriers in the transfer of electronic excita-
tions to luminescent centers, as well as the increasing role of
exchange interaction, which reduces the role of long-range elec-
tronic excitation transport, in particular, in Gd3+-based crystals.
The results on the scintillation properties of the complication of
the crystal composition—from binary to quintuple cation garnet
type ceramic compounds, containing Gd, Y, Lu, Tb, and Yb matrix-
forming ions—and from binary to ternary tungstate crystals are
discussed in support of the developed approach.
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