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Gao Runchen, A. A. Spiridonov

Belarusian State University, Minsk, Belarus, email: rct.gaoZH@bsu.by

Ensuring the stability of the launch vehicle's flight is a crucial prerequisite for mission success. In
practical engineering, establishing an accurate mathematical model and directly conducting stability
analysis is extremely difficult, as the launch vehicle is a strongly coupled, high-order, time-varying
nonlinear dynamical system integrating rigid body motion, structural elasticity, liquid sloshing, and
variable mass characteristics. Traditional stability criteria for nonlinear systems, such as the Lyapunov
method, are theoretically rigorous, but they have significant limitations in engineering applications due
to issues such as the difficulty in constructing suitable Lyapunov functions and the huge amount of
real-time computation required. By analyzing these linearized models, the stability of the rocket
throughout the flight process can be effectively evaluated, providing a basis for control system design.
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Obecrieuernne yCTOWIMBOCTH TOJIETa PAaKEThI-HOCHUTENS SBISIETCS KITIOUYEBBIM YCIIOBHEM ycIexa
MHUCCHH. B mpakTudeckoll MH)XKEHEPHH CO3JaHHE TOYHOW MaTEMaTHYECKOW MOAEIH W MPsSMOM aHaIu3
YCTOWYMBOCTH YPE3BBIYAIHO CIIOKHBI, MOCKOJBKY paKeTa-HOCHUTENb MPEACTaBIAET COOO0H CHIBHO
CBSI3aHHYI0, BBICOKOIIOPSIIKOBYIO, U3MEHSIOIIYIOCS BO BPEMEHH HEJIMHENHYI0 JUHAMUYECKYIO CUCTEMY,
00BEIMHAIOUIYIO ABMKCHHE TBEPAOrO TeNa, CTPYKTYPHYIO YIPYroCTh, pacKauMBaHUE >KUAKOCTH U
XapaKTEPUCTUKU MEPEMEHHON MacChl. TpaguIIMOHHBIE KPUTEPUN YCTOWYUBOCTH Il HEJIMHEWHBIX CUC-
TE€M, TakMe Kak MeTop JIAmyHOBa, TEOPETUYECKU CTPOIHM, HO UMEIOT 3HAUYMTEIbHBIC OIPAaHUYEHUS B
MH)KECHEPHBIX NMPHIOKECHUAX U3-3a TAKUX MIPOOJIEM, KaK TPYIHOCTH B MIOCTPOCHHUHU MOIXOAALUIMX (PYHK-
uuii JISrmyHOBa M OTPOMHBIX OOBEMOB BBIYHCICHUHA B PEATbHOM BpeMEHH. AHAJIH3HUPYs 3TH JIMHEAPH-
30BaHHBIE MOJENH, MOXHO 3(PPEKTHBHO OIEHHUTH YCTOWYHBOCTH PAKETHl HA MPOTSHKEHHH BCETO TPO-
1ecca I0JIETa, YTO CIIy>KMT OCHOBOM IS IPOCKTUPOBAHUS CUCTEMBI YIIPABICHMUS.

Kniouesvie cnosa: 3amyckHas yCTaHOBKA, aHalIW3 YCTOWYMBOCTH; HEJIMHEHHAs HMHAMUKA;
CBsI3aHHAS AWHAMHKA; MeTO JISmyHOBa

Introduction

As the primary means of transportation into space, the success of the flight
process of a carrier rocket is directly related to the execution of major national space
missions and the safety of space assets. Throughout the entire process from the rocket's
takeoff from the ground to the delivery of the payload into the predetermined orbit, it is
necessary to always maintain stable attitude to ensure that it can fly precisely along the
preset nominal trajectory. Any minor instability may lead to severe deviation in flight
attitude and even cause the rocket structure to overload and disintegrate, resulting in
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catastrophic consequences. Therefore, conducting an in-depth and accurate stability
analysis of the carrier rocket is the core task and fundamental premise of its overall design
and control system design.

However, conducting precise stability analysis on launch vehicles is a highly
challenging task. Modern launch vehicles typically exhibit structural characteristics of
large aspect ratio, thin-walled, and lightweight, making them complex rigid-flexible
coupled elastomers. During high-speed flight, the vehicle body not only has to withstand
severe aerodynamic torques, but the sloshing effect of the internal liquid propellant can
also have a significant coupled impact on the vehicle's attitude [1]. Furthermore, the
coupling between engine thrust pulsations, structural elastic vibrations of the vehicle
body, and the propellant delivery system may also induce longitudinal "POGO"
vibrations, posing a serious threat to system stability [2]. More importantly, as the fuel is
continuously consumed during flight, the mass, center of mass position, moment of
inertia of the rocket change rapidly over time, making the entire system essentially a high-
order, multivariable, strongly coupled, and time-varying nonlinear dynamical system [3].
These complex dynamical characteristics are intertwined, making it difficult to establish
a global mathematical model that can be directly used for analytical purposes.

In the field of control theory, although there are mature stability criteria for
nonlinear systems such as Lyapunov's second method, applying them directly to complex
engineering systems like launch vehicles faces a significant gap between theory and
practice. Constructing a suitable Lyapunov function systematically for high-dimensional
rocket dynamics systems remains an unresolved challenge, lacking a universal
engineering approach [4]. Even if it could be constructed offline, the enormous
computational load required for real-time analysis during flight far exceeds the
capabilities of current on-board computers, making it impossible to meet real-time
requirements. Therefore, it is crucial to seek an analytical method that can fully reflect
the dynamic characteristics of the system and is easily implementable in engineering.

To address this challenge, a linearization analysis method based on small
perturbation theory is commonly adopted in engineering practice. The core idea of this
method is that the control system of a launch vehicle is designed to precisely track a pre-
designed nominal trajectory. Therefore, during normal flight, the deviation of the actual
state of the vehicle from the nominal state can be regarded as a small perturbation. Based
on this assumption, complex nonlinear dynamic equations can be expanded into Taylor
series along multiple flight state points along the nominal trajectory, neglecting higher-
order terms, thus obtaining a series of Linear Time-Varying (LTV) or Linear Time-
Invariant (LTI) small deviation models describing the local dynamic characteristics of
the system [5]. This method successfully transforms a complex global nonlinear problem
into a series of linear problems that can be independently analyzed in different flight
phases. For these linearized models, classical control theory tools such as root loci and
frequency response (e.g., Bode plots, Nyquist diagrams) can be easily applied for in-
depth stability margin analysis and controller parameter design.

The research presented in this article aims to provide clear engineering ideas and
theoretical support for the stability analysis and control system design of launch vehicles.
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Stability Criteria for Linear Systems and Nonlinear Systems

Ideally, the launch vehicle should follow the predetermined trajectory. However,
due to various disturbances during actual flight, errors are bound to occur. Therefore, it
IS necessary to design an attitude control system to eliminate the deviation between the
actual flight trajectory and the predetermined trajectory. Under the control of the rocket
guidance system, the actual flight trajectory of the rocket is quite close to the
predetermined trajectory, and the deviation of flight parameters is small. Therefore, the
stability analysis of the linear system obtained by the small disturbance method can well
approximate the dynamic characteristics of the nonlinear system and has been effectively
verified in engineering practice [7].

There are usually two methods for determining the stability of a linear system: one
is the root locus method, which examines the situation of the characteristic roots
corresponding to the differential equations describing the dynamics of the rocket body.
Based on the distribution of open-loop zeros and poles and the root locus gain, a root
locus diagram is drawn to identify the closed-loop poles. If the drawn root locus is
entirely located on the left side of the S plane, it indicates that no matter how the system
parameters are changed, all characteristic roots have negative real parts, and the system
is stable. If the root locus is entirely in the right half of the S plane, it indicates that the
system is unstable no matter how the system parameters are changed. If it is on the
imaginary axis, it indicates critical stability, which means continuous oscillation. Since
high-order linear systems have many characteristic roots, it is difficult to draw a root
locus diagram, so the root locus method is suitable for stability analysis of second-order
or multi-order systems. The other method is to determine the stability of the entire system
by evaluating the open-loop amplitude-phase characteristics of the system. The frequency
domain analysis method is mainly based on the Nyquist stability criterion. If the open-
loop system is stable, i.e., P =0, then the necessary and sufficient condition for the closed-
loop system to be stable is that the I, curve does not enclose the point
(-1, jO). If the open-loop system is unstable, i.e., P # 0, then the necessary and sufficient
condition for the closed-loop system to be stable is that the curve rotates P times around
the point (-1, jO) in a counterclockwise direction. A commonly used method in
engineering design is to first calculate the frequency characteristics of the open-loop
transfer function and then design the closed-loop system based on the Nyquist stability
criterion [8].

During flight, the mass of the launch vehicle continuously decreases, and
environmental parameters undergo continuous changes, making it a time-varying
nonlinear system. The stability of a time-varying nonlinear system is typically analyzed
using Lyapunov stability theory. According to the Lyapunov stability definition, for a
continuous nonlinear system x = f(x, t), where x is an n-dimensional state vector, when
there exists an equilibrium state x, in the state space such that f(x,,t) = 0, the system
will reach equilibrium at this point without external forces. During the process of the
system transitioning from unstable to stable, its energy continuously decreases, and the
equilibrium point satisfies the conditions of energy E > 0, (dE/dt) < 0.
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Lyapunov constructed an energy function V (x) described by state variables, and its
equilibrium point satisfies:

{V(x) > 0(x # 0) (1)
V(x) =0(x=0)
and satisfying

V(x) <0 (2)

the stability of the system can be determined. Based on the above analysis, Lyapunov

proposed the stability theorem for nonlinear systems:

a) IfV(x) is a positive definite function and V(x) is a semi-negative definite function,
then the equilibrium state x, = 0 is stable;

b) If V(x) is a positive definite function, V(x) is a negative definite function, and

V(x) # 0 for all nonzero solutions of the nonlinear system, then the equilibrium state

x, = 0 is asymptotically stable;

c) If x, = 0 is asymptotically stable, and when ||x]|| — oo, V(x,t) = oo, thenx, = 0 is
globally asymptotically stable.

Currently, there is no universal method to construct an energy function, and the
launch vehicle is a complex system with rigid-elastic-sloshing coupling. It is very
difficult to find an energy function that accurately describes the effects of elastic vibration
and liquid sloshing, making it challenging to meet the requirements of real-time stability
analysis in practical engineering applications [6, 7].
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