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Ensuring the stability of the launch vehicle's flight is a crucial prerequisite for mission success. In 

practical engineering, establishing an accurate mathematical model and directly conducting stability 

analysis is extremely difficult, as the launch vehicle is a strongly coupled, high-order, time-varying  

nonlinear dynamical system integrating rigid body motion, structural elasticity, liquid sloshing, and  

variable mass characteristics. Traditional stability criteria for nonlinear systems, such as the Lyapunov 

method, are theoretically rigorous, but they have significant limitations in engineering applications due 

to issues such as the difficulty in constructing suitable Lyapunov functions and the huge amount of  

real-time computation required. By analyzing these linearized models, the stability of the rocket 

throughout the flight process can be effectively evaluated, providing a basis for control system design.  
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Обеспечение устойчивости полета ракеты-носителя является ключевым условием успеха 

миссии. В практической инженерии создание точной математической модели и прямой анализ 

устойчивости чрезвычайно сложны, поскольку ракета-носитель представляет собой сильно 

связанную, высокопорядковую, изменяющуюся во времени нелинейную динамическую систему, 

объединяющую движение твердого тела, структурную упругость, раскачивание жидкости и 

характеристики переменной массы. Традиционные критерии устойчивости для нелинейных сис-

тем, такие как метод Ляпунова, теоретически строги, но имеют значительные ограничения в 

инженерных приложениях из-за таких проблем, как трудности в построении подходящих функ-

ций Ляпунова и огромных объемов вычислений в реальном времени. Анализируя эти линеари-

зованные модели, можно эффективно оценить устойчивость ракеты на протяжении всего про-

цесса полета, что служит основой для проектирования системы управления. 
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Introduction 

As the primary means of transportation into space, the success of the flight  

process of a carrier rocket is directly related to the execution of major national space 

missions and the safety of space assets. Throughout the entire process from the rocket's 

takeoff from the ground to the delivery of the payload into the predetermined orbit, it is 

necessary to always maintain stable attitude to ensure that it can fly precisely along the 

preset nominal trajectory. Any minor instability may lead to severe deviation in flight 

attitude and even cause the rocket structure to overload and disintegrate, resulting in 
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catastrophic consequences. Therefore, conducting an in-depth and accurate stability 

analysis of the carrier rocket is the core task and fundamental premise of its overall design 

and control system design. 

However, conducting precise stability analysis on launch vehicles is a highly 

challenging task. Modern launch vehicles typically exhibit structural characteristics of 

large aspect ratio, thin-walled, and lightweight, making them complex rigid-flexible 

coupled elastomers. During high-speed flight, the vehicle body not only has to withstand 

severe aerodynamic torques, but the sloshing effect of the internal liquid propellant can 

also have a significant coupled impact on the vehicle's attitude [1]. Furthermore, the 

coupling between engine thrust pulsations, structural elastic vibrations of the vehicle 

body, and the propellant delivery system may also induce longitudinal "POGO" 

vibrations, posing a serious threat to system stability [2]. More importantly, as the fuel is 

continuously consumed during flight, the mass, center of mass position, moment of 

inertia of the rocket change rapidly over time, making the entire system essentially a high-

order, multivariable, strongly coupled, and time-varying nonlinear dynamical system [3]. 

These complex dynamical characteristics are intertwined, making it difficult to establish 

a global mathematical model that can be directly used for analytical purposes. 

In the field of control theory, although there are mature stability criteria for 

nonlinear systems such as Lyapunov's second method, applying them directly to complex 

engineering systems like launch vehicles faces a significant gap between theory and 

practice. Constructing a suitable Lyapunov function systematically for high-dimensional 

rocket dynamics systems remains an unresolved challenge, lacking a universal 

engineering approach [4]. Even if it could be constructed offline, the enormous 

computational load required for real-time analysis during flight far exceeds the 

capabilities of current on-board computers, making it impossible to meet real-time 

requirements. Therefore, it is crucial to seek an analytical method that can fully reflect 

the dynamic characteristics of the system and is easily implementable in engineering. 

To address this challenge, a linearization analysis method based on small 

perturbation theory is commonly adopted in engineering practice. The core idea of this 

method is that the control system of a launch vehicle is designed to precisely track a pre-

designed nominal trajectory. Therefore, during normal flight, the deviation of the actual 

state of the vehicle from the nominal state can be regarded as a small perturbation. Based 

on this assumption, complex nonlinear dynamic equations can be expanded into Taylor 

series along multiple flight state points along the nominal trajectory, neglecting higher-

order terms, thus obtaining a series of Linear Time-Varying (LTV) or Linear Time-

Invariant (LTI) small deviation models describing the local dynamic characteristics of 

the system [5]. This method successfully transforms a complex global nonlinear problem 

into a series of linear problems that can be independently analyzed in different flight 

phases. For these linearized models, classical control theory tools such as root loci and 

frequency response (e.g., Bode plots, Nyquist diagrams) can be easily applied for in-

depth stability margin analysis and controller parameter design. 

The research presented in this article aims to provide clear engineering ideas and 

theoretical support for the stability analysis and control system design of launch vehicles. 
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Stability Criteria for Linear Systems and Nonlinear Systems 

Ideally, the launch vehicle should follow the predetermined trajectory. However, 

due to various disturbances during actual flight, errors are bound to occur. Therefore, it 

is necessary to design an attitude control system to eliminate the deviation between the 

actual flight trajectory and the predetermined trajectory. Under the control of the rocket 

guidance system, the actual flight trajectory of the rocket is quite close to the 

predetermined trajectory, and the deviation of flight parameters is small. Therefore, the 

stability analysis of the linear system obtained by the small disturbance method can well 

approximate the dynamic characteristics of the nonlinear system and has been effectively 

verified in engineering practice [7]. 

There are usually two methods for determining the stability of a linear system: one 

is the root locus method, which examines the situation of the characteristic roots 

corresponding to the differential equations describing the dynamics of the rocket body. 

Based on the distribution of open-loop zeros and poles and the root locus gain, a root 

locus diagram is drawn to identify the closed-loop poles. If the drawn root locus is 

entirely located on the left side of the S plane, it indicates that no matter how the system 

parameters are changed, all characteristic roots have negative real parts, and the system 

is stable. If the root locus is entirely in the right half of the S plane, it indicates that the 

system is unstable no matter how the system parameters are changed. If it is on the 

imaginary axis, it indicates critical stability, which means continuous oscillation. Since 

high-order linear systems have many characteristic roots, it is difficult to draw a root 

locus diagram, so the root locus method is suitable for stability analysis of second-order 

or multi-order systems. The other method is to determine the stability of the entire system 

by evaluating the open-loop amplitude-phase characteristics of the system. The frequency 

domain analysis method is mainly based on the Nyquist stability criterion. If the open-

loop system is stable, i.e., P = 0, then the necessary and sufficient condition for the closed-

loop system to be stable is that the 𝛤𝐺𝐻  curve does not enclose the point  

(-1, j0). If the open-loop system is unstable, i.e., P ≠ 0, then the necessary and sufficient 

condition for the closed-loop system to be stable is that the curve rotates P times around 

the point (-1, j0) in a counterclockwise direction. A commonly used method in 

engineering design is to first calculate the frequency characteristics of the open-loop 

transfer function and then design the closed-loop system based on the Nyquist stability 

criterion [8]. 

During flight, the mass of the launch vehicle continuously decreases, and 

environmental parameters undergo continuous changes, making it a time-varying 

nonlinear system. The stability of a time-varying nonlinear system is typically analyzed 

using Lyapunov stability theory. According to the Lyapunov stability definition, for a 

continuous nonlinear system 𝑥̇ = 𝑓(𝑥, 𝑡), where 𝑥 is an n-dimensional state vector, when 

there exists an equilibrium state 𝑥𝑒 in the state space such that 𝑓(𝑥𝑒 , 𝑡) = 0, the system 

will reach equilibrium at this point without external forces. During the process of the 

system transitioning from unstable to stable, its energy continuously decreases, and the 

equilibrium point satisfies the conditions of energy 𝐸 > 0, (𝑑𝐸/𝑑𝑡) < 0. 
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Lyapunov constructed an energy function 𝑉(𝑥) described by state variables, and its 

equilibrium point satisfies: 

{
𝑉(𝑥) > 0(𝑥 ≠ 0)

𝑉(𝑥) = 0(𝑥 = 0)
(1) 

and satisfying 

𝑉̇(𝑥) < 0 (2) 

the stability of the system can be determined. Based on the above analysis, Lyapunov 

proposed the stability theorem for nonlinear systems: 

a) If 𝑉(𝑥) is a positive definite function and 𝑉̇(𝑥) is a semi-negative definite function, 

then the equilibrium state 𝑥𝑒 = 0 is stable;  

b) If 𝑉(𝑥)  is a positive definite function, 𝑉̇(𝑥)  is a negative definite function, and 

𝑉̇(𝑥) ≠ 0 for all nonzero solutions of the nonlinear system, then the equilibrium state 

𝑥𝑒 = 0 is asymptotically stable; 

c) If 𝑥𝑒 = 0 is asymptotically stable, and when ‖𝑥‖ → ∞, 𝑉(𝑥, 𝑡) → ∞, then 𝑥𝑒 = 0 is 

globally asymptotically stable. 

Currently, there is no universal method to construct an energy function, and the 

launch vehicle is a complex system with rigid-elastic-sloshing coupling. It is very 

difficult to find an energy function that accurately describes the effects of elastic vibration 

and liquid sloshing, making it challenging to meet the requirements of real-time stability 

analysis in practical engineering applications [6, 7]. 
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